ISSN 1004-4140
CN 11-3017/P

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高密度电法与瞬变电磁法在戈壁区找水的联合应用

唐塑 武银婷 邢浩 娄雪聪 石海涛

唐塑, 武银婷, 邢浩, 等. 高密度电法与瞬变电磁法在戈壁区找水的联合应用[J]. CT理论与应用研究, 2023, 32(1): 27-34. DOI: 10.15953/j.ctta.2022.081
引用本文: 唐塑, 武银婷, 邢浩, 等. 高密度电法与瞬变电磁法在戈壁区找水的联合应用[J]. CT理论与应用研究, 2023, 32(1): 27-34. DOI: 10.15953/j.ctta.2022.081
TANG S, WU Y T, XING H, et al. Combined Application of High-density Electrical Method and Transient Electromagnetic Method in Gobi Desert Area[J]. CT Theory and Applications, 2023, 32(1): 27-34. DOI: 10.15953/j.ctta.2022.081. (in Chinese)
Citation: TANG S, WU Y T, XING H, et al. Combined Application of High-density Electrical Method and Transient Electromagnetic Method in Gobi Desert Area[J]. CT Theory and Applications, 2023, 32(1): 27-34. DOI: 10.15953/j.ctta.2022.081. (in Chinese)

高密度电法与瞬变电磁法在戈壁区找水的联合应用

doi: 10.15953/j.ctta.2022.081
基金项目: 新疆哈密市南湖一带矿山集中区生态修复支撑调查项目(DD20208081)。
详细信息
    作者简介:

    唐塑:男,中国地质调查局乌鲁木齐自然资源综合调查中心工程师,长安大学资源与环境专业硕士研究生,主要从事浅地表地球物理勘探工作,E-mail:14763662@qq.com

    武银婷:女,长安大学地质工程与测绘学院副教授、硕士生导师,主要从事地球物理勘探研究,E-mail:wuyinting0215@163.com

    通讯作者:

    女,长安大学地质工程与测绘学院副教授、硕士生导师,主要从事地球物理勘探研究,E-mail:wuyinting0215@163.com

  • 中图分类号: P  631.3

Combined Application of High-density Electrical Method and Transient Electromagnetic Method in Gobi Desert Area

  • 摘要: 为准确掌握地下水资源的动态变化,有效支撑生态环境的可持续发展,在新疆哈密某矿集区利用高密度电法与瞬变电磁法联合进行物探勘查,对地下含水层与隔水层进行预判。经验证,高密度电法与瞬变电磁法的组合,有效指导水文钻探施工,为同类地质条件下物探手段的选取和应用提供参考。

     

  • 图  1  工作布设示意图

    Figure  1.  Sketch map of work layout

    图  2  WT1线物探反演断面图

    Figure  2.  Inverse section diagram of WT1 line

    图  3  WT2线物探反演断面图

    Figure  3.  Inverse section diagram of WT2 line

    图  4  ZK03钻孔岩性示意图

    Figure  4.  Schematic diagram of ZK03 drilling lithology

  • [1] 王瑞丰, 温来福, 程久龙, 等. 高密度电法与瞬变电磁法联合勘查河北承德地区基岩裂隙水[J]. 地球科学与环境学报, 2020,42(6): 784−790. DOI: 10.19814/j.jese.2020.06013.

    WANG R F, WEN L F, CHENG J L, et al. Joint detection of bedrock fissure water using high-density electrical method and transient electromagnetic method in Chengde area of Hebei, China[J]. Journal of Earth Science and Environment, 2020, 42(6): 784−790. DOI: 10.19814/j.jese.2020.06013. (in Chinese).
    [2] 张保祥, 刘春华. 瞬变电磁法在地下水勘查中的应用综述[J]. 地球物理学进展, 2004,19(3): 537−542. doi: <10.3969/j.issn.1004-2903.2004.03.008

    ZHANG B X, LIU C H. Summarization on applications to groundwater exploration by using transient electromagnetic methods[J]. Progress in Geophysics, 2004, 19(3): 537−542. (in Chinese). doi: <10.3969/j.issn.1004-2903.2004.03.008
    [3] 李国占, 孙银行. 地下水地球物理勘查技术模式[J]. 物探与化探, 2010,34(2): 202−204.

    LI G Z, SUN Y H. A tentative discussion on a technological mode for groundwater geophysical exploration[J]. Geophysical and Geochemical Exploration, 2010, 34(2): 202−204. (in Chinese).
    [4] 王星明, 郭栋, 李嘉. 水资源勘查中综合电法勘探方法技术与应用[J]. 物探与化探, 2011,35(1): 65−69.

    WANG M X, GUO D, LI J. The integrated electrical prospecting technology and its application to water resource exploration[J]. Geophysical and Geochemical Exploration, 2011, 35(1): 65−69. (in Chinese).
    [5] 宋希利, 宋鹏, 田明阳, 等. 物探方法在侵入岩地区抗旱找水定井中的应用[J]. 地球物理学进展, 2012,27(3): 1280−1286. DOI: 10.6038/j.issn.1004-2903.2012.03.057.

    SONG X L, SONG P, TIAN M Y, et al. Geophysical prospecting method in intrusive rocks area fight a drought to find water wells set[J]. Progress in Geophysics, 2012, 27(3): 1280−1286. DOI: 10.6038/j.issn.1004-2903.2012.03.057. (in Chinese).
    [6] 苏永军, 马震, 孟利山, 等. 高密度电阻率法和激发极化法在抗旱找水定井位中的应用[J]. 现代地质, 2015,29(2): 265−271. doi: 10.3969/j.issn.1000-8527.2015.02.007

    SU Y J, MA Z, MENG L S, et al. Application of high-density resistivity method and induced polarization method to determine a good well location in groundwater prospecting[J]. Geoscience, 2015, 29(2): 265−271. (in Chinese). doi: 10.3969/j.issn.1000-8527.2015.02.007
    [7] 孙中任, 杨殿臣, 赵雪娟. 综合物探方法寻找深部地下水[J]. 物探与化探, 2017,41(1): 52−57. DOI: 10.11720/wtyht.2017.1.08.

    SUN Z R, YANG D C, ZHAO X J. The application of integrated geophysical methods to the prospecting for deep geothermal resource[J]. Geophysical and Geochemical Exploration, 2017, 41(1): 52−57. DOI: 10.11720/wtyht.2017.1.08. (in Chinese).
    [8] 康方平, 蒋建良, 彭杰, 等. 综合物探方法在湖南某贫水板岩地区找水的应用研究[J]. 工程地球物理学报, 2020,17(2): 258−264. DOI: 10.3969/j.issn.1672-7940.2020.02.018.

    KANG F P, JIANG J L, PENG J, et al. Application of integrated geophysical method to water search in a poor slate region of Hunan province[J]. Chinese Journal of Engineering Geophysics, 2020, 17(2): 258−264. DOI: 10.3969/j.issn.1672-7940.2020.02.018. (in Chinese).
    [9] 潘剑伟, 张成丽, 鲁恺, 等. SNMR联合SP用于滑动带水体赋存状态的探测研究[J]. CT理论与应用研究, 2021,30(1): 23−34. DOI: 10.15953/j.1004-4140.2021.30.01.03.

    PAN J W, ZHANG C L, LU K, et al. The combined use of surface nuclear magnetic resonance and self-potential in the research of groundwater state in the landslide[J]. CT Theory and Applications, 2021, 30(1): 23−34. DOI: 10.15953/j.1004-4140.2021.30.01.03. (in Chinese).
    [10] 黄国民, 李世平, 陶毅, 等. 广西碎屑岩地区电法找水实例[J]. 物探与化探, 2019,43(1): 77−83. DOI: 10.11720/wtyht.2019.2134.

    HUANG G M, LI S P, TAO Y, et al. A case study of water prospecting by electrical method in clastic rock area of Guangxi[J]. Geophysical and Geochemical Exploration, 2019, 43(1): 77−83. DOI: 10.11720/wtyht.2019.2134. (in Chinese).
    [11] 马吉静. 高密度电阻率法的异常识别和推断-以溶洞探测和寻找地下水为例[J]. 地球物理学进展, 2019,34(4): 1489−1498. DOI: 10.6038/pg2019CC0054.

    MA J J. Anomaly identification and inference of high density resistivity method: Take Karst cave exploration and groundwater exploration as an example[J]. Progress in Geophysics, 2019, 34(4): 1489−1498. DOI: 10.6038/pg2019CC0054. (in Chinese).
    [12] 底青云, 倪大来, 王若. 高密度电阻率成像[J]. 地球物理学进展, 2003,18(2): 323−326. doi: 10.3969/j.issn.1004-2903.2003.02.023

    DI Q Y, NI D L, WANG R. High-density resistivity image[J]. Progress in Geophysics, 2003, 18(2): 323−326. (in Chinese). doi: 10.3969/j.issn.1004-2903.2003.02.023
    [13] 董浩斌, 王传雷. 高密度电法的发展与应用[J]. 地学前缘, 2003,10(1): 171−176. doi: 10.3321/j.issn:1005-2321.2003.01.020

    DONG H B, WANG C L. Development and application of 2D resistivity imaging surveys[J]. Earth Science Frontiers, 2003, 10(1): 171−176. (in Chinese). doi: 10.3321/j.issn:1005-2321.2003.01.020
    [14] 严加永, 孟贵祥, 吕庆田, 等. 高密度电法的进展与展望[J]. 物探与化探, 2012,36(4): 576−584.

    YAN J Y, MENG G X, LV Q T, et al. The progress and prospect of the electrical resistivity imaging survey[J]. Geophysical and Geochemical Exploration, 2012, 36(4): 576−584. (in Chinese).
    [15] 陈松, 余绍文, 刘怀庆, 等. 高密度电法在水文地质调查中的应用研究−以江平圩幅为例[J]. 地球物理学进展, 2017,32(2): 0849−0855. DOI: 10.6038/pg20170254.

    CHEN S, YU S W, LIU H Q, et al. Application and research high density electrical method in hydrogeological prospceting: A case study on Jiangping town map[J]. Progress in Geophysics, 2017, 32(2): 0849−0855. DOI: 10.6038/pg20170254. (in Chinese).
    [16] 刘艳秋, 徐洪苗, 胡俊杰. 综合物探方法在水库堤坝隐患探测中的应用[J]. 工程地球物理学报, 2019,16(4): 546−551. DOI: 10.3969/j.issn.1672-7940.2019.04.018.

    LIU Y Q, XU H M, HU J J. Application of comprehensive geophysical exploration technique to detecting hidden defects of reservoir dams[J]. Chinese Journal of Engineering Geophysics, 2019, 16(4): 546−551. DOI: 10.3969/j.issn.1672-7940.2019.04.018. (in Chinese).
    [17] 薛国强, 李貅, 底青云. 瞬变电磁法理论与应用研究进展[J]. 地球物理学进展, 2007,22(4): 1195−1200. doi: 10.3969/j.issn.1004-2903.2007.04.026

    XUE G Q, LI X, DI Q Y. The progress of TEM in theory and application[J]. Progress in Geophysics, 2007, 22(4): 1195−1200. (in Chinese). doi: 10.3969/j.issn.1004-2903.2007.04.026
    [18] 严良俊, 徐世浙, 胡文宝, 等. 中心回线瞬变电磁测深法快速电阻率成像方法及应用[J]. 煤田地质与勘探, 2002,30(6): 58−60. doi: 10.3969/j.issn.1001-1986.2002.06.020

    YAN L J, XU S Z, HU W B, et al. A rapid resistivity imaging method for central loop transient electromagnetic sounding and its application[J]. Coal Geology & Exploration, 2002, 30(6): 58−60. (in Chinese). doi: 10.3969/j.issn.1001-1986.2002.06.020
    [19] 杨文钦, 胡东祥. 断层富水性的综合探测技术与应用[J]. 煤田地质与勘探, 2002,30(2): 51−53. doi: 10.3969/j.issn.1001-1986.2002.02.019

    YANG W Q, HU D X. The technology and it’s application survey for water-bearing condition of fault[J]. Coal Geology & Exploration, 2002, 30(2): 51−53. (in Chinese). doi: 10.3969/j.issn.1001-1986.2002.02.019
    [20] 王庆, 石磊, 兰云飞, 等. 微小盆地倾斜煤层采空区瞬变电磁法探测[J]. CT理论与应用研究, 2020,29(5): 576−583. DOI: 10.15953/j.1004-4140.2020.29.05.08.

    WANG Q, SHI L, LAN Y F, et al. Detection of mine tunnels in inclined coal seam of small coal bearing basin using TEM[J]. CT Theory and Applications, 2020, 29(5): 576−583. DOI: 10.15953/j.1004-4140.2020.29.05.08. (in Chinese).
    [21] XUE G Q, ZHANG L B, ZHOU N N, et al. Development measurements of TEM sounding in China[J]. Geological Journal, 2019: 1−8. DOI: 10.1002/gj.3544.
    [22] 彭赟, 李燕, 杨淮. 瞬变电磁法在积水采空区探测中的应用−以贵州某煤矿为例[J]. 工程地球物理学报, 2019,16(6): 849−855. doi: 10.3969/j.issn.1672-7940.2019.06.010

    PENG Y, LI Y, YANG H. Detection of water-accumulating goaf based on transient electromagnetic method: A case study of a coal mine in guizhou[J]. Chinese Journal of Engineering Geophysics, 2019, 16(6): 849−855. (in Chinese). doi: 10.3969/j.issn.1672-7940.2019.06.010
    [23] 日丹诺夫 M S. 地球物理反演理论与应用[M]. 底青云, 薛国强, 李貅, 等, 译. 北京: 科学出版社, 2018.
  • 加载中
图(4)
计量
  • 文章访问数:  167
  • HTML全文浏览量:  48
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-22
  • 录用日期:  2022-06-02
  • 网络出版日期:  2022-06-06
  • 刊出日期:  2023-01-31

目录

    /

    返回文章
    返回