ISSN 1004-4140
CN 11-3017/P

不可切除性胰腺癌术中放疗后肿瘤负荷变化与术后早期应答时间及照射剂量间的关系

阳宁静, 周鹏, 任静, 张明仪, 阴骏, 叶怡宏

阳宁静, 周鹏, 任静, 等. 不可切除性胰腺癌术中放疗后肿瘤负荷变化与术后早期应答时间及照射剂量间的关系[J]. CT理论与应用研究, 2023, 32(6): 783-791. DOI: 10.15953/j.ctta.2022.180.
引用本文: 阳宁静, 周鹏, 任静, 等. 不可切除性胰腺癌术中放疗后肿瘤负荷变化与术后早期应答时间及照射剂量间的关系[J]. CT理论与应用研究, 2023, 32(6): 783-791. DOI: 10.15953/j.ctta.2022.180.
YANG N J, ZHOU P, REN J, et al. Relationship between Tumor Burden and Early Response Time and Radiation Dose after Intraoperative Radiotherapy for Unresectable Pancreatic Cancer[J]. CT Theory and Applications, 2023, 32(6): 783-791. DOI: 10.15953/j.ctta.2022.180. (in Chinese).
Citation: YANG N J, ZHOU P, REN J, et al. Relationship between Tumor Burden and Early Response Time and Radiation Dose after Intraoperative Radiotherapy for Unresectable Pancreatic Cancer[J]. CT Theory and Applications, 2023, 32(6): 783-791. DOI: 10.15953/j.ctta.2022.180. (in Chinese).

不可切除性胰腺癌术中放疗后肿瘤负荷变化与术后早期应答时间及照射剂量间的关系

详细信息
    作者简介:

    阳宁静: 女,四川省肿瘤医院/电子科技大学附属肿瘤医院影像科副主任医师,主要从事腹部影像诊断,E-mail:potein@126.com

    通讯作者:

    周鹏: 男,四川省肿瘤医院影像科副主任、主任医师、硕士生导师,主要从事影像诊断研究,E-mail:penghyzhou@126.com

  • 中图分类号: R  814;R  445;R  735.9

Relationship between Tumor Burden and Early Response Time and Radiation Dose after Intraoperative Radiotherapy for Unresectable Pancreatic Cancer

  • 摘要:

    目的:探讨影像参数评价不可切除胰腺癌术中放疗(IORT)后60 d内肿瘤负荷的变化及与IORT照射剂量的相关性。方法:回顾性纳入2017年4月至2020年7月的四川省肿瘤医院经IORT治疗的不可切除胰腺癌32例,记录IORT前7 d及IORT后60 d内肿瘤影像参数:最长径(LA)、短径(SA)、最大横截面积(A)及各参数值绝对值变化(Δ)及变化率(Δ%),区分不同肿瘤负荷组(缩小/稳定/增大),分析各参数与IORT照射剂量及肿瘤应答时间的关系。结果:不可切除胰腺癌IORT后LA低于IORT前,差异有统计学意义;不可切除胰腺癌IORT后SA和A均低于IORT前,差异无统计学意义。基于ΔLA区分不同肿瘤负荷组:缩小组、稳定组及增大组,其IORT后对应肿瘤应答时间分别为(39.57±11.77)d、(38.08±12.87)d、(41.17±10.42)d。3组患者IORT前肿瘤的LA、SA、A比较,差异均无统计学意义。3组患者IORT后肿瘤LA、SA、A比较,差异均有统计学意义。3组患者IORT前后ΔLA均有统计学意义。不可切除胰腺癌ΔLA与IORT剂量水平呈中等水平负相关(r=-0.47)。稳定组ΔLA与增大组ΔA与IORT剂量呈中等及高度相关(r=0.66 vs. 0.90)。稳定组的ΔSA与应答时间呈中等负相关关系(r=-0.68);余组的LA、SA及A变化幅度均与应答时间无明显相关。结论:ΔLA能评价不可切除胰腺癌IORT后60 d内肿瘤负荷变化;其肿瘤负荷改变与IORT局部照射剂量相关,但不受应答时间影响。

    Abstract:

    Objective: To investigate the correlation between changes in tumor burden and the dose of intraoperative radiation therapy (IORT) for unresectable pancreatic cancer within 60 days of treatment evaluated using imaging parameters. Methods: A total of 32 cases of unrespectable pancreatic cancer treated with IORT at the Sichuan Cancer Hospital from April 2017 to July 2020 were retrospectively included. The imaging parameters of the tumor were recorded 7 days before IORT and 60 days after IORT: the longest axis (LA), shortest axis (SA), largest cross-sectional area (A), absolute value changes of each parameter (Δ), and change rate (Δ%). Different tumor load groups (shrinking/stabilizing/increasing) were differentiated, and the relationship between each parameter, IORT radiation dose, and tumor response time was analyzed. Results: The LA of unresectable pancreatic cancer after IORT was lower than that before IORT, with significant differences observed. The SA and A values of unresectable pancreatic cancer after IORT were lower than those before IORT, with no statistical significance observed. Based on ΔLA of the pancreatic tumor, the three groups, shrinkage, stability, and enlargement, were divided, with a corresponding tumor response time of (39.57±11.77) d, (38.08±12.87) d, (41.17±42) d, respectively. There were no significant differences in LA, SA, and A among the three groups before IORT, while significant differences were observed in LA, SA, and A after IORT. The ΔLA of the three groups was statistically significant before and after IORT. There was a moderate negative correlation between ΔLA and IORT dose levels in unrespectable pancreatic cancer (r=−0.47,). There was a moderate and high correlation between ΔLA and IORT dose in the stable group and ΔA and IORT dose in the enlargement group, respectively (r=0.66 vs. 0.90). There was no significant correlation between the response time and imaging parameters in these groups, except for a moderate negative correlation between ΔSA and response time in the stability group (r=−0.68). Conclusion: ΔLA can be used to evaluate changes in tumor load within 60 days of IORT for unresectable pancreatic cancer. The efficacy of pancreatic cancer could be correlated with the IORT irradiation dose, whereas the tumor burden could not be affected by the tumor response time.

  • 随着年龄的增长,腰椎退行性变及椎间盘病变日趋增多,CT检查能及时发现诊断腰椎病变并能随访治疗效果,但CT检查辐射问题一直为人们所关注,随着患者受辐射剂量的增加,癌症的发生概率会增大,腰椎CT扫描范围包括性腺,而人体性腺对辐射最敏感,所以开展低剂量腰椎CT检查非常必要。

    以往研究均是通过降低管电压或者降低管电流来降低辐射剂量,因腰椎体层较厚,降低管电压或管电流会导致图像噪声增加。本文为解决腰椎CT高辐射剂量及图像噪声偏高的问题,采用最新的能谱纯化技术结合高级模拟迭代重建(ADMIRE)技术,探讨如何更好的优化腰椎CT检查的图像质量和降低辐射剂量。

    选取2021年8月至2022年5月因腰痛来我院行腰椎CT检查的患者,在检查前计算患者的体质量指数(bodymassindex,BMI),BMI=体重(kg)/身高(m)2。纳入年龄在25~65岁,BMI在18.5~25 kg/m2的患者,排除有腰椎手术史和腰椎畸形及有椎体金属植入物的患者,共收集88例。对照组(A组)、试验组(B组)每组44例。

    A组与B组平均年龄分别为(45.9±12.1)岁和(47.2±13.8)岁。两组间年龄差异无统计学意义,A组与B组平均BMI分别为(20.1±2.89)kg/m和(21.40±3.50)kg/m

    采用德国SOMATOM Force第3代双源CT,扫描范围从胸12椎体至骶1椎体。扫描参数:对照组(A组)管电压120 kV,参考管电流350 mAs;试验组(B组)管电压Sn 150 kV,参考管电流350 mAs,其他扫描参数均一致。

    重建采用高级模拟迭代重建算法(ADMIRE),重建等级3级,重建薄层图像,层厚1 mm,层间距0.60 mm,软组织窗采用软组织算法,卷积核Br40,骨窗采用骨算法,卷积核Br64,重建图像窗宽,窗位分别为350 HU和50 HU(软组织窗)、2500 HU和800 HU(骨窗)。所有图像重建完成后自动发至西门子Syngovia VB20A后处理工作站。

    由1名主管技师从工作站中取L3椎体正中层面,在软组织窗上测量腰大肌与竖脊肌的CT值和噪声,腰大肌的噪声为SD1,竖脊肌的噪声为SD2,噪声值用对应所测的标准差表示,并计算信噪比(SNR):

    $$ {\rm{SNR}}=腰大肌\;{\rm{CT}}\;值/{\rm{SD}}1。$$ (1)

    由3名副主任及以上诊断医师双盲法进行评分。评价L3/4层面椎间盘、椎间孔、黄韧带、硬膜囊及小关节图像质量。评价标准[1]:2分(软组织结构清晰,其边缘清楚,无伪影,且诊断明确);1分(软组织结构清晰,边缘欠清,有轻度伪影,但尚可诊断);0分(软组织结构不清,边缘模糊,伪影较重,不能进行诊断)。

    统计设备记录的容积CT剂量指数(CT dose index volumes,CTDIvol)及剂量长度乘积(dose length product,DLP),并计算有效辐射剂量(effective dose,ED)[2],计算公式:

    $$ {\rm{ED}}={\rm{DLP}}\times k(k=0.011\;{\rm{mSv}}\cdot{\rm{mGy}}\cdot{\rm{cm}})。$$ (2)

    采用SPSS 26.0软件对数据进行统计学分析。连续性数据非正态分布数据两组间比较采用Mann-Whitney U检验,用中位数及四分位数(M(Q25,Q75))表示。双侧检验,以P<0.05为差异有统计学意义。

    采用组内相关系数(intraclass correlation coefficient,ICC)对3位诊断医师的评分结果一致性进行分析。ICC介于0和1之间,ICC大于0.75表示一致性较好。

    两组图像腰大肌的CT值、竖脊肌的CT值和噪声(SD2)、SNR均存在统计学差异,而腰大肌的噪声(SD1)不具有统计学差异(表1);图1为120 kV轴位上噪声和CT值测量及矢状位重组图,图2为Sn 150 kV下的轴位上噪声和CT值测量测量及矢状位重组图。

    表  1  A组和B组图像质量客观评价表
    Table  1.  Objective evaluation of image quality in groups A and B
    项目 组别统计检验
    A组B组ZP
       腰大肌/HU53.00(48.70~56.00)47.90(43.70~51.00)2.7410.016
       SD15.73(4.83~6.83)5.09(4.69~5.24)1.9040.057
       竖脊肌/HU52.00(46.2~55.00)43.50(38.20~51)3.511<0.001
       SD25.41(5.27~5.98)4.56(3.62~5.63)3.964<0.001
       SNR9.12(7.88~10.51)9.86(7.95~10.02)-0.693 0.488
    下载: 导出CSV 
    | 显示表格
    图  1  管电压120 kV下CT值和噪声测量及矢状位重组图(重组层厚1 mm、间隔0.6 mm)
    Figure  1.  CT value, noise measurement, and sagittal position recombination at 120 kV tube voltage (recombination layer thickness 1 mm, interval 0.6 mm)
    图  2  管电压Sn 150 kV下CT值和噪声测量及矢状位重组图(重组层厚1 mm、间隔0.6 mm)
    Figure  2.  CT value, noise measurement, and sagittal position recombination at tube voltage Sn 150 kV (recombination layer thickness 1 mm, interval 0.6 mm)

    3位医师对椎间盘、椎间孔、黄韧带、硬膜囊及小关节及整体图像质量评价均无统计学差异(表2),说明两组图像质量医师主观评价无差异,且均能符合医师诊断要求。

    表  2  3位诊断医师的主观评分统计分析表
    Table  2.  Statistical analysis of the subjective scores from the three doctors interpreting the computed tomography images
    指标组别P
    A组B组
    椎间盘   2.00±0.002.00±0.00>0.999
    椎间孔   1.98±0.151.98±0.15 0.156
    黄韧带   1.95±0.212.00±0.00 0.562
    硬膜囊   1.98±0.151.95±0.21>0.999
    小关节图像 2.00±0.002.00±0.00 0.320
    整体图像质量2.00±0.002.00±0.00>0.999
    下载: 导出CSV 
    | 显示表格

    两组辐射剂量DLP、ED有统计学差异,两组辐射剂量差异明显,B组DLP值比A组降低了32.27%,B组ED值比A组降低了30.31%(表3)。

    表  3  A组和B组辐射剂量统计表
    Table  3.  Radiation dose in groups A and B
    项目组别统计检验
    A组B组ZP
       mAs333.00(300.00~362.00)237.50(222.00~261.00)7.885<0.001
       CTDIvol14.75(13.65~16.00)6.57(5.20~7.23)8.015<0.001
       DLP413.60(351.00~425.50)280.13(230.89~327.20)6.946<0.001
       ED4.55(3.86~4.68)3.08(2.54~3.60)6.946<0.001
    下载: 导出CSV 
    | 显示表格

    腰椎因体层相对较厚,需要高管电压来增加X线的穿透力,高管电流来降低图像的噪声,造成腰椎CT辐射剂量往往较高,以往研究都是通过降低管电流来降低辐射剂量。随着设备和技术的进步,众多新的降低辐射剂量的技术出现,如:低管电压[3-4]、自动管电流[5-6]、高级迭代重建算法[7]、能谱纯化[8]等,这些技术为我们开展低剂量CT提供了条件。

    本研究B组管电压是用能谱纯化Sn 150 kV,而A组管电压是用120 kV,统计结果显示B组的辐射剂量低于A组30.31%。因为A组120 kV的X线球管是用铜和铝滤过,Sn 150 kV的X线球管是用能谱纯化技术的锡滤过,锡的原子序数比铜和铝高,锡滤过板能过滤掉X线球管的低能级射线,提高射线能量,而对人体产生辐射的主要是低能级软射线,低能级软射线以光电效应为主,大部分被人体吸收产生辐射。能谱纯化技术只保留了对人体成像有用的高能级射线,高能级射线会穿过人体相对辐射较少,所以B组辐射剂量低于A组,多学者也证实了这一说法[9-13]

    客观评价中A组肌肉的噪声要高于B组,腰大肌的噪声两组之间无统计学差异,而竖脊肌的噪声两组之间有统计学差异,此结果说明射线能量和图像噪声成正相关,也证实了Sn 150 kV的穿透力较120 kV的好。因竖脊肌处于腰大肌的下层,射线先穿过腰大肌再到竖脊肌,射线能量会因组织的阻挡发生衰减,A组射线的能量到达竖脊肌时比B组衰减更多,因衰减后的能量差异造成了噪声值的差异,故造成了两组不同肌肉之间统计学结果的差异。

    沈梓璇等[14]论述了120 kVp管电压所获得的腰椎图像质量评分以及信噪比皆较高,但辐射剂量也较大的观点。本文为了解决这一问题,首次采用Sn 150 kV用于腰椎CT检查,主观评价结果显示,3位观察者的ICC为0.829,表示为两组图像主观评价一致性较好,说明两组图像质量均满足诊断要求,主客观评价结果均证实了Sn 150 kV用于腰椎CT检查是可行的。王帅等[15]也证实Sn 150 kV能用于全腹部CT检查,且辐射剂量较低,与本文研究结果一致。

    高级模拟迭代重建,是将原始图像中的原始数据噪声投射到图像中,得到的图像是多次迭代重建后的组合,再将原始数据进行准确的图像校正,对原始数据域进行去噪及去除伪影,最后进行图像域的校正,反复迭代来降低噪声,图像空间分辨率不受影响。客观评价表中A组和B组图像的噪声均值都处于10以下,证实了高级模拟迭代重建的降噪能力。顾海峰等[16]和Schlunk等[17]也证明了迭代重建能降低噪声保证图像质量满足诊断需求。

    综上所述,采用能谱纯化Sn 150 kV结合ADMIRE,不但能有效减低辐射剂量,还可保证优质的图像质量,值得在成人腰椎CT中推广使用。

  • 图  1   男,64岁,胰头腺癌(箭)CT门静脉期

    Figure  1.   64-year-old male, hepatic phase on CT

    图  2   女,60岁,胰体尾腺癌CT门静脉期

    Figure  2.   60-year-old female, hepatic phase on CT

    表  1   32例不可切除胰腺癌IORT术前患者一般情况及肿瘤影像资料

    Table  1   General information and tumor imaging data of 32 patients with unresectable pancreatic cancer before IORT

    项目数值项目数值
      年龄/(岁,x±s(范围))60±9(47~81)  肿瘤实质/(例,%)
      性别(男/女(n))24/8    伴囊变1(3.13)
      肿瘤长径/(cm,x±s(范围))4.54±1.30(2.40~7.90)    伴坏死19(59.38)
      肿瘤部位/(例,%)    实性12(37.50)
        胰头7(21.88)  影像学检查/(例,%)
        钩突3(9.38)    IORT术前后均MRI3(9.38)
        胰头+钩突1(3.13)    IORT术前后均CT16(50.00)
        胰颈2(6.25)    IORT术前MRI术后CT13(40.63)
        胰颈体10(31.25)  主胰管扩张/(例,%)26(81.25)
        胰体4(12.50)  胰尾萎缩/(例,%)19(59.38)
        胰体尾2(6.25)    轻度萎缩4(12.50)
        胰尾3(9.38)    明显萎缩15(46.88)
    下载: 导出CSV

    表  2   32例不可切除胰腺癌患者IORT后影像参数对比

    Table  2   Comparisons of imaging parameters post-IORT in 32 patients with unresectable pancreatic cancer

    时间点参数对比统计检验
    IORT前IORT后统计量P
    LA/cm4.54±1.303.99±1.483.20.00a
    SA/cm3.00(2.50,4.00) 2.80(1.98,3.68) 0.12b
    A/mm2 841.40(480.90,1110.00)775.80(416.10,901.90)0.12b
    注:a-配对t检验;b-Wilcoxon符号秩检验,Graphpad prism无统计值;非正态分布计量资料用M(Q1,Q3)表示。
    下载: 导出CSV

    表  3   IORT肿瘤负荷3组间患者基本情况及影像参数比较

    Table  3   Comparisons of patients' basic information and imaging parameters among the three IORT tumor burden groups

    组别IORT前IORT后统计量P
    缩小组(n=14)LA/cm4.34±1.223.14±1.075.160.00d
    SA/cm3.00±0.932.27±0.835.050.00d
    A/mm2 701.20±365.50506.70±283.602.620.02d
    稳定组(n=12)LA/cm5.01±1.474.61±1.582.290.04d
    SA/cm2.95(2.58,4.00)3.10(2.53,4.00)0.69e
    A/mm2 952.60(644.10,1305.00)811.70(576.6,1057)0.58d
    增大组(n=6)LA/cm4.08±0.994.75±1.235.820.00d
    SA/cm3.38±1.103.97±1.481.480.20d
    A/mm2 927.40(517.40,1538.00)1295.38(724.80,2135.00)0.44d
    统计量    LA/cm1.34a5.32a
    SA/cm0.35a9.06c
    A/mm2 4.37c7.60c
    P      LA/cm0.280.01
    SA/cm0.710.01
    A/mm2 0.110.02
    注:a-F值;b-$\chi^2 $值;c-Kruskal-Wallis检验;d-配对t检验;e-Wilcoxon符号秩检验,Graphpad prism无检验值。两两比较:缩小组LA与稳定组LA在IORT后同期比较,缩小组LA与增大组LA在IORT后同期比较,缩小组SA与增大组SA在IORT后同期比较,均P<0.05。
    下载: 导出CSV

    表  4   不可切除胰腺癌IORT后肿瘤负荷变化的应答时间(天)

    Table  4   Response time to tumor burden changes after IORT for unresectable pancreatic cancer (day)

    肿瘤负荷(LA)n(%)时间范围
    (Post-IORT)
    中位时间
    (Post-IORT)
    最早时间
    (Post-IORT)
    缩小14(43.75)15~533915
    稳定12(37.50)18~603518
    增大 6(18.75)26~534226
    下载: 导出CSV

    表  5   不可切除胰腺癌IORT后肿瘤负荷变化与应答时间相关性(天)

    Table  5   Correlation of tumor burden changes and response time after IORT for unresectable pancreatic cancer (day)

    组别LA vs.应答时间($ \bar{x}\pm s $)(范围)ΔLA($ \bar{x}\pm s $)统计检验
    rP
    缩小组 (n=14)LA39.57±11.77(15~53)-1.21±0.880.200.50
    SA-0.73±0.540.160.59
    A -194.54±277.910.270.34
    稳定组 (n=12)LA38.08±12.87(18~60)-0.40±0.60-0.180.58
    SA0.07±0.36-0.680.01
    A -182.73±630.280.170.61
    增大组(n=6) LA41.17±10.42(26-53) 0.67±0.280.790.06
    SA0.58±0.960.400.43
    A 217.32±453.19-0.060.92
    下载: 导出CSV

    表  6   不同肿瘤负荷组影像参数变化

    Table  6   Changes of imaging parameters in different tumor burden groups

    组别ΔLA/%ΔLA/cmΔSA/%ΔSA/cmΔA/%ΔA/mm2
    缩小组(n=14)-27.53 -1.21-5.05-0.09 -0.68373.33
    稳定组(n=12)-8.51-0.40 3.12 0.03-13.67383.87
    增大组(n=6) 16.14 0.67-25.02 -0.82-22.01806.57
    下载: 导出CSV

    表  7   32例胰腺肿瘤影像参数变化与IORT放射剂量(Dose)的相关性

    Table  7   Correlation between the changes of imaging parameters and IORT radiation dose of 32 patients with pancreatic cancers

    相关系数及其检验剂量 vs.ΔA%剂量 vs.ΔA剂量 vs.ΔLA%剂量 vs.ΔLA剂量 vs.ΔSA%剂量 vs.ΔSA
    r0.130.060.400.39-0.26 -0.21
    P0.470.750.020.030.150.25
    下载: 导出CSV

    表  8   肿瘤负荷3组内变化与IORT剂量(Dose)的相关性

    Table  8   Correlation between the changes of imaging parameters and IORT dose within the tumor burden groups

    组别相关系数
    及其检验
    剂量 vs.ΔLA/%剂量 vs.ΔLA剂量 vs.ΔSA/%剂量 vs.ΔSA剂量 vs.ΔA/%剂量 vs.ΔA
    缩小组
    n=14)
    r0.450.36-0.39 -0.29 0.06-0.19
    P0.110.210.170.310.830.52
    稳定组
    n=12)
    r0.570.66-0.31 -0.10 0.160.30
    P0.050.020.330.750.610.35
    增大组
    n=6) 
    r0.200.260.14-0.12 0.170.90
    P0.710.610.800.820.750.01
    下载: 导出CSV
  • [1]

    ELASHWAH A, ALSUHAIBANI A, ALZAHRANI A, et al. The use of intraoperative radiation therapy (IORT) in multimodal management of cancer patients: A single-institution experience[J]. The Journal of Gastrointestinal Cancer, 2022. doi: 10.1007/s12029-021-00786-9

    [2]

    World Health Organization. World health organization handbook for reporting results of cancer treatment[S]. Geneva: World Health Organization, 1979.

    [3]

    CHALIAN H, TÖRE H G, HOROWITZ J M, et al. Radiologic assessment of response to therapy: Comparison of RECIST versions 1.1 and 1.0[J]. Radiographics, 2011, 31(7): 2093−2105. doi: 10.1148/rg.317115050

    [4]

    JAGODA P, FLECKENSTEIN J, SONNHOFF M, et al. Diffusion-weighted MRI improves response assessment after definitive radiotherapy in patients with NSCLC[J]. Cancer Imaging, 2021, 21(1): 15.

    [5] 闵旭红, 宋奇隆, 余永强, 等. 三维CT定量联合定性参数的logistic回归模型对纯磨玻璃结节侵袭程度的临床预测价值[J]. 中华放射学杂志, 2021,55(1): 34−39. doi: 10.3760/cma.j.cn112149-20200318-00416

    MIN X H, SONG Q L, YU Y Q, et al. The clinical value of the logistic regression model with a combination of three-dimensional CT quantitative and qualitative parameters in predicting the invasiveness of pure ground glass nodules[J]. Chinese Journal of Radiology, 2021, 55(1): 34−39. (in Chinese). doi: 10.3760/cma.j.cn112149-20200318-00416

    [6]

    NISHINO M, GIOBBIE‑HURDER A, GARGANO M, et al. Developing a common language for tumor response to immunotherapy: Immune‑related response criteria using unidimensional measurements[J]. Clinic Cancer Research, 2013, 19(14): 3936‑3943.

    [7]

    CHUONG M D, HAYMAN T J, PATEL M R, et al. Comparison of 1-, 2-, and 3-dimensional tumor response assessment after neoadjuvant GTX-RT in borderline-resectable pancreatic cancer[J]. Gastrointestinal Cancer Research, 2011, 4(4): 128−134.

    [8]

    WELSH J L, BODEKER K, FALLON E, et al. Comparison of response evaluation criteria in solid tumors with volumetric measurements for estimation of tumor burden in pancreatic adenocarcinoma and hepatocellular carcinoma[J]. American Journal of Surgery, 2012, 204(5): 580−585. doi: 10.1016/j.amjsurg.2012.07.007

    [9]

    NISHIMURA A, OTSU H, ITOH I, et al. Response of pancreatic tumor to intraoperative radiotherapy: Medical imaging and pathologic system approach[J]. The Journal of Computed Tomography, 1987, 11(1): 5−15. doi: 10.1016/0149-936X(87)90026-9

    [10]

    KANAMORI S, NISHIMURA Y, KOKUBO M, et al. Tumor response and patterns of failure following intraoperative radiotherapy for unresectable pancreatic cancer: Evaluation by computed tomography[J]. Acta Oncologica, 1999, 38(2): 215−220. doi: 10.1080/028418699431645

    [11] 吴莉莉, 许耀麟, 楼文晖. 放射治疗在胰腺癌治疗中的应用现状和展望[J]. 外科理论与实践, 2022,27(1): 25−29.

    WU L L, XU Y L, LOU W H. Application and prospect of radiotherapy in pancreatic cancer[J]. Journal of Surgery Concepts & Practice, 2022, 27(1): 25−29. (in Chinese).

    [12]

    LIERMANN J, MUNTER M, NAUMANN P, et al. Cetuximab, gemcitabine and radiotherapy in locally advanced pancreatic cancer: Long-term results of the randomized controlled phase II PARC trial[J]. Clinical and Translational Radiation Oncology, 2022, 34: 15−22. doi: 10.1016/j.ctro.2022.03.003

    [13]

    HAMA Y, TATE E. High-dose planned adaptive intensity-modulated radiation therapy with simultaneous integrated boost for synchronous oligometastatic pancreatic cancer[J]. Cancer Investigation, 2022, 40(5): 437−441. doi: 10.1080/07357907.2022.2049287

    [14]

    COMITO T, COZZI L, CLERICI E, et al. Can stereotactic body radiation therapy be a viable and efficient therapeutic option for unresectable locally advanced pancreatic adenocarcinoma? Results of a phase 2 study[J]. Technology in Cancer Research and Treatment, 2017, 16(3): 295−301. doi: 10.1177/1533034616650778

    [15]

    WA K, KARASAWA K, ITO Y, et al. Intraoperative radiotherapy for resected pancreatic cancer: A multiinstitutional retrospective analysis of 210 patients[J]. International Journal of Radiation Oncology Biology Physics, 2010, 77: 734−742. doi: 10.1016/j.ijrobp.2009.09.010

    [16]

    SINDELAR W F, KINSELLA T J. Normal tissue tolerance to intraoperative radiotherapy[J]. Surgical Oncology Clinics of North America, 2003, 12: 925−942. doi: 10.1016/S1055-3207(03)00087-5

    [17]

    KIM J W, CHO Y, KIM H S, et al. A phase II study of intraoperative radiotherapy using a low-energy X-ray source for resectable pancreatic cancer: A study protocol[J]. BMC Surgery, 2019, 19(1): 31. doi: 10.1186/s12893-019-0492-x

    [18]

    CHO Y, KIM J W, KIM H S, et al. Intraoperative radiotherapy for resectable pancreatic cancer using a low-energy X-ray source: Postoperative complications and early outcomes[J]. Yonsei Medical Journal, 2022, 63(5): 405−412. doi: 10.3349/ymj.2022.63.5.405

    [19]

    MOHAPATRA D, DAS B, SURESH V, et al. Fluvastatin sensitizes pancreatic cancer cells toward radiation therapy and suppresses radiation- and/or TGF-β-induced tumor-associated fibrosis[J]. Laboratory Investigation, 2022, 102(3): 298−311. doi: 10.1038/s41374-021-00690-7

    [20]

    ZHANG Z, ZHANG H, SHI L, et al. Heterogeneous cancer-associated fibroblasts: A new perspective for understanding immunosuppression in pancreatic cancer[J]. Immunology, 2022, 167(1): 1-14. DOI: 10.1111/imm.13496.

  • 期刊类型引用(2)

    1. 涂立冬,李雅萍. 岩土勘查技术在盐矿绿色矿山建设中的应用初探. 盐科学与化工. 2025(04): 9-12 . 百度学术
    2. 杨兆林,潘懿,白旭晨,刘禄平. 露天铁矿采空区隐蔽致灾普查与防治措施应用研究. 矿业研究与开发. 2024(09): 74-81 . 百度学术

    其他类型引用(2)

图(2)  /  表(8)
计量
  • 文章访问数:  165
  • HTML全文浏览量:  60
  • PDF下载量:  13
  • 被引次数: 4
出版历程
  • 收稿日期:  2022-09-09
  • 修回日期:  2022-11-29
  • 录用日期:  2022-12-06
  • 网络出版日期:  2023-05-14
  • 刊出日期:  2023-10-31

目录

/

返回文章
返回
x 关闭 永久关闭