ISSN 1004-4140
CN 11-3017/P

影像组学在诊断肺结节中的研究进展

刘宇婷, 刘挨师

刘宇婷, 刘挨师. 影像组学在诊断肺结节中的研究进展[J]. CT理论与应用研究, 2023, 32(4): 573-578. DOI: 10.15953/j.ctta.2022.056.
引用本文: 刘宇婷, 刘挨师. 影像组学在诊断肺结节中的研究进展[J]. CT理论与应用研究, 2023, 32(4): 573-578. DOI: 10.15953/j.ctta.2022.056.
LIU Y T, LIU A S. Research Progress of Radiomics in the Diagnosis of Pulmonary Nodules[J]. CT Theory and Applications, 2023, 32(4): 573-578. DOI: 10.15953/j.ctta.2022.056. (in Chinese).
Citation: LIU Y T, LIU A S. Research Progress of Radiomics in the Diagnosis of Pulmonary Nodules[J]. CT Theory and Applications, 2023, 32(4): 573-578. DOI: 10.15953/j.ctta.2022.056. (in Chinese).

影像组学在诊断肺结节中的研究进展

基金项目: 内蒙古治区自然基金面上项目(表现为磨玻璃结节的早期肺腺癌影像组学特征分析与精准诊断数学模型构建研究(2022SHZR2186))。
详细信息
    作者简介:

    刘宇婷: 女,内蒙古医科大学附属医院在读硕士研究生,主要从事影像组学在肺结节中的应用研究,E-mail:1274158593@qq.com

    刘挨师: 男,内蒙古医科大学附属医院影像诊断科科主任、主任医师,硕士生导师,主要从事心胸影像研究,E-mail:liuaishi@sina.com

    通讯作者:

    刘挨师: 男,内蒙古医科大学附属医院影像诊断科科主任、主任医师,硕士生导师,主要从事心胸影像研究,E-mail:liuaishi@sina.com

  • 中图分类号: R  814;R  445

Research Progress of Radiomics in the Diagnosis of Pulmonary Nodules

  • 摘要: 近年来随着医疗水平的发展,人们对自身健康的重视程度不断提高,使得肺结节等占位性病变能够被更早的检出,但在全球范围内,肺部恶性病变造成的死亡人数仍然在不断攀升且居高不下。影像组学是一个新兴的领域,旨从医学图像中获得自动定量成像特征,无创地预测结节和肿瘤行为。与传统的视觉图像特征相比,影像组学可以提取更多数量的结节特征,具有更好的重现性。科学系统地运用影像组学手段不仅能够防止过度的医疗行为,减轻患者经济负担,同时也能使肺部病变患者得到尽早的治疗以获得最佳的预后。
    Abstract: In recent years, with the continuous improvement of medical level, people pay more attention to their own health, pulmonary nodules and other space-occupying lesions can be detected earlier, but on a global scale, the number of deaths caused by malignant lung lesions Still rising and remaining high. Radiomics is an emerging field that aims to derive automated quantitative imaging features from medical images to noninvasively predict nodular and tumor behavior. Compared with traditional visual image features, radiomics can extract more nodular features with better reproducibility. The scientific and systematic use of radiomics can not only prevent excessive medical behaviors and reduce the economic burden of patients, but also enable patients with lung lesions to receive early treatment for the best prognosis.
  • [1]

    SIEGEL R L, MILLER K D, JEMAL A. Cancer statistics, 2020[J]. CA: A Cancer Journal for Clinicians, 2020, 70(1): 7−30. doi: 10.3322/caac.21590

    [2]

    KASSEM K, SHAPIRO M, GORENSTEIN L, et al. Evaluation of high-risk pulmonary nodules and pathologic correlation in patients enrolled in a low-dose computed tomography (LDCT) program[J]. Journal of Thoracic Disease, 2019, 11(4): 1165−1169. doi: 10.21037/jtd.2019.04.31

    [3]

    MANOS D, SEELY J M, TAYLOR J, et al. The lung reporting and data system (LU-RADS): A proposal for computed tomography screening[J]. Canadian Association of Radiologists Journal, 2014, 65(2): 121−134. doi: 10.1016/j.carj.2014.03.004

    [4]

    LAMBIN P, RIOS-VELAZQUEZ E, LEIJENAAR R, et al. Radiomics: Extracting more information from medical images using advanced feature analysis[J]. European Journal of Cancer, 2012, 48(4): 441−446. doi: 10.1016/j.ejca.2011.11.036

    [5]

    LAMBIN P, LEIJENAAR R T H, DEIST T M, et al. Radiomics: The bridge between medical imaging and personalized medicine[J]. Nature Reviews Clinical Oncology, 2017, 14(12): 749−762. doi: 10.1038/nrclinonc.2017.141

    [6]

    PRATX G, XING L. GPU computing in medical physics: A review[J]. Medical Physics, 2011, 38(5): 2685−2697. doi: 10.1118/1.3578605

    [7]

    LIU Z, ZHANG X Y, SHI Y J, et al. Radiomics analysis for evaluation of pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer[J]. Clinical Cancer Research, 2017, 23(23): 7253−7262. doi: 10.1158/1078-0432.CCR-17-1038

    [8]

    HUANG Y Q, LIANG C H, HE L, et al. Development and validation of a radiomics nomogram for preoperative prediction of lymph node metastasis in colorectal cancer[J]. Journal of Clinical Oncology, 2016, 34(18): 2157−2164. doi: 10.1200/JCO.2015.65.9128

    [9]

    RIOS-VELAZQUEZ E, PARMAR C, LIU Y, et al. Somatic mutations drive distinct imaging phenotypes in lung cancer[J]. Cancer Research, 2017, 77(14): 3922−3930. doi: 10.1158/0008-5472.CAN-17-0122

    [10] 张晓菊. 《肺结节诊治中国专家共识(2018版)》解读[J]. 中华实用诊断与治疗杂志, 2019,33(1): 1−3. doi: 10.13507/j.issn.1674-3474.2019.01.001

    ZHANG X J. Interpretation of “Chinese Expert Consensus on Diagnosis and Treatment of Pulmonary Nodules (2018 Edition)”[J]. Chinese Journal of Practical Diagnosis and Treatment, 2019, 33(1): 1−3. (in Chinese). doi: 10.13507/j.issn.1674-3474.2019.01.001

    [11]

    National Lung Screening Trial Research Team, CHURCH T R, BLACK W C, et al. Results of initial low-dose computed tomographic screening for lung cancer[J]. New England Journal of Medicine, 2013, 368(21): 1980−1991. doi: 10.1056/NEJMoa1209120

    [12]

    BACH P B, MIRKIN J N, OLIVER T K, et al. Benefits and harms of CT screening for lung cancer: A systematic review[J]. Journal of the American Medical Association, 2012, 307(22): 2418−2429. doi: 10.1001/jama.2012.5521

    [13]

    NAIDICH D P, BANKIER A A, MACMAHON H, et al. Recommendations for the management of subsolid pulmonary nodules detected at CT: A statement from the Fleischner Society[J]. Radiology, 2013, 266(1): 304−317. doi: 10.1148/radiol.12120628

    [14]

    LOVERDOS K, FOTIADIS A, KONTOGIANNI C, et al. Lung nodules: A comprehensive review on current approach and management[J]. Annals of Thoracic Medicine, 2019, 14(4): 226−238. doi: 10.4103/atm.ATM_110_19

    [15]

    DUAN X Q, WANG X L, ZHANG L F, et al. Establishment and validation of a prediction model for the probability of malignancy in solid solitary pulmonary nodules in Northwest China[J]. Journal of Surgical Oncology, 2021, 123(4): 1134−1143. doi: 10.1002/jso.26356

    [16] 欧阳雨晴, 倪莲芳, 刘新民. 肺结节多学科联合诊治价值[J]. 北京大学学报(医学版), 2021,53(3): 628−631. doi: 10.19723/j.issn.1671-167X.2021.03.032

    OUYANG Y Q, NI L F, LIU X M. The value of multidisciplinary joint diagnosis and treatment of pulmonary nodules[J]. Journal of Peking University (Medical Edition), 2021, 53(3): 628−631. (in Chinese). doi: 10.19723/j.issn.1671-167X.2021.03.032

    [17]

    WIELPÜTZ M O, HEUßEL C P, HERTH F J F, et al. Radiological diagnosis in lung disease: Factoring treatment options into the choice of diagnostic modality[J]. Deutsches Arzteblatt International, 2014, 111(11): 181−187.

    [18] 高美娟. X线与CT在肺结节诊断中的对比研究[J]. 影像研究与医学应用, 2018,12(2): 2096−3807. doi: 10.3969/j.issn.2096-3807.2018.12.020

    GAO M J. Comparative study of X-ray and CT in the diagnosis of pulmonary nodules[J]. Imaging Research and Medical Application, 2018, 12(2): 2096−3807. (in Chinese). doi: 10.3969/j.issn.2096-3807.2018.12.020

    [19]

    MA J, WANG Q, REN Y, et al. Automatic lung nodule classification with radiomics approach[J]. IEEE Journal of Biomedical and Health Informatics, 2020, 24(1): 194−204. doi: 10.1109/JBHI.2019.2902298

    [20]

    XIE Y, ZHANG J, XIA Y, et al. Fusing texture, shape and deep model-learned information at decision level for automated classification of lung nodules on chest CT[J]. Information Fusion, 2018, 42: 102−110. doi: 10.1016/j.inffus.2017.10.005

    [21]

    BALAGURUNATHAN Y, SCHABATH M B, WANG H, et al. Quantitative imaging features improve discrimination of malignancy in pulmonary nodules[J]. Scientific Reports, 2019, 9(1): 8528. doi: 10.1038/s41598-019-44562-z

    [22]

    WU W, PIERCE L A, ZHANG Y, et al. Comparison of prediction models with radiological semantic features and radiomics in lung cancer diagnosis of the pulmonary nodules: A case-control study[J]. European Radiology, 2019, 29(11): 6100−6108. doi: 10.1007/s00330-019-06213-9

    [23]

    ZENG H, CHEN W, ZHENG R, et al. Changing cancer survival in China during 2003-15: A pooled analysis of 17 population-based cancer registries[J]. The Lancet Global Health, 2018, 6(5): e555−e567. doi: 10.1016/S2214-109X(18)30127-X

    [24] 崔效楠, 刘颖, 叶兆祥, 等. 影像组学特征对肺纯磨玻璃结节侵袭性腺癌与非侵袭性腺癌的鉴别价值[J]. 国际医学放射学, 2018,41(4): 375−378.

    CUI X N, LIU Y, YE Z X, et al. Differentiation value of radiomic features in invasive adenocarcinoma and non-invasive adenocarcinoma of pure ground glass nodules of the lung[J]. International Medical Radiology, 2018, 41(4): 375−378. (in Chinese).

    [25]

    LI W, WANG X, ZHANG Y, et al. Radiomic analysis of pulmonary ground-glass opacity nodules for distinction of preinvasive lesions, invasive pulmonary adenocarcinoma and minimally invasive adenocarcinoma based on quantitative texture analysis of CT[J]. Chinese Journal of Cancer Research, 2018, 30(4): 415−424. doi: 10.21147/j.issn.1000-9604.2018.04.04

    [26]

    CAI J, LIU H, YUAN H, et al. A radiomics study to predict invasive pulmonary adenocarcinoma appearing as pure ground-glass nodules[J]. Clinical Radiology, 2021, 76(2): 143−151. doi: 10.1016/j.crad.2020.10.005

    [27]

    XIA X, GONG J, HAO W, et al. Comparison and fusion of deep learning and radiomics features of ground-glass nodules to predict the invasiveness risk of stage-I lung adenocarcinomas in CT scan[J]. Frontiers in Oncology, 2020, 31(10): 418.

    [28]

    WANG B, TANG Y H, CHEN Y N, et al. Joint use of the radiomics method and frozen sections should be considered in the prediction of the final classification of peripheral lung adenocarcinoma manifesting as ground-glass nodules[J]. Lung Cancer, 2020, 139(1): 103−110.

    [29]

    CHEN X, FENG B, CHEN Y, et al. A CT-based deep learning model for subsolid pulmonary nodules to distinguish minimally invasive adenocarcinoma and invasive adenocarcinoma[J]. European Journal of Radiology, 2021, 145: 110041. doi: 10.1016/j.ejrad.2021.110041

    [30]

    CHADDAD A, DESROSIERS C, TOEWS M, et al. Predicting survival time of lung cancer patients using radiomic analysis[J]. Oncotarget, 2017, 8(61): 104393−104407. doi: 10.18632/oncotarget.22251

    [31] 王鑫超, 崔曹哲, 胡奕奕, 等. 不同影像组学特征筛选方法对早期NSCLC患者生存预测效能的比较研究[J]. 肿瘤影像学, 2021,30(6): 459−465. doi: 10.19732/j.cnki.2096-6210.2021.06.005

    WANG X C, CUI C Z, HU Y Y, et al. Comparative study on the survival prediction efficacy of different radiomics feature screening methods in patients with early stage NSCLC[J]. Oncology Imaging, 2021, 30(6): 459−465. (in Chinese). doi: 10.19732/j.cnki.2096-6210.2021.06.005

  • 期刊类型引用(3)

    1. 翟浩宇,陈雪,杨冰炜,王成磊,吴颖,崔慕瑶,吴佳禾,李卫东. 基于R语言的国家专利中药复方调治肺结节的用药规律研究. 中国医药导报. 2025(08): 1-7 . 百度学术
    2. 崔瑞芳,李仁廷,韩梦影. 李仁廷从“五脏失和,癌毒内聚”辨治肺癌. 中医学报. 2024(08): 1728-1732 . 百度学术
    3. 邓永军. 基于五行学说肝肺脾生克制化理论治疗肺结节. 中医研究. 2024(08): 24-27 . 百度学术

    其他类型引用(3)

计量
  • 文章访问数:  390
  • HTML全文浏览量:  110
  • PDF下载量:  77
  • 被引次数: 6
出版历程
  • 收稿日期:  2022-04-06
  • 修回日期:  2022-07-13
  • 录用日期:  2022-07-26
  • 网络出版日期:  2022-09-05
  • 发布日期:  2023-07-30

目录

    /

    返回文章
    返回
    x 关闭 永久关闭