ISSN 1004-4140
CN 11-3017/P

肋软骨CT影像真实大小胶片打印技术的应用

曹捷, 秘子涵, 李博, 王永振, 辛刚, 毛晓瑛, 刘雳

曹捷, 秘子涵, 李博, 等. 肋软骨CT影像真实大小胶片打印技术的应用[J]. CT理论与应用研究, 2023, 32(4): 545-552. DOI: 10.15953/j.ctta.2022.135.
引用本文: 曹捷, 秘子涵, 李博, 等. 肋软骨CT影像真实大小胶片打印技术的应用[J]. CT理论与应用研究, 2023, 32(4): 545-552. DOI: 10.15953/j.ctta.2022.135.
CAO J, BI Z H, LI B, et al. Application of real size film printing technology in costal cartilage CT image[J]. CT Theory and Applications, 2023, 32(4): 545-552. DOI: 10.15953/j.ctta.2022.135. (in Chinese).
Citation: CAO J, BI Z H, LI B, et al. Application of real size film printing technology in costal cartilage CT image[J]. CT Theory and Applications, 2023, 32(4): 545-552. DOI: 10.15953/j.ctta.2022.135. (in Chinese).

肋软骨CT影像真实大小胶片打印技术的应用

详细信息
    作者简介:

    曹捷: 女,中国医学科学院整形外科医院放射科主管技师,主要从事整形外科相关X线影像学检查、CT影像后处理方式及CT剂量控制、实验动物的影像学检查方法等,E-mail:1721345716@qq.com。

    通讯作者:

    曹捷: 女,中国医学科学院整形外科医院放射科主管技师,主要从事整形外科相关X线影像学检查、CT影像后处理方式及CT剂量控制、实验动物的影像学检查方法等,E-mail:1721345716@qq.com

  • 中图分类号: R  814;R  445

Application of Real Size Film Printing Technology in Costal Cartilage CT Image

  • 摘要: 目的:探索在医用胶片上对肋软骨CT影像显示其真实大小的胶片打印技术。方法:选取31例患者肋软骨CT影像资料,经影像后处理,胶片采用14英寸×17英寸(35 cm×43 cm)规格,计算EBW工作站显示屏主影像显示区和14×17胶片上实际影像显示区之间的比例关系,制成10 cm和5 cm两个长度规格的实物比例尺。打印时将胶片以2×2分格呈4幅图像布局,选取5 cm实物比例尺打印单根肋软骨横轴面或矢状面影像;以1×1分格呈单幅图像布局,选取10 cm实物比例尺打印全部前肋弓(含肋软骨)的三维影像。选取右侧第6肋软骨升部、横部的长度,升部横部连接处宽度、厚度,肋软骨胸骨端、肋软骨肋骨端的厚度等6个指标的胶片测量值和手术中实体测量值进行比较,并做统计学分析。结果:①对已打印的胶片进行测量,胶片上所示10 cm和5 cm比例尺与直尺的实际尺寸相等;②胶片上肋软骨影像的 6组测量值和手术中的肋软骨实体测值对比,测量值差异无统计学意义。结论:基于DICOM协议下的打印技术可以实现肋软骨CT影像在胶片上的真实大小打印,术者从胶片中所获取的目标组织的形态数据可靠。
    Abstract: Objective: To explore the film printing technology for displaying the true size of costal cartilage on medical film. Methods: The CT images of costal cartilage of 31 patients were selected and processed 14×17 inches (35×43 cm), calculate the main image display area and 14×17 the scale between the actual image display areas on the film shall be made into physical scales of 10 cm and 5 cm in length. Print the film in 2×2. Four images are arranged in the grid, and the transverse or sagittal images of single rib cartilage are printed on a 5 cm physical scale; with 1×1 The grid is a single image layout, and the 3D images of all the front rib arches (including costal cartilage) are printed on a 10 cm physical scale. The film measurement values of six indicators, including the length of the ascending and transverse parts of the right sixth costal cartilage, the width and thickness of the transverse junction of the ascending part, the thickness of the sternal end of the costal cartilage and the rib end of the costal cartilage, were compared with the solid measurement values during the operation, and statistical analysis was made. Results: (1) The printed film was measured, and the 10 cm and 5 cm scales shown on the film were equal to the actual size of the ruler. (2) There was no significant difference between the measured values of six groups of costal cartilage images on film and the measured values of costal cartilage entities during surgery. Conclusion: The printing technology based on DICOM protocol can realize the real size printing of costal cartilage CT image on film. The morphological data of the target tissue obtained by the operator from the film are reliable.
  • 伦琴于1895年发现X射线,而后英国工程师Hounsfield基于X射线发明出计算机断层成像(computed tomography,CT)机。自CT机问世几十年来,无论是在硬件性能(X光机、探测器)、扫描方式,还是重建算法上都获得了长足发展,在医疗、工业和安全检查等领域发挥着重要作用。更短的扫描和重建时间,以及更好的成像质量成为该领域研究人员追求的目标[1]

    双能CT是由Alvarez[2]在1976年首次提出,可以获取物体的等效原子序数和电子密度信息,从而更加准确地识别物质。多能谱CT是在双能CT的基础上,增加了参与扫描和重建的能区数量,引入了更多能谱信息,重建结果更加准确。

    随着高计数率电子元器件的迅速发展,以光子计数探测器为核心的多能谱X射线成像技术成为射线检测领域的重要发展方向[3-4]。与传统能量积分探测器相比,光子计数探测器可以通过设置能量阈值来选择不同能区的信号,同时它将每个光子当作独立事件进行统计,一次扫描便能得到多段能谱,减小了辐射剂量[5]。但在实际的应用上也存在多能段光子数减少、信噪比下降,探测器性能不足造成的噪声等问题[6],对影响光子计数X射线CT成像精度的因素及其规律进行基础性研究十分必要。

    本文对系统能谱的获取、模体的扫描和重建过程进行仿真实验,以重建得到的等效原子序数和电子密度的标准差作为成像质量的评价标准,得出探测器能量分辨率、能谱阈值和能谱范围等因素对成像精度影响的有关结论,为后续相关技术的工程应用化提供参考。

    本文主要研究探测器能量分辨率、能谱阈值和能谱范围等对重建图像精度的影响规律。以双能重建为例,根据光子计数探测原理[7],进行双能成像的模拟。双能CT成像的重点研究内容之一是双能分解方法,常见的双能分解方法包含投影域前处理、图像域后处理和迭代方法[8]

    考虑到未来的工程化需求,本文选择的双能重建方法为基于基材料模型的双能投影预处理分解方法,基材料选取的是碳和铝。

    材料模型公式:

    $$ \mu \left(E\right)={{b}}_{1}{\mu }_{1}\left(E\right)+{{b}}_{2}{\mu }_{2}\left(E\right) \text{,} $$ (1)

    $ {\mu }_{1} $(E)、$ {\mu }_{2} $(E)分别为两种基材料的线性衰减系数;$ {b}_{1}$$ {b}_{2}$对应两种基材料的分解系数,对于某一固定的物质,$ {b}_{1}$$ {b}_{2}$是两个常数。

    双能分解即求解如下的双能投影积分方程组:

    $$ \left\{\begin{aligned} {P}_{L}=\;& -{\ln}\bigg(\int \mathit{{S}_{L}} (E)\exp \Big({-{B}}_{1}{\mu }_{1}({E})-\\& {{B}}_{2}{\mu }_{2}({E})\Big){\rm d}{E}\bigg)+{\ln}\int \mathit{{S}_{L}}(E){\rm d}E\\ {P}_{H}=\;&-{\ln}\bigg(\int \mathit{{S}_{H}}(E) \exp \Big(-{{B}}_{1}{\mu }_{1}({E})-\\ & {{B}}_{2}{\mu }_{2}({E})\Big){\rm d}{E}\bigg)+{\ln}\int \mathit{{S}_{H}}(E){\rm d}E\end{aligned}\right. \text{,} $$ (2)

    其中,SHSL分别为高低能能谱,纵坐标记录的是光子数,PHPL分别为高低能投影,$ {{B}}_{1}=\displaystyle \int {{b}}_{1}\mathrm{d}{l}, {{B}}_{2}=\displaystyle \int {{b}}_{2}\mathrm{d}{l} $

    求解$ {B}_{1}$$ {B}_{2}$的这个过程被称为投影分解过程。由于$ {B}_{1}$$ {B}_{2}$$ {b}_{1}$$ {b}_{2}$的线积分投影值,求解出$ {B}_{1}$$ {B}_{2}$后,根据CT重建的原理,利用滤波反投影重建算法[9],便可计算出$ {b}_{1}$$ {b}_{2}$,由此可以计算材质的等效原子序数和电子密度信息,以完成材料的探测识别。计算公式:

    $$ {Z}_{\rm{eff}}={\left(\frac{{b}_{1}{\rho }_{e1}{Z}_{1}^{n}+{b}_{2}{\rho }_{e2}{Z}_{2}^{n}}{{b}_{1}{\rho }_{e1}+{b}_{2}{\rho }_{e2}}\right)}^{\tfrac{1}{n}} \text{,} $$ (3)
    $$ {\rho }_{e}={{b}_{1}\rho }_{e1}+{{b}_{2}\rho }_{e2} , $$ (4)

    式(3)和式(4)中Z1Z2分别为两种基材料的原子序数,ρe1ρe2分别为两种基材料的电子密度,n一般取在3~4之间。

    在Ubuntu系统下利用Geant 4软件,模拟高速电子撞击靶材射出X射线的过程。真空管内靶材为1 cm厚的钨,靶面倾角为25°,射线源射出能量为160 keV的电子,滤波片为2.5 mm厚的铝,射线穿过区域皆为真空,光子穿过虚拟探测器后被记录能量,得到射线源入射能谱。图1为能谱发射的几何示意,图2为得到的入射能谱。

    图  1  能谱发射几何示意图
    Figure  1.  Spectral emission geometry
    图  2  入射能谱
    Figure  2.  Incident spectrum

    通过对入射能谱与基于能量分辨率高斯函数的卷积来模拟探测器能量分辨率的影响,得到系统能谱[10]。后续实验所需的高低能能谱均基于系统能谱得到。探测器能量分辨率R通常用半高全宽(full width at half maximum,FWHM)W表示,定义:

    $$ R=\frac{W}{E}\text{,} $$ (5)

    其中,E是相对应的能量。W可以通过标准差σ与高斯分布的关系计算得到:

    $$ W=2.355\;\sigma 。 $$ (6)

    因此,标准差可以表示为:

    $$ \sigma =\frac{R\times E}{2.355} 。 $$ (7)

    根据探测器指定能量下的标准能量分辨率R0和能量E0,可由式(8)获得其他能量下的能量分辨率。由式(7)获得每个能量点下的标准差σ,并使用该标准差对原始入射能谱进行高斯模糊[11]

    $$ R={R}_{0}\sqrt{\frac{{E}_{0}}{E}} 。 $$ (8)

    由于光子计数的特性遵循泊松分布[12-13],所以本文为投影数据添加泊松噪声,用于模拟真实环境。泊松分布的概率函数见式(9),该函数表示在给定时间间隔或空间区域内发生k次事件的概率,其中,$ \lambda $是泊松分布的均值和方差。

    $$ P\Big(X=k\Big)=\frac{{\lambda }^{k}{\exp}{(-\lambda )}}{k!} 。 $$ (9)

    具体加噪过程。

    (1)光子穿过模体后的衰减规律:

    $$ {n}=\int S\left(E\right){\exp}{\left(\int -l\mu \left(E\right)\mathrm{d}l\right)}\mathrm{d}E \text{,} $$ (10)

    其中,n为入射后探测器接收到的光子数,S(E)为系统能谱,exp为自然常数,l表示射线穿过模体的厚度,μ(E)为水模的线性衰减系数。

    将各个单能(E1E2E3、···)下的光子数ni=$ S\left({E}_{\mathrm{i}}\right){\exp}{\left(\int -l\mu \left({E}_{\mathrm{i}}\right)\mathrm{d}l\right)} $分别代入式(9)中的$ \lambda $,将对应泊松分布下生成的随机数作为该能量下加噪后的光子数ni_noise

    (2)将能谱各单能段加噪后的光子数ni_noise累加,并与入射前探测器接收到的光子数n0按下式进行变换,便可得到加噪后的投影Pnoise

    $$ {P}_{\mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{e}}=\mathrm{l}\mathrm{n}\left(\frac{{n}_{0}}{{n}_{\mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{e}}}\right) \text{,} $$ (11)

    其中,入射前探测器接收到的光子数$ {n}_{0}= \displaystyle \int S\left(E\right)\mathrm{d}E $

    设置的仿真模体为一圆柱状物体,材料为钙(原子序数20,密度1.55 g/cm3),半径为3 cm,模体截面如图3所示。

    图  3  模体截面图
    Figure  3.  Cross profile of phantom

    进行扫描仿真实验的探测系统几何结构如图4所示。射线源为扇形束,扇束张角为22.6°;探测器线性等距排列,共256个探测单元,总长512 mm;射线源、模体、探测器中心位于同一条直线;射线源到模体中心和探测器中心的距离分别为640 mm和1280 mm;每隔1° 扫描一次模体,每次扫描发射的光子数为105

    图  4  探测系统几何示意图
    Figure  4.  Geometry of the detection system

    市场上性能相对较好的光子计数探测器材料为碲锌镉(CZT),其在60~100 keV下的能量分辨率大约是10%。因此参考碲锌镉材料的分辨率作为最优值,从10% @ 100 keV到40% @ 100 keV依次递减能量分辨率,间隔10%取4组能量分辨率进行实验,并配以理想能量分辨率(0%)作为对比,高低能能量阈值选为80 keV,各实验组参数见表1。各实验组高斯模糊化之后的高低能能谱见图5

    表  1  能量分辨率实验对照表
    Table  1.  Experimental comparison table of energy resolution
    编号 能量分辨率 低能区光子数 高能区光子数
    1 0% @ 100 keV 82978 17286
    2 10% @ 100 keV 82964 17271
    3 20% @ 100 keV 82964 17218
    4 30% @ 100 keV 82963 17132
    5 40% @ 100 keV 82932 17005
    下载: 导出CSV 
    | 显示表格

    穿过模体的光子由所设能量阈值被划入不同的能量通道,从而得到高低能投影数据。为投影数据添加泊松噪声后,进行双能重建[14-15]

    图  5  高斯模糊后的系统能谱图
    Figure  5.  Energy spectrum of the system after Gaussian blurring

    上述实验组的成像结果见表2。不同能量分辨率下的重建结果标准差曲线如图6所示。

    表  2  能量分辨率实验成像结果表
    Table  2.  Imaging results of energy resolution experiment

    能量
    分辨率
    等效原子
    序数
    等效原子
    序数标准差
    电子密度 电子密
    度标准差
    1 0% @
    100 keV
    19.538647 0.268186 1.518764 0.039321
    2 10% @
    100 keV
    19.549584 0.291602 1.517544 0.042370
    3 20% @
    100 keV
    19.544331 0.295689 1.518037 0.042150
    4 30% @
    100 keV
    19.544904 0.313434 1.518503 0.044175
    5 40% @
    100 keV
    19.570808 0.350212 1.515818 0.048496
    下载: 导出CSV 
    | 显示表格
    图  6  不同能量分辨率下的成像结果对比
    Figure  6.  Comparison of imaging results at different energy resolutions

    上述结果表明,随着探测器能量分辨率的提高,成像结果受噪声影响程度下降,等效原子序数相较电子密度而言,受噪声影响程度更大。不难分析,光子计数探测器能量分辨率越低,表示其对目标能区光子的统计区域越大,这会使得能谱重叠范围增加,不利于能量分解。但研究发现,能量分辨率在30%甚至40%的情况下,密度和原子序数的标准差变化并不十分明显。

    图7是不同探测器能量分辨率的重建结果对比图,电子密度图的灰度显示窗口为[1.44 1.60],等效原子序数图的灰度显示窗口为[18.3 20.7]。图8为同一排像素灰度曲线比较。

    图  7  不同能量分辨率的重建结果对比
    Figure  7.  Comparison of reconstruction results at different energy resolutions
    图  8  重建结果灰度比较
    Figure  8.  Comparison of reconstruction results in gray scale

    本部分考察的是高低能能谱重合程度对于成像的影响,在探测器能量分辨率相同的条件下,通过选取不同能量阈值,改变能量范围,可以得到重合度不一的高低能能谱,重合度的定义为:

    $$ {\text{重合度}} = \frac{\text{能谱重叠部分面积}}{\text{全能谱范围面积}}。 $$ (12)

    探测器能量分辨率选用30% @ 100 keV,具体对照实验见表3。各实验组能谱对比见图9

    表  3  能量范围实验对照表
    Table  3.  Experimental comparison table of energy range
    编号 低能范围EL 高能范围EH 重合度Overlap_ratio 低能段光子数 高能段光子数
    1 0~70 keV 110~160 keV 0.0025 74978 4419
    2 0~80 keV 100~160 keV 0.0134 82323 7438
    3 0~80 keV 80~160 keV 0.0648 82963 17132
    4 0~100 keV 60~160 keV 0.1526 62561 37533
    下载: 导出CSV 
    | 显示表格
    图  9  能谱对比
    Figure  9.  Comparison of energy spectrum

    实验结果见表4图10为重建结果的均值变化。图11为重建切片图,电子密度图的灰度显示窗口为[1.41 1.61],等效原子序数图的灰度显示窗口为[18.6 20.5]。图12为同一排像素的灰度比较。

    表  4  能量范围实验结果
    Table  4.  Results of energy range experiment
    编号 重合度Overlap_ratio 等效原子序数 等效原子序数标准差 电子密度 电子密度标准差
    1 0.0025 19.550129 0.316059 1.517544 0.049246
    2 0.0134 19.551358 0.298083 1.517176 0.043675
    3 0.0648 19.544904 0.313434 1.518503 0.044175
    4 0.1526 19.554059 0.409670 1.517345 0.055390
    下载: 导出CSV 
    | 显示表格
    图  10  不同能谱重合度下的成像结果对比
    Figure  10.  Comparison of imaging results at different energy overlap-ratios
    图  11  不同能量范围的重建结果对比
    Figure  11.  Comparison of reconstruction results within different energy ranges
    图  12  重建结果灰度比较
    Figure  12.  Comparison of reconstruction results in gray scale

    从结果可以看出,设置能谱阈值改变能谱范围,使得高低能能谱重合度发生改变,会对成像质量造成影响。盲目减小高低能能谱重合度,并不一定使重建结果更好,因为当光子数减少时,噪声会增大。如何平衡能谱重合度和噪声是下一步的研究工作。

    光子计数探测器作为多能谱成像的关键器件,成为研究能谱成像的一个重要内容。本文通过实验,模拟光子计数探测器在不同能量分辨率、不同能谱阈值和能量范围下的成像实验。通过比较重建的等效原子序数图和电子密度图的标准差,评价成像结果的好坏,得到上述因素对光子计数X射线CT成像精度的影响规律。

    (1)针对安检CT中常用的160 kV射线源能量,光子计数探测器能量分辨率越高,成像效果越好,但是能量分辨率对于材料的分辨差异并不显著。

    (2)在探测器能量分辨率确定的情况下,恰当选取能谱阈值对于成像很有帮助。通过设置合适的阈值,使高低能能谱重合度减小,往往可以得到更好的成像结果。但是随着能谱变窄、重合度下降,噪声也会加大,需要平衡这两种因素,否则更低的能谱重合度也有可能带来更差的成像结果。

    本文的研究成果将有助于能谱CT系统的总体设计,如从双能成像材料分辨的角度,并不一定过高追求能量分辨率,这对于能量成像CT系统的硬件选型具有积极的指导意义。

  • 图  1   经换算后置于屏幕上的实物比例尺

    Figure  1.   Physical scale on the screen after conversion

    图  2   肋软骨的划分

    Figure  2.   Division of costal cartilage

    图  3   利用5 cm和10 cm实物比例尺在胶片上打印肋软骨真实大小影像

    Figure  3.   Print the true size image of costal cartilage on filsm with 5 cm and 10 cm physical scales

    图  4   胶片验证

    (a)10 cm和(b)5 cm真实大小打印:胶片所示比例尺标注值均和直尺的真实值相同。

    Figure  4.   Film verification

    图  5   在胶片上测量右侧第6肋软骨胸骨端厚度(矢冠轴3图以十字线同步定位)

    Figure  5.   The measure the thickness of the sternal end of the sixth costal cartilage on the film

    图  6   右侧第6肋软骨胸骨端术中实体测量厚度

    Figure  6.   The measured thickness of the sternal end of the sixth costal cartilage on the right during operation

    表  1   肋软骨6个相同位置胶片测量值和人体测量值差异统计

    Table  1   Difference statistics of film measurement value and human measurement value at five same positions of costal cartilage

    分类胶片测量值(均数±标准差)统计检验
    实体胶片tP
    肋软骨升部长度/cm  77.46±13.4677.84±13.45-0.070.94
    肋软骨横部长度/cm  33.44±5.4933.24±5.850.090.93
    升部横部连接处宽度/cm15.83±1.9415.80±2.240.030.98
    升部横部连接处厚度/cm5.95±1.775.96±1.77-0.010.99
    肋软骨胸骨端厚度/cm 12.05±2.5012.02±2.490.030.98
    肋软骨肋骨端厚度/cm 8.48±1.118.49±1.02-0.040.97
    下载: 导出CSV
  • [1]

    VON G H, FISCHER H, EPPSSTEIN R, et al. Framework fabrication with rib eartilage in partial and total nasal reconstruction[J]. Facial Plastic Surgery, 2014, 30(3): 306−317. DOI: 10.1055/s-0034-1376876.

    [2] 周佳宇, 林琳, 蒋海越, 等. 个性化肋软骨采集及其耳支架雕刻[J]. 中华耳科学杂志, 2013,11(4): 502−505. DOI: 10.3969/j.issn.1672-2922.2013.04.008.

    ZHOU J Y, LIN L, JIANG H Y, et al. Individualized fabrication and application of autogenous cartilage framework in auricular reconstruction[J]. Chinese Journal of Otology, 2013, 11(4): 502−505. DOI: 10.3969/j.issn.1672-2922.2013.04.008. (in Chinese).

    [3] 王少健, 陈娇, 丁忠祥, 等. 螺旋CT三维后处理技术在肋软骨骨折诊断中的价值[J]. 中华创伤杂志2020, 36(1): 78-81. DOI: 10.3760/cma.j.issn.1001-8-50.2020.01.016.

    WANG S J, CHEN J, DING Z X, et al. The value of spiral CT three-dimensional post-processing technique in the diagnosis of costal cartilage fracture[J]. Chinese Journal of Trauma, 2020, 36(1): 78-81. DOI:10.3760/cma.j.issn.1001-8-50.2020.01.016. (in Chinese).

    [4] 何乐人, 杨庆华, 蒋海越, 等. 小耳畸形八大处法耳廓再造术−团队10年经验[J]. 中华整形外科杂志, 2017,33(8): 30−35. DOI: 10.3760/cma.j.issn.1009-4598.2017.s1.007.

    HE L R, YANG Q H, JIANG H Y, et al. Ear reconstruction with Ba-Da-Chu method: Ten-year experiences of our team[J]. Chinese Journal of Plastic Surgery, 2017, 33(8): 30−35. DOI: 10.3760/cma.j.issn.1009-4598.2017.s1.007. (in Chinese).

    [5] 毛小明, 蒋廷宠. 低场MR对肋软骨损伤的检查价值[J]. 实用放射学杂志, 2011,27(4): 644−645. DOI: 10.3969/j.issn.1002-1671.2011.04.050.

    MAO X M, JIANG T C. Costal cartilage injury: Evaluation by low-field magnetic resonance imaging[J]. Journal of Practical Radiology, 2011, 27(4): 644−645. DOI: 10.3969/j.issn.1002-1671.2011.04.050. (in Chinese).

    [6] 王永振, 何乐人, 刘雳, 等. 多层螺旋CT扫描及三维重建技术在肋软骨组织量评估中的应用研究[J]. 中国修复重建外科杂志, 2014,28(10): 1266−1269. DOI: 10.7507/1002-1892.20140274.

    WANG Y Z, HE L R, LIU L, et al. Evaluationof multi-slice spiral CT scanand image reconstruction technology ineetimating costal cartilage volume[J]. Chinese Journal of Reparative and Reconstructive Surgery, 2014, 28(10): 1266−1269. DOI: 10.7507/1002-1892.20140274. (in Chinese).

    [7] 刘雳, 李博, 曹捷, 等. 儿童肋软骨MSCT扫描后三种三维成像技术的比较[J]. 中华整形外科杂志, 2017,33(5): 363−366. DOI: 10.3760/cma.j.issn.1009-4598.2017.05.009.

    LIU L, LI B, CAO J, et al. Comparison of three 3D imaging techniques in children with costal cartilage MSCT scan[J]. Chinese Journal of Plastic Surgery, 2017, 33(5): 363−366. DOI: 10.3760/cma.j.issn.1009-4598.2017.05.009. (in Chinese).

    [8] 魏忠荣, 陈涛, 戴维思, 等. 多层螺旋CT及Cardiac 1预设重建模式对肋软骨骨折的诊断价值[J]. 实用放射学杂志, 2020,36(3): 472−474, 490. DOI: 10.3969/j.issn.1002-1671.2020.03.033.

    WEI Z R, CHEN T, DAI W S, et al. The diagnostic value of MSCT and the preset reconstruction model of cardiac 1 in costal cartilage fractures[J]. Journal of Practical Radiology, 2020, 36(3): 472−474, 490. DOI: 10.3969/j.issn.1002-1671.2020.03.033. (in Chinese).

    [9] 路涛, 蒲红, 杨诚, 等. 多层螺旋CT容积重建技术在儿童鸡胸中的应用价值[J]. 实用放射学杂志, 2016,32(7): 1088−1091. DOI: 10.3969/j.issn.1002-1671.2016.07.025.

    LU T, PU H, YANG C, et al. Value of volume rendering technique of MSCT in the diagnosis of pediatric pectus carinatum[J]. Journal of Practical Radiology, 2016, 32(7): 1088−1091. DOI: 10.3969/j.issn.1002-1671.2016.07.025. (in Chinese).

    [10] 王立振, 李秀涛, 吕涵青. 多层螺旋CT三维重建在肋骨及肋软骨的应用体会[J]. 中国CT和MRI杂志, 2018,16(2): 124−126. DOI: 10.3696/j.issn.1672-5131.2018.03.039.

    WANG L Z, LI X T, LV H Q. Multislice spiral CT three-dimensional reconstruction of bone in rib and costal cartilage experience[J]. Chinese Journal of CT and MRI, 2018, 16(2): 124−126. DOI: 10.3696/j.issn.1672-5131.2018.03.039. (in Chinese).

    [11] 周晨钟. CR系统在四肢床旁片应用价值的研究[J]. 临床和实验医学杂志, 2012,11(1): 63−64. DOI: 10.3969/j.issn.1671-4695.2012.01.032.

    ZHOU C Z. Study on the application value of CR system in bedside films of limbs[J]. Journal of Clinical and Experimental Medicine, 2012, 11(1): 63−64. DOI: 10.3969/j.issn.1671-4695.2012.01.032. (in Chinese).

    [12] 宋玉全, 何志诚, 伍筱梅, 等. 斜射线摄影对直接数字化X线摄影系统影像质量的影响评价[J]. 中华放射学杂志, 2005,39(10): 1084−1087. DOI: 10.3760/j.issn:1005-1201.2005.10.017.

    SONG Y Q, HE Z C, WU X M, et al. Effect of oblique ray on image quality of directdigitized radiography system[J]. Chinese Journal of Radiology, 2005, 39(10): 1084−1087. DOI: 10.3760/j.issn:1005-1201.2005.10.017. (in Chinese).

    [13] 汤婷, 张颖佳, 王继华, 等. 多层螺旋CT容积再现技术在肋软骨切取术中的应用[J]. 中华整形外科杂志, 2017,33(1): 57−60. DOI: 10.3760/cma.j.issn.1009-4598.2017.01.014.

    TANG T, ZHANG Y J, WANG J H, et al. Application of multi-slice spiral CT volume reconstruction technique in costal cartilage resection[J]. Chinese Journal of Plastic Surgery, 2017, 33(1): 57−60. DOI: 10.3760/cma.j.issn.1009-4598.2017.01.014. (in Chinese).

    [14] 徐遄, 吴勇, 贾克斌, 等. 数字医学影像与通信的重要标准−DICOM标准[J]. 中国医学影像技术, 2002,18(9): 952−954. doi: 10.13929/j.1003-3289.2002.09.058
    [15] 邢文珊, 钱瑾, 胡金天, 等. 肋软骨等比例打印在耳廓支架构建中的应用[J]. 中华整形外科杂志, 2018,(3): 206−209. DOI: 10.3760/cam.j.issn.1009-4598.2018.03.010.

    XING W S, QIAN J, HU J T, et al. The application of a 2D printing of rib cartilage in personalized ear framework fabrication[J]. Chinese Journal of Plastic Surgery, 2018, (3): 206−209. DOI: 10.3760/cam.j.issn.1009-4598.2018.03.010. (in Chinese).

    [16] 苏扬, 刘静, 王江玥. 多层螺旋CT骨三维重建在肋骨及肋软骨骨折的诊断价值[J]. 中国CT和MRI杂志, 2016,14(7): 124−126. DOI: 10.3696/j.issn.1672-5131.2016.07.041.

    SU Y, LIU J, WANG J Y. The diagnostic value of multi-slice spiral CT 3D bone reconstruction on rib and rib cartilage fractures[J]. Chinese Journal of CT and MRI, 2016, 14(7): 124−126. DOI: 10.3696/j.issn.1672-5131.2016.07.041. (in Chinese).

    [17]

    SUNWOO W, CHOL H, KIM D, et al. Characteristics of rib cartilage al calcification in Asian[J]. JAMA Facial Plastic Surgery, 2014, 16(2): 102−106. DOI: 10.1001/jamafacial.2013.2031.

  • 期刊类型引用(2)

    1. 李梦雨,段诗苗,张雷,周咏春. 提高肺SBRT精度的多窗位动态组合诊疗手段. 中国CT和MRI杂志. 2024(04): 63-65 . 百度学术
    2. 李玉辉,刘龙进,徐乐意,刘远高. 胸部CT不同图像算法对人工智能辅助诊断软件肺结节检出效果的影响研究. 中国医学装备. 2023(12): 10-14 . 百度学术

    其他类型引用(3)

图(6)  /  表(1)
计量
  • 文章访问数:  412
  • HTML全文浏览量:  204
  • PDF下载量:  302
  • 被引次数: 5
出版历程
  • 收稿日期:  2022-07-09
  • 修回日期:  2022-10-01
  • 录用日期:  2022-10-02
  • 网络出版日期:  2022-10-20
  • 发布日期:  2023-07-30

目录

/

返回文章
返回
x 关闭 永久关闭