ISSN 1004-4140
CN 11-3017/P

基于改进环形生成对抗网络的浅地层剖面去噪方法

张一, 丁仁伟, 赵硕, 孙世民, 韩天娇

张一, 丁仁伟, 赵硕, 等. 基于改进环形生成对抗网络的浅地层剖面去噪方法[J]. CT理论与应用研究, 2023, 32(1): 15-25. DOI: 10.15953/j.ctta.2022.053.
引用本文: 张一, 丁仁伟, 赵硕, 等. 基于改进环形生成对抗网络的浅地层剖面去噪方法[J]. CT理论与应用研究, 2023, 32(1): 15-25. DOI: 10.15953/j.ctta.2022.053.
ZHANG Y, DING R W, ZHAO S, et al. Shallow Profile Data Denoising Method Based on Improved Cycle-consistent Generative Adversarial Network[J]. CT Theory and Applications, 2023, 32(1): 15-25. DOI: 10.15953/j.ctta.2022.053. (in Chinese).
Citation: ZHANG Y, DING R W, ZHAO S, et al. Shallow Profile Data Denoising Method Based on Improved Cycle-consistent Generative Adversarial Network[J]. CT Theory and Applications, 2023, 32(1): 15-25. DOI: 10.15953/j.ctta.2022.053. (in Chinese).

基于改进环形生成对抗网络的浅地层剖面去噪方法

详细信息
    作者简介:

    张一: 女,山东科技大学地球科学与工程学院硕士研究生,主要从事人工智能地球物理应用研究,E-mail:minniez423@163.com

    丁仁伟: 男,博士,山东科技大学地球科学与工程学院讲师,主要从事地球信息科学与技术、高性能计算、地震成像与速度建模理论与方法、地震数据智能处理与解释等方面研究,E-mail:dingrenwei@126.com

    通讯作者:

    丁仁伟: 男,博士,山东科技大学地球科学与工程学院讲师,主要从事地球信息科学与技术、高性能计算、地震成像与速度建模理论与方法,地震数据智能处理与解释等方面研究,E-mail:dingrenwei@126.com

  • 中图分类号: O  242;P  315;P  631

Shallow Profile Data Denoising Method Based on Improved Cycle-consistent Generative Adversarial Network

  • 摘要: 为解决浅地层剖面数据噪声多、分辨率低问题,本文将环形生成对抗网络的方法应用于浅地层剖面资料的去噪,实现智能去噪。首先,选择具有特殊对称生成对抗网络循环机制以及“循环一致性”损失的环形生成对抗性网络,并对其进行结构改进,提升网络学习和训练的性能。然后,基于优化的浅地层剖面样本集训练网络,实现对于浅地层剖面数据随机噪声的去除,提升数据的信噪比。通过对实验和实际资料的试算,以及与传统带通滤波方法的对比,验证本文方法对浅地层剖面数据去噪的有效性和适应性。
    Abstract: This study applied the cycle-consistent generative adversarial network method to the denoising of shallow profile data to realize intelligent denoising. This could help resolve the problem of noise and low resolution of shallow profile data. To do this, the cycle generative adversarial network with special symmetric generation countermeasure network cycle mechanism and "cycle consistency loss" was selected. We improved the performance of the network learning and training by optimizing the network structure. Next, based on the optimized shallow profile sample set training network, random noise was removed from the shallow profile data and the signal-to-noise ratio of the data was improved. The effectiveness and adaptability of this method for denoising shallow profile data were verified by trial calculations of experimental and actual data and by comparison with the traditional band-pass filtering method.
  • 图  1   浅地层剖面原理图

    Figure  1.   Schematic diagram of shallow formation profile

    图  2   GAN结构

    Figure  2.   Structure of GAN

    图  3   环形生成对抗网络CycleGAN结构

    Figure  3.   Structure of CycleGAN

    图  4   CycleGAN生成器网络结构

    Figure  4.   Structure of generator network

    图  5   CycleGAN判别器网络结构

    Figure  5.   Structure of discriminator netwok

    图  6   循环一致性损失

    Figure  6.   Cycle-consistency loss

    图  7   CycleGAN的网络模型去噪流程

    Figure  7.   Denoising process based on CycleGAN

    图  8   实验数据1 CycleGAN训练结果

    Figure  8.   Experimental data 1 Cyclegan training results

    图  9   实验数据2 CycleGAN训练结果

    Figure  9.   Experimental data 2 Cyclegan training results

    图  10   真实数据去噪效果

    Figure  10.   Actual shallow profile data denoising effec

    图  11   实际数据带通滤波效果

    Figure  11.   Actual data bandpass filtering effect

    表  1   两种去噪方法PSNR对比

    Table  1   PSNR comparison of two denoising methods

    去噪方法PSNR/dB
    带通滤波去噪18.729
    CycleGAN去噪25.247
    下载: 导出CSV
  • [1] 李一保, 张玉芬, 刘玉兰, 等. 浅地层剖面仪在海洋工程中的应用[J]. 工程地球物理学报, 2007,(1): 4−8.

    LI Y B, ZHANG Y F, LIU Y L, et al. Application of subbottom profiler to ocean engineering[J]. Chinese Journal of Engineering Geophysics, 2007, (1): 4−8. (in Chinese).

    [2] 刘玉萍, 丁龙翔, 杨志成, 等. 利用浅剖资料进行海底底质分析[J]. 物探与化探, 2016,40(1): 66−72.

    LIU Y P, DING L X, YANG Z C, et al. Seabed sediment analysis using sub-bottom profile data[J]. Geophysical and Geochemical Exploration, 2016, 40(1): 66−72. (in Chinese).

    [3] 李平, 杜军. 浅地层剖面探测综述[J]. 海洋通报, 2011,30(3): 344−350.

    LI P, DU J. Review on the probing of sub-bottom profiler[J]. Marine Science Bulletin, 2011, 30(3): 344−350. (in Chinese).

    [4] 顾兆峰, 张志珣, 刘怀山. 南黄海西部地区浅层气地震特征[J]. 海洋地质与第四纪地质, 2006,(3): 65−74.

    GU Z F, ZHANG Z X, LIU H S. Seismic features of shallow gas in the western area of the Yellow Sea[J]. Marine Geology & Quaternary Geology, 2006, (3): 65−74. (in Chinese).

    [5] 颜中辉, 栾锡武, 潘军, 等. 海上浅地层剖面处理的关键去噪技术[J]. 海洋地质前沿, 2016,32(9): 64−70.

    YAN Z H, LUAN X W, PAN J, et al. Key denoising techniques in marine sub-bottom shallow profiling[J]. Marine Geological Frontiers, 2016, 32(9): 64−70. (in Chinese).

    [6] 施凤. 浅地层剖面数据精处理关键技术研究[D]. 武汉: 武汉大学, 2017.
    [7] 冯强强, 温明明, 吴衡, 等. 海洋浅地层剖面资料的数据处理方法[J]. 海洋地质前沿, 2013,29(11): 49−53, 66.

    FENG Q Q, WEN M M, WU H, et al. Data processing methods for marine sub-bottom profiles[J]. Marine Geological Frontiers, 2013, 29(11): 49−53, 66. (in Chinese).

    [8]

    JEONG B J, LEE Y H. Design of weighted order statistic filters using the perceptron algorithm[J]. IEEE Transactions on Signal Processing, 1994, 42(11): 3264−3269. doi: 10.1109/78.330393

    [9] GONZALEZ R C, WOODS R E. 数字图像处理[M]. 阮秋琦, 阮宇智, 译. 北京: 电子工业出版社, 2003.
    [10]

    MA Y Y, LI G F, WANG Y J, et al. Random noise attenuation by f-x spatial projection-based complex empirical mode decomposition predictive filtering[J]. Applied Geophysics, 2015, 12(1): 47−54. doi: 10.1007/s11770-015-0467-3

    [11] 潘军, 栾锡武, 孙运宝, 等. SRME技术在海洋浅水高分辨率地震勘探中的应用[J]. 地球物理学进展, 2015,30(1): 429−434.

    PAN J, LUAN X W, SUN Y B, et al. Application of SRME technology in marine shallow water high resolution seismic exploration[J]. Progress in Geophysics, 2015, 30(1): 429−434. (in Chinese).

    [12] 王兆湖, 王建民, 高振山, 等. 叠前自适应f-x域相干噪音衰减技术及应用[J]. 地球物理学进展, 2013,28(5): 2605−2610.

    WANG Z H, WANG J M, GAO Z S, et al. Pre-stack self-adaptive f-x domain coherent noise attenuation technology and application[J]. Progress in Geophysics, 2013, 28(5): 2605−2610. (in Chinese).

    [13]

    YANG J, LIN N, ZHANG K, et al. Reservoir characterization using multi-component seismic data in a novel hybrid model based on clustering and deep neural network[J]. Natural Resources Research, 2021: 1−26.

    [14] 杨晶, 丁仁伟, 林年添, 等. 基于深度学习的地震断层智能识别研究进展[J]. 地球物理学进展, 2022,37(1): 298−311.

    YANG J, DING R W, LIN N T, et al. Research progress of intelligent identification of seismic fault based on deep learning[J]. Progress in Geophysics, 2022, 37(1): 298−311. (in Chinese).

    [15] 刘俊, 曹俊兴, 丁蔚楠, 等. 基于双向长短期记忆神经网络的储层孔隙度预测方法研究[J/OL]. 地球物理学进展: 1-9. (2021-07-23)[2021-12-18]. http://kns.cnki.net/kcms/detail/11.2982.P.20210723.1308.045.html.

    LIU J, CAO J X, DING W N, et al. Research on reservoir porosity prediction method based on bidirectional long-term and short-term memory neural network[J/OL]. Progress in Geophysics: 1-9. (2021-07-23)[2021-12-18]. http://kns.cnki.net/kcms/detail/11.2982.P.20210723.1308.045.html. (in Chinese).

    [16]

    TUKEY J W. Exploratory data analysis[J]. Journal of the American Statistical Association, 1977, 28(1): 163−182.

    [17]

    SUMAN S. Image denoising using new adaptive based median filter[J]. Signal & Image Processing an International Journal, 2014, 5(4): 1−13.

    [18] QUAN H D, ZHANG H C, JIA H T. An improved adaptive median filtering algorithm[C]//International Symposium on Test Automation and Instrumentation, 2006: 269-272.
    [19]

    JAIN V, SEUNG H S. Natural image denoising with convolutional networks[C]//International Conference on Neural Information Processing Systems. Piscataway: IEEE Press, 2008: 769-776.

    [20]

    ZHANG K, ZUO W, CHEN Y, et al. Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising[J]. IEEE Transactions on Image Processing, 2016, 26(7): 3142−3155.

    [21]

    GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]// Proceedings of the 27th International Conference on Neural Information Processing Systems, Montreal, 2014. Cambridge: MIT Press, 2014: 2672-2680.

    [22]

    WANG H, LI Y, DONG X. Generative adversarial network for desert seismic data denoising[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020. DOI:10.1109/ TGRS.2020.3030692.

    [23]

    DONG X T, LI Y. Denoising the optical fiber seismic data by using convolutional adversarial network based on loss balance[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020. DOI: 10.1109/TGRS.2020.3036065.

    [24]

    ZHU J Y, PAKR T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, 2017. Washington: IEEE Computer Society, 2017: 2242-2251.

    [25] 梁俊杰, 韦舰晶, 蒋正锋. 生成对抗网络GAN综述[J]. 计算机科学与探索, 2020,14(1): 1−17.

    LIANG J J, WEI J J, JIANG Z F. Generative adversarial networks GAN overview[J]. Journal of Frontiers of Computer Science & Technology, 2020, 14(1): 1−17. (in Chinese).

    [26] 梁雪灿. 基于生成对抗网络的声学图像超分辨率研究[D]. 哈尔滨: 哈尔滨工程大学, 2019.
    [27]

    ISOLA P, ZHU J Y, ZHOU T H, et al. Image-to-image translation with conditional adversarial networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, 2017. Washington: IEEE Computer Society, 2017: 5967-5976.

    [28] 王照, 陈恩庆. 基于深度残差生成对抗网络的本征图像分解算法[J]. 计算机应用与软件, 2022,39(3): 201−206.

    WANG Z, CHEN E Q. Eigen image decomposition algorithm for generating countermeasure network based on depth residual[J]. Computer Applications and Software, 2022, 39(3): 201−206. (in Chinese).

    [29]

    NAYEF B H, ABDULLAH S N H S, SULAIMAN R, et al. Optimized leaky ReLU for handwritten Arabic character recognition using convolution neural networks[J]. Multimedia Tools and Applications, 2021, 81(2): 2065−2094.

    [30] 杨久强, 林年添, 张凯, 等. 深度神经网络模型超参数选取及评价研究: 以含油气性多波地震响应特征提取为例[J]. 石油物探, 2022,61(2): 236−244.

    YANG J Q, LIN N T, ZHANG K, et al. Hyperparametric selection and evaluation of deep neural network models: A case study of feature extraction of multi-wave seismic response in an oil-gas reservoir[J]. Geophysical Prospecting for Petroleum, 2022, 61(2): 236−244. (in Chinese).

    [31] 王议迎, 丁仁伟, 李建平, 等. 联合改进STA/LTA与MLoG算子的微震P波到时自动拾取方法[J]. 山东科技大学学报(自然科学版), 2021,40(6): 1−10.

    WANG Y Y, DING R W, LI J P, et al. Automatic pickup of microseismic P-wave arrival based on improved STA/LTA and MloG operators[J]. Journal of Shandong University of Science and Technology (Natural Science), 2021, 40(6): 1−10. (in Chinese).

  • 期刊类型引用(4)

    1. 席晓旭,陈志晔. 光谱CT定量增强参数对肾细胞癌与肾血管平滑肌脂肪瘤的诊断价值. 分子影像学杂志. 2025(02): 218-222 . 百度学术
    2. 刘静垚,樊文萍,刘梦琦,葛文浩,姚慧,刘明波,陈志晔. 基于碘图的光谱CT多模态参数成像在甲状腺乳头状癌中的诊断价值. 分子影像学杂志. 2024(02): 138-142 . 百度学术
    3. 王兴龙,冯坤鹏,袁牧,孟令武. CT动脉增强分数、甲胎蛋白异质体3、中性粒细胞与淋巴细胞比值联合检测对肝癌患者介入化疗疗效的评估价值. 癌症进展. 2024(10): 1146-1150 . 百度学术
    4. 徐石. MSCT增强扫描对乙型肝炎肝硬化背景下原发性肝癌的诊断价值. 影像研究与医学应用. 2023(13): 132-134 . 百度学术

    其他类型引用(0)

图(11)  /  表(1)
计量
  • 文章访问数:  420
  • HTML全文浏览量:  302
  • PDF下载量:  40
  • 被引次数: 4
出版历程
  • 收稿日期:  2022-03-26
  • 修回日期:  2022-04-05
  • 录用日期:  2022-04-18
  • 网络出版日期:  2022-04-28
  • 发布日期:  2023-01-30

目录

    /

    返回文章
    返回
    x 关闭 永久关闭