Metal Artifact Reduction Algorithm for CT Images of Rock and Mineral Samples Based on Dual-domain Adaptive Network
-
摘要: 岩矿样中包含有大量高密度金属物质,致使其在工业CT图像上产生了金属伪影,严重影响岩矿样参数分析的准确性。为抑制岩矿样CT图像的金属伪影,本文提出一种基于双域自适应网络的岩矿样CT图像金属伪影校正算法(DDA-CNN-MAR),将含有金属伪影的CT图像分别通过投影域网络和图像域网络进行金属伪影的抑制,自适应融合双域处理结果,实现由含伪影图像到无伪影图像的端到端映射。该算法以残差编解码网络模型(RED-CNN)为基础,易于提取特征并恢复图像细节;双域结构可自适应调整投影域(伪影抑制)和图像域(细节修复)的权重,借以获得最优的校正结果。研究结果表明,较之于RED-CNN-MAR,经过DDA-CNN-MAR方法校正的图像,MSE减小2.570,而PSNR和SSIM则分别提高1.218 dB和0.018,有效提升岩矿样CT成像的图像质量。Abstract: Rock and mineral samples contain a large amount of high-density metal substances, which often lead to metal artifacts in CT images and seriously affect the parameters analysis accuracy of rock and mineral samples. In order to improve the quality of CT images and suppress metal artifacts, in this paper we propose a dual-domain adaptive network-based metal artifact reduction algorithm for CT images of rock samples (DDA-CNN-MAR). The metal artifacts are suppressed by the projection domain network and the image domain network successively, and the dual domain processing results are adaptively fused to realize the end-to-end mapping from images with artifacts to artifact-free images. The algorithm is based on the residual encoder-decoder network model (RED-CNN), which is easy to extract features and restore image details. The dual-domain structure can adaptively adjust the weights of the projection domain (artifact suppression) and image domain (detail inpainting) to obtain optimal reduction results. The experimental results show that, compared with the RED-CNN metal artifact denoising method in the image domain, the MSE of the image corrected by the DDA-CNN-MAR method is reduced by 2.570, while the PSNR and SSIM are increased by 1.218 dB and 0.018 respectively, which effectively improves the CT image quality.
-
Keywords:
- industrial CT /
- deep learning /
- reduction algorithms /
- metal rock samples /
- metal artifacts
-
-
表 1 多种算法的定量评价结果一览表
Table 1 Quantitative evaluation results by multiple algorithms
指标 方法 1号样本 2号样本 平均值 SSIM 原始图像 0.877 0.861 0.854 LI-NMAR 0.858 0.876 0.844 RED-CNN-MAR 0.918 0.930 0.912 $\widehat{{\boldsymbol{X}}}$ 0.868 0.889 0.861 本文算法 0.929 0.946 0.930 PSNR/dB 原始图像 22.308 21.698 22.985 LI-NMAR 19.634 20.874 21.739 RED-CNN-MAR 33.316 34.079 33.756 $\widehat{{\boldsymbol{X}}}$ 28.516 28.976 27.420 本文算法 33.821 36.806 34.974 MSE 原始图像 6.498 7.442 6.811 LI-NMAR 23.484 23.089 25.311 RED-CNN-MAR 4.007 5.421 5.954 $\widehat{{\boldsymbol{X}}}$ 17.032 16.557 12.107 本文算法 3.694 3.027 3.384 -
[1] 何鹏, 魏彪, 陈超, 等. 华南成矿省福建魁歧晶洞花岗岩样品孔隙结构的工业X-CT三维可视化研究[J]. 地质学报, 2014,88(4): 777−783. HE P, WEI B, CHEN C, et al. The three-dimensional visualization study on pore structure of Fujian Kuiqi geode granite sample in South China metallogenic belt based on industrial computed tomography[J]. Acta Geologica Sinica, 2014, 88(4): 777−783. (in Chinese).
[2] TSAFNAT N, TSAFNAT G, JONES A S. Automated mineralogy using finite element analysis and X-ray microtomography[J]. Minerals Engineering, 2009, 22(2): 149−155. doi: 10.1016/j.mineng.2008.06.003
[3] 陈慧娟. CT系统中射束硬化校正算法研究[D]. 太原: 中北大学, 2010. CHEN H J. The algorithms study of beam-hardening correction in CT[D]. Taiyuan: North University of China, 2010. (in Chinese).
[4] 陈超, 魏彪, 梁婷, 等. 一种基于工业CT技术的岩芯样品孔隙度测量分析方法[J]. 物探与化探, 2013,37(3): 500−507. CHEN C, WEI B, LIANG T. et al. The application of industrial computation tomography (CT) to the analysis of core sample porosity[J]. Geophysical & Geochemical Exploration, 2013, 37(3): 500−507. (in Chinese).
[5] 肖文, 曾理. CT图像的金属伪影校正方法综述[J]. 中国体视学与图像分析, 2019,(1): 29−36. doi: 10.13505/j.1007-1482.2019.24.01.004 XIAO W, ZENG L. The review of metal artifact reduction for CT images[J]. Chinese Journal of Stereology and Image Analysis, 2019, (1): 29−36. (in Chinese). doi: 10.13505/j.1007-1482.2019.24.01.004
[6] GJESTEBY L, MAN B D, JIN Y, et al. Metal artifact reduction in CT: Where are we after four decades?[J]. IEEE Access, 2016, 4: 5826−5849. doi: 10.1109/ACCESS.2016.2608621
[7] CARON M, BOJANOWSKI P, JOULIN A, et al. Deep clustering for unsupervised learning of visual features[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 132-149.
[8] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. Advances in Neural Information Processing Systems, 2015, 28: 91−99.
[9] TANG Y, HUANG J, ZHANG F, et al. Deep residual networks with a fully connected reconstruction layer for single image super-resolution[J]. Neurocomputing, 2020, 405: 186−199. doi: 10.1016/j.neucom.2020.04.030
[10] GJESTEBY L, YANG Q, XI Y, et al. Deep learning methods for CT image-domain metal artifact reduction[C]//Developments in X-ray Tomography XI. International Society for Optics and Photonics, 2017, 10391: 103910W.
[11] 马燕, 钟发生, 刘丰林. 基于条件生成式对抗网络的CT金属伪影校正研究[J]. 中国体视学与图像分析, 2021,26(2): 101−112. doi: 10.13505/j.1007-1482.2021.26.02.001 MA Y, ZHONG F S, LIU F L. CT metal artifact reduction based on conditional generative adversarial network[J]. Chinese Journal of Stereology and Image Analysis, 2021, 26(2): 101−112. (in Chinese). doi: 10.13505/j.1007-1482.2021.26.02.001
[12] ZHANG Y, YU H. Convolutional neural network based metal artifact reduction in X-ray computed tomography[J]. IEEE Transactions on Medical Imaging, 2018, 37(6): 1370−1381. doi: 10.1109/TMI.2018.2823083
[13] LIAO H, LIN W A, ZHOU S K, et al. ADN: Artifact disentanglement network for unsupervised metal artifact reduction[J]. IEEE Transactions on Medical Imaging, 2019, 39(3): 634−643.
[14] 马燕, 余海军, 钟发生, 等. 基于残差编解码网络的CT图像金属伪影校正[J]. 仪器仪表学报, 2020,41(8): 160−169. doi: 10.19650/j.cnki.cjsi.J2006503 MA Y, YU H J, ZHONG F S, et al. CT metal artifact reduction based on the residual encoder-decoder network[J]. Chinese Journal of Scientific Instrument, 2020, 41(8): 160−169. (in Chinese). doi: 10.19650/j.cnki.cjsi.J2006503
[15] LIN W A, LIAO H, PENG C, et al. Dudonet: Dual domain network for ct metal artifact reduction[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 10512-10521.
[16] CHEN H, ZHANG Y, KALRA M K, et al. Low-dose CT with a residual encoder-decoder convolutional neural network[J]. IEEE Transactions on Medical Imaging, 2017, 36(12): 2524−2535. doi: 10.1109/TMI.2017.2715284
[17] KALENDER W A, HEBEL R, EBERSBERGER J. Reduction of CT artifacts caused by metallic implants[J]. Radiology, 1987, 164(2): 576−577. doi: 10.1148/radiology.164.2.3602406
-
期刊类型引用(1)
1. 汤戈,赵欣雨,王宇翔,冯鹏,魏彪. 工业CT技术在地球科学中的应用. CT理论与应用研究. 2024(01): 119-134 . 本站查看
其他类型引用(1)