ISSN 1004-4140
CN 11-3017/P

基于CCTA的血流储备分数临床应用进展

李诗航, 张晓琴

李诗航, 张晓琴. 基于CCTA的血流储备分数临床应用进展[J]. CT理论与应用研究, 2023, 32(2): 279-284. DOI: 10.15953/j.ctta.2022.037.
引用本文: 李诗航, 张晓琴. 基于CCTA的血流储备分数临床应用进展[J]. CT理论与应用研究, 2023, 32(2): 279-284. DOI: 10.15953/j.ctta.2022.037.
LI S H, ZHANG X Q. Progress in the Clinical Application of Fractional Flow Reserve Based on Coronary CT Angiography[J]. CT Theory and Applications, 2023, 32(2): 279-284. DOI: 10.15953/j.ctta.2022.037. (in Chinese).
Citation: LI S H, ZHANG X Q. Progress in the Clinical Application of Fractional Flow Reserve Based on Coronary CT Angiography[J]. CT Theory and Applications, 2023, 32(2): 279-284. DOI: 10.15953/j.ctta.2022.037. (in Chinese).

基于CCTA的血流储备分数临床应用进展

详细信息
    作者简介:

    李诗航: 女,内蒙古医科大学影像医学与核医学研究生,主要研究方向为心胸影像诊断,E-mail:lishihang00@qq.com

    张晓琴: 女,内蒙古自治区人民医院主任医师,主要从事介入及影像诊断工作,E-mail:xiaoqin1498@163.com

    通讯作者:

    张晓琴*,女,内蒙古自治区人民医院主任医师,主要从事介入及影像诊断工作,Tel:13948610666,E-mail:xiaoqin1498@163.com

  • 中图分类号: R  814

Progress in the Clinical Application of Fractional Flow Reserve Based on Coronary CT Angiography

  • 摘要: 近年来基于冠状动脉CT血管成像衍生的无创血流储备分数(FFR<sub<CT</sub<)是心血管成像的一项重大进步,血流储备分数能够识别病变特异性缺血,并为血运重建的临床决策提供信息,充当有创性冠状动脉造影(ICA)的把关人。本文旨在综述FFR<sub<CT</sub<的研究进展,并简要探讨存在的局限性。
    Abstract: Noninvasive coronary fractional flow reserve derived from CT angiography (FFR<sub<CT</sub<) is a major advance within cardiovascular imaging in recent years. It can identify pathology-specific ischemia and provide information for clinical decisions on revascularization, serving as a gatekeeper for invasive coronary angiography.This paper reviews the research progress of FFR<sub<CT</sub< and briefly discusses its limitations.
  • 目前研究认为冠状动脉斑块进展机制复杂,可能受血流动力学异常、炎症损伤及内皮功能紊乱等影响;同时冠状动脉斑块进展特别是破裂均可导致心血管不良事件发生风险升高[1]。既往超声内镜、光学相干断层扫描(OCT)等有创检查手段可直观评估斑块大小、性质及斑块进展,但存在医源性创伤明显、价格昂贵等缺陷[2]。近年来冠状动脉CT血管成像已被广泛用于冠心病诊断及随访,而通过后处理分析功能还可定性及定量评估斑块,显示出与超声内镜接近评估效能[3];而基于CT的血流储备分数(CT-FFR)属于新型冠状动脉血流动力改变评估技术,能够实现特异性缺血病变无创评估,有研究显示CT-FFR值可能与冠状动脉斑块恶化及心脏不良事件发生有关[4]

    基于以上证据,本次研究回顾性分析2017年1月至2020年1月我院收治心绞痛患者共236例,根据是否发生斑块进展分组,旨在探讨心绞痛患者斑块进展危险因素及与冠状动脉CT血管成像指标的关系。

    研究2017年1月至2020年1月我院收治心绞痛患者共236例。纳入标准:①因症状加重、新发症状或随访来院接受两次冠状动脉CT血管成像检查;②两次检查时间>12个月;③年龄≥18岁;④临床资料完整。排除标准:①两次检查间行冠状动脉血运重建;②冠状动脉 CT血管成像质量欠佳导致无法评估;③主动脉夹层;④瓣膜病变;⑤先天性心脏病;⑥不愿配合检查治疗。研究设计符合《赫尔辛基宣言要求》。

    入选患者根据是否发生斑块进展分组,其中斑块进展组74例,无斑块进展组162例;斑块进展判定标准为斑块负荷(PB)变化率>1%。

    查阅病例记录患者性别、年龄、合并基础疾病、既往史、用药情况、实验室检查指标及冠状动脉CT血管成像指标;甘油三酯(TG)、总胆固醇(TC)及超敏C反应蛋白(hs-CRP)水平检测采用贝克曼AU3000型全自动生化分析仪,其中hs-CRP检测采用免疫比浊法,TG和TC检测采用超速离心法。

    冠状动脉CT血管成像采用西门子SOMATOM Definition 双源CT扫描仪。扫描前给予硝酸甘油扩张冠状动脉,保证HR<90次/min,依次行冠状动脉钙化积分平扫及心电门控检查。扫描参数设置:管电压100~130 kV,管电流100~350 mAs,矩阵512×512,管转速0.28 s/转。注射碘佛醇(370 mg/mL)50~70 mL,对比剂流率4~5 mL/s。

    获得图像经西门子CPA 4.2.1软件处理完成斑块定量分析,由两名高年资心血管诊断影像医师阅片。定量分析指标包括狭窄程度、长度、总体积、钙化体积、最小管腔面积、重塑指数(RI)及PB,其中,狭窄程度=(近端正常管腔 - 最窄处管腔)/近端正常管腔,最小管腔面积指斑块区域导致血管腔最狭窄处管腔面积,RI=最狭窄处管腔面积/近远端参考血管面积均值,PB=斑块体积/血管体积[5]

    CT-FFR分析采用西门子cFFR软件,通过自动识别冠状动脉中心线和管腔后手工修正,建立伪彩冠状动脉树,测量位置一般选择斑块远端2~4 cm区域。

    数据分析采用SPSS 20.0软件。正态性评估采用Kolmogorov-Smirnov检验,其中,符合正态分布计量资料比较采用独立样本t检验,以$(\bar{\textit{χ}}\pm s)$表示;计数资料比较采用$\textit{χ}^2$检验,以百分比表示;多因素分析采用Logistic回归模型;描绘ROC曲线评价斑块进展预测价值。P<0.05为差异有统计学意义。

    两组性别、合并高血脂比例、服用他汀类药物比例、狭窄程度、最小管腔面积、斑块总体积、RI及CT-FFR水平比较差异有统计学意义;两组其他指标比较差异无统计学意义(表1)。

    表  1  两组一般资料和冠状动脉CT血管成像指标比较
    Table  1.  Comparison of general data and CT angiographic indexes between the two groups
    指标指标值P
    斑块进展组(n=74)无斑块进展组(n=162)
       男性/例40720.02
       年龄/岁69.06±7.4667.95±6.870.43
       BMI/(kg/m2)24.10±2.3323.85±2.460.57
       合并高血压/例501080.92
       合并高血脂/例40540.04
       合并糖尿病/例40520.10
       吸烟/例36580.34
       心绞痛家族史/例20620.93
       服用他汀类药物/例26360.01
       TG/(mmol/L) 1.47±0.29 1.30±0.330.14
       TC/(mmol/L) 5.07±1.39 4.98±1.450.93
       hs-CRP/(mg/L) 2.61±0.45 2.48±0.490.86
       斑块长度/mm32.04±7.5029.11±5.740.27
       狭窄程度/(%)51.35±8.1743.80±7.400.01
       最小管腔面积/mm2 5.08±1.06 6.67±1.450.00
       斑块总体积/mm3305.35±67.57261.50±53.630.01
       斑块钙化体积/mm3132.40±20.67102.44±23.610.29
       RI 1.33±0.40 1.10±0.350.03
       PB/(%)51.85±7.2649.11±7.040.19
       CT-FFR 0.88±0.13 0.91±0.160.00
    下载: 导出CSV 
    | 显示表格

    单因素分析结果显示,狭窄程度、最小管腔面积、斑块体积、非钙化斑块体积、RI及CT-FFR水平与心绞痛患者斑块进展有关;多因素分析结果显示,RI和CT-FFR水平是心绞痛患者斑块进展独立影响因素(表2)。

    表  2  心绞痛患者斑块进展危险因素Logistic回归模型分析
    Table  2.  Logistic regression model analysis on risk factors of plaque progression in patients with angina pectoris
    组别单因素P多因素P
    HR95% CIHR95% CI
      狭窄程度2.040.72~1.900.031.370.50~4.560.73
      最小管腔面积0.810.27~2.100.030.780.82~3.940.59
      斑块体积2.360.60~2.350.041.620.69~4.800.44
      非钙化斑块体积2.800.42~2.770.021.840.94~5.260.80
      RI4.541.28~4.540.002.491.17~3.860.02
      CT-FFR4.940.67~5.900.002.771.12~5.080.01
    下载: 导出CSV 
    | 显示表格

    ROC曲线分析结果显示,狭窄程度+RI+CT-FFR联合用于斑块进展预测AUC优于单纯狭窄程度、狭窄程度+RI(表3)。

    表  3  基于冠状动脉CT血管成像指标预测模型斑块进展预测价值ROC曲线分析
    Table  3.  ROC curve analysis of plaque progression prediction value based on coronary CT angiography index prediction model
    模型AUC95% CIP
         狭窄程度0.650.54~0.710.04
         狭窄程度+RI0.780.66~0.850.01
         狭窄程度+RI+CT-FFR0.850.74~0.960.00
    下载: 导出CSV 
    | 显示表格

    患者男,55岁,初诊时可见左冠状动脉前降支(LAD)近段可见软化、钙化及混合性斑块(钙化总积分为71.4),局部管腔狭窄约50%~85% 左右;间隔12个月复查可见左冠状动脉前降支(LAD)近段可见多发斑片状钙化斑块(钙化总积分为58.7),局部管腔狭窄约45%~55%(图1(初诊)和图2(复查))。

    图  1  初诊
    Figure  1.  New diagnosed
    图  2  复查
    Figure  2.  Reexamination

    本次研究纳入236例患者接受冠状动脉CT血管成像,结果显示74例出现斑块进展。已有研究显示[6],冠状动脉粥样硬化进展与炎性细胞因子、内皮功能及周围应力等因素有关。冠状动脉CT血管成像是冠状动脉斑块检查常用手段之一,已被广泛用于冠状动脉病变评估[7];相关研究提示[8],冠状动脉CT血管成像斑块评估结果与超声内镜基本一致,且可重复性较高;另有学者认为总斑块负荷与冠状动脉斑块进展密切相关;故本次研究根据患者斑块负荷变化评估斑块进展情况,以便于后续指导治疗方案制定及调整。

    本次研究结果中,两组狭窄程度、最小管腔面积、斑块总体积、RI及CT-FFR水平比较差异有统计学意义;单因素分析结果显示,狭窄程度、最小管腔面积、斑块体积、非钙化斑块体积、RI及CT-FFR水平与心绞痛患者斑块进展有关;多因素分析结果显示,RI水平是心绞痛患者斑块进展独立影响因素,其中RI水平升高是导致斑块进展独立危险因素。既往研究认为,冠状动脉正性重塑是斑块发生进展危险征象,这可能与机体异常氧化应激反应、炎症损伤对于冠状动脉局部微环境影响有关[9-10]。但本次研究未证实斑块负荷对于斑块进展的影响,我们分析认为这主要与入组患者基线斑块负荷水平较低有关。

    此外需要注意本次研斑块进展组年龄更大,血脂异常比例更高且服用他汀类药物比例更低。有报道证实[11],他汀类药物应用可在一定程度上控制脂质斑块体积,延缓斑块进展,避免高危斑块出现。因此我们认为在临床实践过程中应当重视对于高龄人群早期血脂水平监测及他汀类药物服用,最大限度降低远期不良事件发生风险。

    早期研究证实CT-FFR水平能够准确预测冠状动脉缺血性病变发生,其中CT-FFR≤0.8者往往合并缺血性病变,具有较高准确度和特异度[12-13]。冠状动脉CT血管成像评估血管狭窄程度可能与功能学指标存在差异,即使轻中度狭窄斑块亦可诱发斑块进展及ACS发生[14-15];故在临床实践中应进一步分析血流动力学指标对于斑块进展的影响。部分学者研究认为[16],以CT-FFR为代表血流动力学指标可辅助用于冠状动脉斑块危险程度预测。本次研究多因素分析结果显示,CT-FFR水平是心绞痛患者斑块进展独立影响因素,提示CT-FFR水平更低者更易出现斑块进展,可能作用机制为基线病灶CT-FFR值下降导致内皮功能稳定性下降,影响斑块周围微环境,导致斑块体积增大、进展甚至破裂[17]

    本次研究ROC曲线分析结果显示,狭窄程度+RI+CT-FFR联合用于斑块进展预测AUC优于单纯狭窄程度、狭窄程度+RI,提示CT-FFR辅助预测冠状动脉斑块进展风险可有效提高预测效能,有助于提高临床危险分层准确性,为后续预防治疗提供更多参考。

    本次研究存在的不足:①属于单中心、小样本及回顾性报道,难以完全排除混杂因素影响;②无法与FFR、超声内镜及OCT检查资料进行对照,同时未分析冠状动脉CT血管造影检查后药物及生活方式干预对斑块进展影响,有待后续更为深入严谨研究进一步确证。

    综上所述,RI和CT-FFR水平是导致心绞痛患者斑块进展重要影响因素,基于两者预测模型可更为准确识别斑块进展。

  • [1] 孙欣杰, 徐怡, 朱晓梅, 等. 基于CCTA的冠脉斑块特征参数与血流储备分数的相关性研究[J]. 医学影像学杂志, 2020,30(12): 2203−2208.

    SUN X J, XU Y, ZHU X M, et al. Association analysis of atherosclerotic plaque characteristics with FFRCT values in coronary CT angiography[J]. Journal of Medical Imaging, 2020, 30(12): 2203−2208. (in Chinese).

    [2] 乔红艳, 张龙江. FFRCT的技术原理、注意事项和结果解释[J]. 国际医学放射学杂志, 2018,41(3): 258−262. doi: 10.19300/j.2018.Z6084zt

    QIAO H Y, ZHANG L J. Fractional flow reserve derived from computed tomography angiography: Physical principles, considerations and interpretation of results[J]. International Journal of Medical Radiology, 2018, 41(3): 258−262. (in Chinese). doi: 10.19300/j.2018.Z6084zt

    [3]

    PIJLS N H, Van SON J A, KIRKEEIDE R L, et al. Experimental basis of determining maximum coronary, myocardial, and collateral blood flow by pressure measurements for assessing functional stenosis severity before and after percutaneous transluminal coronary angioplasty[J]. Circulation, 1993, 87: 1354−1367. doi: 10.1161/01.CIR.87.4.1354

    [4] 中华医学会放射学分会质量控制与安全管理专业委员会, 江苏省医学会放射学分会智能影像与质量安全学组. 冠状动脉CT血流储备分数应用中国专家建议[J]. 中华放射学杂志, 2020,54(10): 925−933. doi: 10.3760/cma.j.cn112149-20191108-00896

    Quality Control and Safety Management Committee of Radiology Committee of Chinese Medical Association, Intelligence Imaging and Quality Safety Committee of Jiangsu Medical Association. Application of CT derived fractiional flow reserve: Chinese expert recommendations[J]. Chinese Journal of Radiology, 2020, 54(10): 925−933. (in Chinese). doi: 10.3760/cma.j.cn112149-20191108-00896

    [5]

    KHAV N, IHDAYHID A R, KO B. CT-derived fractional flow reserve (CT-FFR) in the evaluation of coronary artery disease[J]. Heart, Lung and Circulation, 2020, 29: 1621−1632. doi: 10.1016/j.hlc.2020.05.099

    [6]

    TAYLOR C A, FONTE T A, MIN J K. Computational fluid dynamics applied to cardiac computed tomography for noninvasive quantification of fractional flow reserve: Scientific basis[J]. Journal of the American College of Cardiology, 2013, 61: 2233−2241. doi: 10.1016/j.jacc.2012.11.083

    [7]

    KIM H J, VIGNON-CLEMENTEL I E, COOGAN J S, et al. Patient-specific modeling of blood flow and pressure in human coronary arteries[J]. Annals of Biomedical Engineering, 2010, 38(10): 3195−3209. doi: 10.1007/s10439-010-0083-6

    [8]

    FUJIMOTO S, KAWASAKI T, KUMAMARU K K, et al. Diagnostic performance of on-site computed CT-fractional flow reserve based on fluid structure interactions: Comparison with invasive fractional flow reserve and instantaneous wave-free ratio[J]. European Heart Journal-Cardiovascular Imaging, 2019, 20: 343−352. doi: 10.1093/ehjci/jey104

    [9]

    WANG Z Q, ZHOU Y J, ZHAO Y X, et al. Diagnostic accuracy of a deep learning approach to calculate FFR from coronary CT angiography[J]. Journal of Geriatric Cardiology, 2019, 16(1): 42−48.

    [10]

    NØRGAARD B L, LEIPSIC J, GAUR S, et al. Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in suspected coronary artery disease: The NXT trial (Analysis of coronary blood flow using CT angiography: Next steps)[J]. Journal of the American College of Cardiology, 2014, 63: 1145−1155. doi: 10.1016/j.jacc.2013.11.043

    [11]

    MIN J K, LEIPSIC J, PENCINA M J, et al. Diagnostic accuracy of fractional flow reserve from anatomic CT angiography[J]. JAMA, 2012, 308(12): 1237−1245. doi: 10.1001/2012.jama.11274

    [12]

    TANG C X, LIU C Y, LU M J, et al. CT FFR for ischemia-Specific CAD with a new computational fluid dynamics algorithm: A chinese multicenter study[J]. JACC Cardiovascular Imaging, 2020, 13: 980−990. doi: 10.1016/j.jcmg.2019.06.018

    [13]

    COENEN A, KIM Y, KRUK M, et al. Diagnostic accuracy of a machine-learning approach to coronary computed tomographic angiography-based fractional flow reserve: Result from the MACHINE consortium[J]. Circulation Cardiovascular Imaging, 2018, 11: e007217. doi: 10.1161/CIRCIMAGING.117.007217

    [14]

    TESCHE C, de CECCO C N, ALBRECHT M H, et al. Coronary CT angiography-derived fractional flow reserve[J]. Radiology, 2017, 285: 17−33. doi: 10.1148/radiol.2017162641

    [15]

    CHINNAIYAN K M, SAFIAN R D, GALLAGHER M L, et al. Clinical use of CT-derived fractional flow reserve in the emergency department[J]. JACC Cardiovascular Imaging, 2020, 13: 452−461. doi: 10.1016/j.jcmg.2019.05.025

    [16]

    NAZIR M S, MITTAL T K, WEIR-MCCALL J, et al. Opportunities and challenges of implementing computed tomography fractional flow reserve into clinical practice[J]. Heart, 2020, 106: 1387−1393. doi: 10.1136/heartjnl-2019-315607

    [17]

    LEE J M, CHOI G, KOO B K, et al. Identification of high-risk plaques destined to cause acute coronary syndrome using coronary computed tomographic angiography and computational fluid dynamics[J]. JACC Cardiovascular Imaging, 2019, 12: 1032−1043. doi: 10.1016/j.jcmg.2018.01.023

    [18]

    OTAKE H, TAYLOR C A, MATSUO H, et al. Noninvasive fractional flow reserve derived from coronary computed tomography angiography: Is this just another new diagnostic test or the long-awaited game changer?[J]. Circulation Journal, 2017, 81: 1085−1093. doi: 10.1253/circj.CJ-16-0503

    [19]

    DOUGLAS P S, PONTONE G, HLATKY M A, et al. Clinical outcomes of fractional flow reserve by computed tomographic angiography-guided diagnostic strategies vs. usual care in patients with suspected coronary artery disease: The prospective longitudinal trial of FFRCT: Outcome and resource impacts study[J]. European Heart Journal, 2015, 36: 3359−3367. doi: 10.1093/eurheartj/ehv444

    [20]

    NØRGAARD B L, HJORT J, GAUR S, et al. Clinical use of coronary CTA-derived FFR for decision-making in stable CAD[J]. JACC Cardiovascular Imaging, 2017, 10: 541−550. doi: 10.1016/j.jcmg.2015.11.025

    [21]

    KIM K H, DOH J H, KOO B K, et al. A novel noninvasive technology for treatment planning using virtual coronary stenting and computed tomography-derived computed fractional flow reserve[J]. JACC Cardiovascular Interventions, 2014, 7: 72−78. doi: 10.1016/j.jcin.2013.05.024

    [22]

    IHDAYHID A R, NORGAARD B L, GAUR S, et al. Prognostic value and risk continuum of noninvasive fractional flow reserve derived from coronary CT angiography[J]. Radiology, 2019, 292: 343−351. doi: 10.1148/radiol.2019182264

    [23]

    PATEL M R, NØRGAARD B L, FAIRBAIRN T A, et al. 1-year impact on medical practice and clinical outcomes of FFR: The advance registry[J]. JACC Cardiovascular Imaging, 2020, 13: 97−105. doi: 10.1016/j.jcmg.2019.03.003

    [24] 孙欣杰, 徐怡, 朱晓梅, 等. 基于冠状动脉CTA的FFRCT与斑块特征对冠心病患者主要不良心脏事件的预测价值[J]. 中国医学计算机成像杂志, 2021,27(4): 296−301. doi: 10.3969/j.issn.1006-5741.2021.04.005

    SUN X J, XU Y, ZHU X M, et al. The predictive value of coronary CTA-derived fractional flow reserve and atherosclerosis plaque characteristics for major adverse cardiac events in patients with coronary artery disease[J]. Chinese Computed Medical Imaging, 2021, 27(4): 296−301. (in Chinese). doi: 10.3969/j.issn.1006-5741.2021.04.005

    [25]

    ZHOU F, TANG C X, SCHOEPF U J, et al. Fractional flow reserve derived from CCTA may have a prognostic role in myocardial bridging[J]. European Radiology, 2019, 29: 3017−3026. doi: 10.1007/s00330-018-5811-6

    [26]

    MICHAIL M, IHDAYHID A R, COMELLA A, et al. Feasibility and validity of computed tomography-derived fractional flow reserve in patients with severe aortic stenosis: The CAST-FFR study[J]. Circulation. Cardiovascular Interventions, 2021, 14: e009586. doi: 10.1161/CIRCINTERVENTIONS.120.009586

    [27]

    PONTONE G, WEIR-McCALL J R, BAGGIANO A, et al. Determinants of rejection rate for coronary CT angiography fractional flow reserve analysis[J]. Radiology, 2019, 292: 597−605. doi: 10.1148/radiol.2019182673

    [28] 中华医学会放射学分会心胸学组, 《中华放射学杂志》心脏冠状动脉多排CT临床应用指南写作专家组. 心脏冠状动脉CT血管成像技术规范化应用中国指南[J]. 中华放射学杂志, 2017,51(10): 732−743. doi: 10.3760/j.issn.1005-1201.2017.10.004
    [29]

    XAPLANTERIS P, FOURNIER S, PIJLS N H J, et al. Five-year outcomes with PCI guided by fractional flow reserve[J]. The New England Journal of Medicine, 2018, 379: 250−259. doi: 10.1056/NEJMoa1803538

    [30]

    FEARON W F, NISHI T, DE B B, et al. Clinical outcomes and cost-effectiveness of fractional flow reserve-guided percutaneous coronary intervention in patients with stable coronary artery disease: Three-year follow-up of the FAME 2 trial (Fractional flow reserve versus angiography for multivessel evaluation)[J]. Circulation, 2018, 137: 480−487. doi: 10.1161/CIRCULATIONAHA.117.031907

    [31]

    CELENG C, LEINER T, MAUROVICH-HORVAT P, et al. Anatomical and functional computed tomography for diagnosing hemodynamically significant coronary artery disease: A meta-analysis[J]. JACC Cardiovascular Imaging, 2019, 12: 1316−1325. doi: 10.1016/j.jcmg.2018.07.022

    [32]

    RAJA J, SEITZ M P, YEDLAPATI N, et al. Can computed fractional flow reserve coronary CT angiography (FFRCT) offer an accurate noninvasive comparison to invasive coronary angiography (ICA)? "The Noninvasive CATH": A comprehensive review[J]. Current Problems in Cardiology, 2021, 46: 100642. doi: 10.1016/j.cpcardiol.2020.100642

计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-01
  • 修回日期:  2022-06-29
  • 录用日期:  2022-07-03
  • 网络出版日期:  2022-07-14
  • 发布日期:  2023-03-30

目录

/

返回文章
返回
x 关闭 永久关闭