Quantitative CT Analysis of Body Composition in Maintenance Hemodialysis Patients
-
摘要: 目的:分析维持性血液透析患者的体成分信息,探讨QCT技术的应用价值。方法:选取本院维持性血液透析患者共62例,根据不同的透析时长分为3组,运用定量CT技术测定患者的骨密度值、腹部脂肪及肌肉含量,同时选取性别及年龄相匹配的健康体检人群62例进行对比分析。结果:透析组骨质疏松者占17.70%(11例),骨量减少者占30.60%(19例),而在健康对照组中,骨质疏松及骨量减少者分别占6.50%(4例)和16.10%(10例),两组间的差异具有统计学意义;透析组的腹内脂肪和皮下脂肪含量分别为(113.70±63.29)cm<sup<2</sup<、(80.65±59.67)cm<sup<2</sup<,均低于健康对照组(135.90±58.80)cm<sup<2</sup<、(122.26±54.94)cm<sup<2</sup<,透析组L3-SMA<对照组 L3-SMA,(107.00±30.70)cm<sup<2</sup<<(121.37±32.87)cm<sup<2</sup<,均具有统计学差异;在不同性别透析患者中,男性透析患者的腰椎骨密度值为(156.11±51.94)(mg/cm<sup<3</sup<),与女性(124.29±50.89)(mg/cm<sup<3</sup<)比较,差异有统计学意义;女性患者的皮下脂肪含量要高于男性,而男性和女性的腹腔内脂肪含量差异无统计学意义;透析组的骨密度值和L3-SMA变化与透析时间长短无差异。结论:维持性血液透析患者的骨质疏松症发病率高于健康人群,腹部脂肪及肌肉含量低于健康人群,定量CT对体质成分监测的准确性和敏感性较高。Abstract: This study analyzes body composition information in patients on maintenance hemodialysis and explores the application value of QCT technology. Methods: A total of 62 patients on maintenance hemodialysis were selected and divided into three groups according to different dialysis durations. The bone density value, abdominal fat, and muscle content of patients were determined by quantitative CT technology and 62 cases of the health examination population matched by sex and age were selected for comparative analysis. Results: In the dialysis group, osteoporosis accounted for 17.70% (11 cases) and bone loss accounted for 30.60% (19 cases), while in the healthy control group, osteoporosis and bone loss accounted for 6.50% (4 cases) and 16.10% (10 cases), respectively. The difference between these two groups was statistically significant. Moreover, the intra-abdominal and subcutaneous fat content in the dialysis group were (113.70±63.29)cm² and (80.65±59.67)cm², respectively, which were lower than that of the healthy control group ((135.90±58.80)cm² and (122.26±54.94)cm², respectively). Additionally, the dialysis group had a significantly lower L3-SMA (107.00±30.70)cm² than the control group (121.37±32.87)cm², and the lumbar vertebral bone density value was significantly lower in male dialysis patients (156.11±51.94)mg/cm³ than in female dialysis patients (124.29±50.89)mg/cm³. Moreover, the subcutaneous fat content was significantly higher in females than in males; however, the difference in intraperitoneal fat content between males and females was not statistically significant. Additionally, the difference between bone density values and L3-SMA changes in the dialysis group and the length of dialysis time were not statistically significant. Conclusion: The incidence of osteoporosis is higher in patients on maintenance hemodialysis than in healthy people, and the amount of abdominal fat and muscle content are lower than that in healthy people. Moreover, quantitative CT body composition monitoring has high accuracy and sensitivity.
-
Keywords:
- quantitative CT /
- hemodialysis /
- bone mineral density /
- abdominal fat
-
-
表 1 健康人群与透析患者骨量状况比较
Table 1 Comparison of bone mass status between the healthy population and dialysis patients
组别 骨量状况 总计 骨量正常 骨量减少 骨质疏松 对照组 48(77.40%) 10(16.10%) 4(6.5%) 62(100%) 透析组 32(51.60%) 19(30.60%) 11(17.70%) 62(100%) 表 2 健康人群与透析患者腹部脂肪及L3水平横断面肌肉面积比较(
$\bar x \pm s $ )Table 2 Comparison of abdominal fat and L3-SMA between the healthy population and dialysis patients(
$\bar x \pm s $ )项目 透析组 对照组 P 腹内脂肪/cm2 113.70±63.29 135.90±58.80 <0.05 皮下脂肪/cm2 80.65±59.67 122.26±54.94 <0.05 L3水平横断面肌肉面积/cm2 107.00±30.70 121.37±32.87 <0.05 表 3 不同性别血透患者骨密度及腹部脂肪比较(
$\bar x \pm s $ )Table 3 Comparison of bone density and abdominal fat in hemodialysis patients of different sexes (
$\bar x \pm s $ )组别 骨密度/(mg/cm3) 腹内脂肪/cm2 皮下脂肪/cm2 男(n=33) 156.11±51.94 100.97±58.81 63.47±54.02 女(n=29) 124.29±50.89 128.18±66.07 100.20±60.34 P <0.05 >0.05 <0.05 表 4 透析患者骨密度及L3水平横断面肌肉面积与透析时间的变化规律(
$\bar x \pm s $ )Table 4 Variation of bone density, L3-SMA, and dialysis time in dialysis patients (
$\bar x \pm s $ )项目 透析时间 <2年(n=19) 2~5年(n=23) >5年(n=20) 骨密度/(mg/cm3) 132.17±52.21 134.14±58.36 157.99±47.10 L3水平横断面肌肉面积/cm2 115.91±42.16 103.10±23.65 103.03±24.07 -
[1] ZAYOUR D, DAOUK M, MEDAWAR W, et al. Predictors of bone mineral, density in patients on hemodialysis[J]. TranspIanlation Proceedings, 2004, 36(5): 1297−1301. doi: 10.1016/j.transproceed.2004.05.069
[2] WU C C, LIOU H H, SU P F, et al. Abdominal obesity is the most significant metabolic syndrome component predictive of cardiovascular events in chronic hemodialysis patients[J]. Nephrol Dial Transplant, 2011, 26: 3689−3695. doi: 10.1093/ndt/gfr057
[3] 程晓光, 王亮, 曾强, 等. 中国定量CT (QCT)骨质疏松症诊断指南(2018)[J]. 中国骨质疏松杂志, 2019,25(6): 733−737. CHENG X G, WANG L, ZENG Q, et al. The China guideline for the diagnosis criteria of oste oporosis with quantitative computed tomography (QCT) (2018)[J]. Chinese Journal of Osteoporosis, 2019, 25(6): 733−737. (in Chinese).
[4] 夏维波, 章振林, 林华, 等. 原发性骨质疏松症诊疗指南(2017)[J]. 中国骨质疏松杂志, 2019,25(3): 281−309. doi: 10.3969/j.issn.1006-7108.2019.03.001 XIA W B, ZHANG Z L, LIN H, et al. Guidelines for the diagnosis and management of primary osteoporosis (2017)[J]. Chinese Journal of Osteoporosis, 2019, 25(3): 281−309. (in Chinese). doi: 10.3969/j.issn.1006-7108.2019.03.001
[5] 胡耀, 黄朝莉, 徐秀蓉. 维持性血液透析患者骨密度测定与相关指标分析[J]. 现代临床医学, 2012,38(1): 13−14. doi: 10.3969/j.issn.1673-1557.2012.01.005 HU Y, HUANG Z L, XU X R. To analysis bone mineral density and related indicators in patients of maintaining hemodialysis[J]. Journal of Modern Clinical Medicine, 2012, 38(1): 13−14. (in Chinese). doi: 10.3969/j.issn.1673-1557.2012.01.005
[6] MOSCOVICI A, SPRAGUE S M. Osteoprosis and chronic kidney disease[J]. Seminars in Dialysis, 2007, 20(5): 423−430. doi: 10.1111/j.1525-139X.2007.00319.x
[7] 刘铁滨, 王维. 长期血液透析患者腰椎骨密度定量CT的检测及意义[J]. 实用放射学杂志, 2004,20(12): 1104−106. doi: 10.3969/j.issn.1002-1671.2004.12.014 LIU T B, WANG W. Measurement of lumbar bone mineral density with quantitative computed tomography in hemodialysis patients[J]. Journal of Practical Radiology, 2004, 20(12): 1104−106. (in Chinese). doi: 10.3969/j.issn.1002-1671.2004.12.014
[8] MIRFAKHRAEE S, SAKHAEE K, ZERWEKH J, et al. Risk factors for diminished bone mineral density among male hemodialysis patients: A cross-sectional study[J]. Arch Osteoporos, 2012, 7(1/2): 283−290. doi: 10.1007/s11657-012-0110-3
[9] SHEU Y, MARSHALL L M, HOLTON K F, et al. Abdominal body composition measured by quantitative computed tomography and risk of non-spine fractures: The osteoporotic fractures in men (MrOS) study[J]. Osteoporosis International, 2013, 24(8): 2231−2241. doi: 10.1007/s00198-013-2322-9
[10] CHENG X, ZHANG Y, WANG C, et al. The optimal anatomic sitefor a single slice to estimate the total volume of visceraladipose tissue by using the quantitative computed tomography (QCT) in Chinese population[J]. European Journal of Clinical Nutrition, 2018, 72(11): 1567−1575. doi: 10.1038/s41430-018-0122-1
[11] 丁奕, 田娜, 周晓玲, 等. 肥胖与IgA肾病患者独立肾脏风险因子的相关性分析[J]. 中华肾脏病杂志, 2017,33(5): 321−326. doi: 10.3760/cma.j.issn.1001-7097.2017.05.001 DING Y, TIAN N, ZHOU X L, et al. Correlation analysis of obesity with independent renal risk factors in patients with IgA nephropathy[J]. Chinese Journal of Nephrology, 2017, 33(5): 321−326. (in Chinese). doi: 10.3760/cma.j.issn.1001-7097.2017.05.001
[12] 刘建强, 贾冶, 许钟镐, 等. 肥胖与慢性肾脏疾病: 脂肪组织与肾脏炎症及纤维化的关系[J]. 中华肾脏病杂志, 2017, 33(12): 956-960. LIU J Q, JIA Y, XU Z H, et al. Obesity and chronic kidney disease: The relationship between adipose tissue and kidney inflammation and fibrosis[J]. Chinese Journal of Nephrology, 2017, 33(12): 956-960. (in Chinese).
[13] 罗文荣, 姚书东, 孙梅琴. 血液透析对肾病肥胖女性患者内分泌相关指标的影响[J]. 中国妇幼保健, 2021,36(14): 3195−3198. DOI: 10.19829/j.zgfybj.issn.1001-4411.2021.14.009. LUO W R, YAO S D, SUN M Q. Effect of hemodialysis on endocrine-related indicators in obese women with kidney disease[J]. Maternal and Child Health Care of China, 2021, 36(14): 3195−3198. DOI: 10.19829/j.zgfybj.issn.1001-4411.2021.14.009. (in Chinese).
[14] 晏乘曦, 唐光才, 程晓光. 肌少症的定量测量现状及研究进展[J]. 中国骨质疏松杂志, 2018,24(6): 814−819. doi: 10.3969/j.issn.1006-7108.2018.06.021 YAN C X, TANG G C, CHENG X G. State of the art of quantitative me asurement of sarcopenia[J]. Chinese Journal of Osteoporosis, 2018, 24(6): 814−819. (in Chinese). doi: 10.3969/j.issn.1006-7108.2018.06.021
[15] 耿楠, 孔明, 陈煜, 等. 第三腰椎骨骼肌指数在终末期肝病营养诊断中的应用价值[J]. 临床肝胆病杂志, 2021,37(10): 2493−2496. doi: 10.3969/j.issn.1001-5256.2021.10.050 GENG N, KONG M, CHENG Y, et al. Value of L3 skeletal muscle index in nutritional diagnosis of end-stage liver disease[J]. Journal of Clinical Hepatology, 2021, 37(10): 2493−2496. (in Chinese). doi: 10.3969/j.issn.1001-5256.2021.10.050
[16] FAHAL I H. Uraemic sareopenia: Aetiology and implications[J]. Nephml Dial Transplant, 2014, 29(9): 1655−1665. doi: 10.1093/ndt/gft070
[17] PRADO C M, LIEFFERS J R, MCCARGAR L J, et al. Prevalence andclinical implications of sarcopenic obesity in patients with solidtumours of the respiratory and gastrointestinal tracts: Apopulation-based study[J]. Lancet Oncology, 2008, 9(7): 629. doi: 10.1016/S1470-2045(08)70153-0
-
期刊类型引用(19)
1. 万鑫龙,邓尚彪,高鹏. 基于深度学习的肺结节良恶性CT智能鉴别系统的构建及应用. 临床医学工程. 2025(01): 12-15 . 百度学术
2. 袁冬健,彭磊,张玉荣,沈春冬,茅竞文. 人工智能CT扫描联合血清CEA检测对肺结节良恶性的诊断价值研究. 影像研究与医学应用. 2025(05): 109-111+114 . 百度学术
3. 苏寅晨,张晓琴. 人工智能辅助诊断系统在肺结节检测及良恶性判断中的应用价值. CT理论与应用研究. 2024(03): 325-331 . 本站查看
4. 杨嫚. 人工智能技术辅助诊断肺小结节的临床应用价值. 中国现代医药杂志. 2024(06): 75-77 . 百度学术
5. 钟丽茹,罗娜,贺露瑶. 多个人工智能辅助诊断系统对肺结节的诊断效能比较. 影像研究与医学应用. 2024(17): 26-29 . 百度学术
6. 贺呈祥,栗欣,张怀瑢. 基于人工智能与影像医生对肺结节检出效能的应用价值. 宁夏医科大学学报. 2024(09): 911-914 . 百度学术
7. 王璟琛,柴军. 人工智能体积密度法判断肺亚实性结节的浸润性研究. CT理论与应用研究. 2023(02): 241-248 . 本站查看
8. 王彬,顾文权,蔡孙美,周杰,张琦,雷撼. 基于人工智能的胸部CT肺结节检出及良恶性诊断效能评估. 影像研究与医学应用. 2023(05): 95-97 . 百度学术
9. 张添辉,刘舒珊,范伟雄. AI辅助实习医生和规培医生鉴别良恶性肺结节的价值. 影像研究与医学应用. 2023(05): 83-85 . 百度学术
10. 周伟文,谭学渊,余佐时. AI肺小结节检测系统用于低剂量CT肺筛查中的应用研究. 中国CT和MRI杂志. 2023(05): 43-45 . 百度学术
11. 陈新花,黄晓旗,李建龙,郭佑民. 基于两种AI软件对肺结节的诊断价值评价研究. CT理论与应用研究. 2023(04): 493-499 . 本站查看
12. 梁付奎,傅晓琴,李彩琴,刘芸,刘山波. 人工智能AI联合低剂量肺部CT扫描在肺结节诊断中的应用价值分析. 影像研究与医学应用. 2023(15): 28-30 . 百度学术
13. 方荣荣,陈深远,张先仙. 人工智能辅助技术在肺磨玻璃结节CT定性诊断中的准确率研究. 实用医学影像杂志. 2023(04): 266-269 . 百度学术
14. 张磊. 人工智能辅助诊断系统在低剂量肺部CT扫描筛查肺原位癌的应用价值. 影像研究与医学应用. 2023(23): 104-106 . 百度学术
15. 卢翼,陈友三,杨磊,肖诗银. 基于人工智能的CT检查对肝肿瘤患者良恶性的诊断价值. 影像研究与医学应用. 2023(24): 74-76 . 百度学术
16. 吴久纯,李甜,李晓东,卓越,张玉娇,刘敬禹. 基于人工智能随访预测肺结节增长的影响因素研究. 中国全科医学. 2022(17): 2115-2120 . 百度学术
17. 谢春晓,顾文豪. 人工智能CT定量分析肺结节的临床应用价值. 影像研究与医学应用. 2022(14): 74-76 . 百度学术
18. 耿然. 基于深度学习的人工智能影像辅助诊断系统对肺结节的诊断效能评价. 新乡医学院学报. 2022(11): 1031-1035 . 百度学术
19. 刘甜,范丽. 人工智能在肺癌筛查中的研究进展. 中国医学计算机成像杂志. 2022(06): 681-684 . 百度学术
其他类型引用(2)