Research Progress of High-resolution Magnetic Resonance Vessel Wall Imaging in the Identification of Intracranial Arterial Stenosis Etiology
-
摘要: 颅内动脉狭窄(ICAS)导致的缺血性脑卒中,具有高致残率和致死率的特点。临床上常规检查方法包括经颅多普勒超声、CT血管造影、磁共振血管造影和X射线数字减影血管造影等。上述方法都是针对血管狭窄,不能显示血管壁病变。高分辨磁共振血管壁成像技术(HR-VWI)是一种新出现的影像学检查手段,能够无创性显示血管壁病变,对判断ICAS病变性质具有重要价值。本文针对HR-VWI在ICAS病因鉴别中的应用研究进展进行综述。Abstract: Ischemic stroke caused by intracranial arterial stenosis (ICAS) is characterized by high morbidity and mortality. Conventional clinical examination methods include transcranial Doppler ultrasound, CT angiography, magnetic resonance angiography, and X-ray digital subtraction angiography. These methods are aimed at vascular stenosis and do not show vascular wall lesions. High-resolution magnetic resonance vessel wall imaging (HR-VWI) is a new imaging method that can non-invasively display vascular wall lesions and has important value in judging the nature of ICAS lesions. In this paper, the application of HR-VWI in the identification of ICAS etiology is reviewed.
-
表 1 动脉粥样硬化斑块的HR-VWI信号特征
Table 1. HR-VWI signal characteristics of atherosclerotic plaque
成分 T1WI T2WI 增强T1WI PDWI 3D-TOF 急性出血(Acute Hemorrhage) 高 等/低 无强化 等/高 高 钙化(Calcifications) 低 低 无强化 低 低 脂质核心(LRNC) 等/高 等/高 无强化 等/高 等 疏松的间质(Loose Stroma) 低/等 高 有强化 低/等 等 纤维化组织(Fibrotic Tissue) 等 等/高 有强化 等/高 等 纤维帽(Fiber Cap) 等/高 等/高 无强化 等/高 等 -
[1] PAN Y, WAN W, XIANG M, et al. Transcranial Doppler ultrasonography as a diagnostic tool for cerebrovascular disorders [J/OL]. Front Hum Neurosci, 2022, 16: 841809. [2022-04-29]. https://www. ncbi.nlm.nih.gov/pmc/articles/PMC9101315/pdf/fnhum-16-841809.pdf. [2] MALIKOVA H, WEICHET J. Diagnosis of ischemic stroke: As simple as possible [J/OL]. Diagnostics (Basel), 2022, 12(6): 1452. [2022-06-13]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9221735/pdf/ diagnostics-12-01452.pdf. [3] ZHANG F, RAN Y, ZHU M, et al. The use of pointwise encoding time reduction with radial acquisition mra to assess middle cerebral artery stenosis pre- and post-stent angioplasty: Comparison with 3D time-of-flight MRA and DSA [J/OL]. Frontiers in Cardiovascular Medicine, 2021, 8: 739332. [2021-09-09]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8458737/pdf/fcvm-08-739332.pdf. [4] ZHU X J, WANG W, LIU Z J. High-resolution magnetic resonance vessel wall imaging for intracranial arterial stenosis[J]. Chinese Medical Journal, 2016, 129(11): 1363−1370. doi: 10.4103/0366-6999.182826 [5] SHAO X, YAN L, MA S J, et al. High-resolution neurovascular imaging at 7T: Arterial spin labeling perfusion, 4-Dimensional MR angiography, and black blood MR imaging[J]. Magnetic Resonance Imaging Clinics of North America, 2021, 29(1): 53−65. doi: 10.1016/j.mric.2020.09.003 [6] XIE Y, YANG Q, XIE G, et al. Improved black-blood imaging using DANTE-SPACE for simultaneous carotid and intracranial vessel wall evaluation[J]. Magnetic Resonance Medicine, 2016, 75(6): 2286−2294. doi: 10.1002/mrm.25785 [7] LI R, JIN S, WU T, et al. Usefulness of silent magnetic resonance angiography (MRA) for the diagnosis of atherosclerosis of the internal carotid artery siphon in comparison with time-of-flight MRA [J/OL]. European Journal of Medical Research, 2022, 27(1): 44. [2022-03-21]. https://www.ncbi.nlm.nih. gov/pmc/articles/PMC8935786/pdf/40001_2022_Article_673.pdf. [8] CHAGANTI J, WOODFORD H, TOMLINSON S, et al. Black blood imaging of intracranial vessel walls [J/OL]. Practical Neurology. [2020-12-29]. https://pn.bmj.com/lookup/pmidlookup?view=long&pmid=33376151. [9] YANG H, ZHANG X, QIN Q, et al. Improved cerebrospinal fluid suppression for intracranial vessel wall MRI[J]. Journal of Magnetic Resonance Imaging, 2016, 44(3): 665−672. doi: 10.1002/jmri.25211 [10] LI F, WANG Y, HU T, et al. Application and interpretation of vessel wall magnetic resonance imaging for intracranial atherosclerosis: A narrative review [J/OL]. Annals of Translation Medicine, 2022, 10(12): 714. [2022-06-30]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9279807/pdf/atm-10-12- 714.pdf. [11] ZHU X, SHAN Y, GUO R, et al. Three-dimensional high-resolution magnetic resonance imaging for the assessment of cervical artery dissection [J/OL]. Front Aging Neurosci, 2022, 14: 785661. [2022-07-05]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9295408/pdf/fnagi-14-785661.pdf. [12] ZHU C, TIAN B, CHEN L, et al. Accelerated whole brain intracranial vessel wall imaging using black blood fast spin echo with compressed sensing (CS-SPACE)[J]. Magma (New York, N. Y. ), 2018, 31(3): 457−467. [13] BALU N, ZHOU Z, HIPPE D S, et al. Accelerated multi-contrast high isotropic resolution 3D intracranial vessel wall MRI using a tailored k-space undersampling and partially parallel reconstruction strategy[J]. Magma (New York, N. Y. ), 2019, 32(3): 343−357. [14] OKUCHI S, FUSHIMI Y, OKADA T, et al. Visualization of carotid vessel wall and atherosclerotic plaque: T1-SPACE vs. compressed sensing T1-SPACE[J]. European Radiology, 2019, 29(8): 4114−4122. doi: 10.1007/s00330-018-5862-8 [15] ZHOU H, XIAO J, GANESH S, et al. VWI-APP: Vessel wall imaging-dedicated automated processing pipeline for intracranial atherosclerotic plaque quantification [J/OL]. Medical Physics, 2022, 1-11. [2022-11-07]. https://pubmed.ncbi.nlm.nih.gov/36345580. [16] GONG Y, CAO C, GUO Y, et al. Quantification of intracranial arterial stenotic degree evaluated by high-resolution vessel wall imaging and time-of-flight MR angiography: Reproducibility, and diagnostic agreement with DSA[J]. European Radiology, 2021, 31(8): 5479−5489. doi: 10.1007/s00330-021-07719-x [17] ZHAO D L, LI C, CHEN X H, et al. Reproducibility of 3.0 T high-resolution magnetic resonance imaging for the identification and quantification of middle cerebral arterial atherosclerotic plaques[J]. Journal of Stroke and Cerebrovascular Diseases, 2019, 28(7): 1824−1831. doi: 10.1016/j.jstrokecerebrovasdis.2019.04.020 [18] GUTIERREZ J, TURAN T N, HOH B L, et al. Intracranial atherosclerotic stenosis: Risk factors, diagnosis, and treatment[J]. Lancet Neurology, 2022, 21(4): 355−368. doi: 10.1016/S1474-4422(21)00376-8 [19] KAMTCHUM-TATUENE J, NOMANI A Z, Falcione S, et al. Non-stenotic carotid plaques in embolic stroke of unknown source [J/OL]. Frontiers in Neurology, 2021, 12: 719329. [2021-09-21]. https://www.ncbi. nlm.nih.gov/pmc/articles/PMC8492999/pdf/fneur-12-719329.pdf. [20] SABA L, SAAM T, JÄGER H R, et al. Imaging biomarkers of vulnerable carotid plaques for stroke risk prediction and their potential clinical implications[J]. Lancet Neurology, 2019, 18(6): 559−572. doi: 10.1016/S1474-4422(19)30035-3 [21] PARK J E, JUNG S C, LEE S H, et al. Comparison of 3D magnetic resonance imaging and digital subtraction angiography for intracranial artery stenosis[J]. European Radiology, 2017, 27(11): 4737−4746. doi: 10.1007/s00330-017-4860-6 [22] SUN J, FENG X R, FENG P Y, et al. HR-MRI findings of intracranial artery stenosis and distribution of atherosclerotic plaques caused by different etiologies[J]. Neurological Sciences, 2022, 43(9): 5421−5430. doi: 10.1007/s10072-022-06132-6 [23] MANDELL D M, MOSSA-BASHA M, QIAO Y, et al. Intracranial vessel wall MRI: Principles and expert consensus recommendations of the American society of neuroradiology[J]. American Journal of Neuroradiology, 2017, 38(2): 218−229. doi: 10.3174/ajnr.A4893 [24] SONG J W, PAVLOU A, XIAO J, et al. Vessel Wall magnetic resonance imaging biomarkers of symptomatic intracranial atherosclerosis: A meta-analysis[J]. Stroke, 2021, 52(1): 193−202. doi: 10.1161/STROKEAHA.120.031480 [25] ZHAO J J, LU Y, CUI J Y, et al. Characteristics of symptomatic plaque on high-resolution magnetic resonance imaging and its relationship with the occurrence and recurrence of ischemic stroke[J]. Neurological Sciences, 2021, 42(9): 3605−3613. doi: 10.1007/s10072-021-05457-y [26] LIU Z, ZHONG F, XIE Y, et al. A Predictive model for the risk of posterior circulation stroke in patients with intracranial atherosclerosis based on high resolution MRI [J/OL]. Diagnostics (Basel), 2022, 12(4): 812. [2022-08-29]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9497493/pdf/diagnostics-12- 02088.pdf. [27] RAN Y, WANG Y, ZHU M, et al. Higher plaque burden of middle cerebral artery is associated with recurrent ischemic stroke: A quantitative magnetic resonance imaging study[J]. Stroke, 2020, 51(2): 659−662. doi: 10.1161/STROKEAHA.119.028405 [28] SHEN Z Z, REN S J, WU R R, et al. Temporal changes in plaque characteristics after treatment and their relationship with stroke recurrence: A quantitative study using magnetic resonance imaging[J]. Quantitative Imaging in Medicine and Surgery, 2022, 12(9): 4559−4569. doi: 10.21037/qims-22-210 [29] GEIGER M A, FLUMIGNAN R L G, SOBREIRA M L, et al. Carotid plaque composition and the importance of non-invasive in imaging stroke prevention [J/OL]. Frontiers Cardiovascular Medicine, 2022, 9: 885483. [2022-05-16]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9149096/pdf/fcvm-09-885483.pdf. [30] DENG F, MU C, YANG L, et al. Carotid plaque magnetic resonance imaging and recurrent stroke risk: A systematic review and meta-analysis [J/OL]. Medicine (Baltimore), 2020, 99(13): e19377[2020-03-30]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7220511/pdf/medi-99-e19377.pdf. [31] SCHINDLER A, SCHINNER R, Altaf N, et al. Prediction of stroke risk by detection of hemorrhage in carotid plaques: Meta-analysis of individual patient data[J]. JACC. Cardiovasc Imaging, 2020, 13(2Pt 1): 395-406. [32] QIAO H, LI D, CAO J, et al. Quantitative evaluation of carotid atherosclerotic vulnerable plaques using in vivo T1 mapping cardiovascular magnetic resonaonce: Validation by histology [J/OL]. Journal Cardiovascular Magnetic Resonance, 2020, 22(1): 38[2020-05-21]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7240932/. [33] MAZZACANE F, MAZZOLENI V, SCOLa E, et al. Vessel Wall Magnetic Resonance Imaging in Cerebrovascular Diseases [J/OL]. Diagnostics (Basel), 2022, 12(2): 258. [2022-01-20]. https://www.ncbi.nlm.nih.gov/ pmc/articles/PMC8871392/pdf/diagnostics-12-00258. pdf. [34] SAKAI Y, LEHMAN V T, EISENMENGER L B, et al. Vessel wall MR imaging of aortic arch, cervical carotid and intracranial arteries in patients with embolic stroke of undetermined source: A narrative review [J/OL]. Frontiers in Neurology, 2022, 13: 968390. [2022-07-28]. https://pubmed.ncbi.nlm.nih. gov/35968273. [35] WATASE H, SHEN M, SUI B, et al. Differences in atheroma between Caucasian and Asian subjects with anterior stroke: A vessel wall MRI study[J]. Stroke and Vascular Neurology, 2021, 6(1): 25−32. doi: 10.1136/svn-2020-000370 [36] IKEBE Y, ISHIMARU H, IMAI H, et al. Quantitative susceptibility mapping for carotid atherosclerotic plaques: A pilot study[J]. Magnetic Resonance in Medical Sciences, 2020, 19(2): 135−140. doi: 10.2463/mrms.mp.2018-0077 [37] ALKHALIL M, BIASIOLLI L, CHAI J T, et al. Quantification of carotid plaque lipid content with magnetic resonance T2 mapping in patients undergoing carotid endarterectomy [J/OL]. Public Library of Science one, 2017, 12(7): e0181668. [2017-07-26]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5528883/. [38] JIANG Y, ZHU C, PENG W, et al. Ex-vivo imaging and plaque type classification of intracranial atherosclerotic plaque using high resolution MRI [J/OL]. Atherosclerosis, 2016, 249: 10-16. [2016-03-30]. https://pubmed.ncbi.nlm.nih.gov/27062404. [39] FOX B M, DORSCHEL K B, LAWTON M T, et al. Pathophysiology of vascular stenosis and remodeling in moyamoya disease [J/OL]. Frontiers in Neurology, 2021, 12: 661578. [2021-11-26]. https://www.ncbi.nlm.nih. gov/pmc/articles/PMC8663087/pdf/fneur-12-812027. pdf. [40] DU L, JIANG H, LI J, et al. Imaging methods for surgical revascularization in patients with moyamoya disease: An updated review[J]. Neurosurgical Review, 2022, 45(1): 343−356. doi: 10.1007/s10143-021-01596-0 [41] MURAOKA S, ARAKI Y, TAOKA T, et al. Prediction of intracranial arterial stenosis progression in patients with moyamoya vasculopathy: Contrast-enhanced high-resolution magnetic resonance vessel wall imaging [J/OL]. World Neurosurgery, 2018, 116: e1114-e1121. [2018-06-01]. https://www.sciencedirect. com/science/article/abs/pii/S1878875018311355?via%3Dihub. [42] HAN C, LI M L, XU Y Y, et al. Adult moyamoya-atherosclerosis syndrome: Clinical and vessel wall imaging features[J]. Journal of the neurological sciences, 2016, 369: 181−184. doi: 10.1016/j.jns.2016.08.020 [43] RYU J, LEE K M, KIM H G, et al. Diagnostic performance of high-resolution vessel wall magnetic resonance imaging and digital subtraction angiography in intracranial vertebral artery dissection [J/OL]. Diagnostics (Basel), 2022, 12(2): 432. [2022-02-08]. https://www.ncbi.nlm.nih.gov/pmc/articles/ PMC8871073/pdf/diagnostics-12-00432.pdf. [44] SUNDARAM S, KUMAR P N, SHARMA D P, et al. High-resolution vessel wall imaging in primary angiitis of central nervous system[J]. Annals of Indian Academy of Neurology, 2021, 24(4): 524−530. [45] PADRICK M M, MAYA M M, FAN Z, et al. Magnetic resonance vessel wall imaging in central nervous system vasculitides: A case series[J]. Neurologist, 2020, 25(6): 174−177. doi: 10.1097/NRL.0000000000000298 [46] SHIMOYAMA T, UCHINO K, CALABRESE L H, et al. Serial vessel wall enhancement pattern on high-resolution vessel wall magnetic resonance imaging and clinical implications in patients with central nervous system vasculitis[J]. Clinical and Experimental Rheumatology, 2022, 40(4): 811−818. [47] NARVAEZ E O, RAMOS M C, FARIA DO AMARAL L L, et al. Neurosyphilis and high-resolution vessel wall imaging: A powerful tool to detect vasculitis and neuritis[J]. Neurology India, 2022, 70(1): 160−161. [48] SPADARO A, SCOTT K R, KOYFMAN A, et al. Reversible cerebral vasoconstriction syndrome: A narrative review for emergency clinicians[J]. The American Journal of Emergency Medicine, 2021, 50: 765−772. doi: 10.1016/j.ajem.2021.09.072 [49] EDJLALI M, QIAO Y, BOULOUIS G, et al. Vessel wall MR imaging for the detection of intracranial inflammatory vasculopathies[J]. Cardiovascular Diagnosis and Therapy, 2020, 10(4): 1108−1119. doi: 10.21037/cdt-20-324 [50] DINÇ Y, ÖZPAR R, EMIR B, et al. Vertebral artery hypoplasia as an independent risk factor of posterior circulation atherosclerosis and ischemic stroke [J/OL]. Medicine (Baltimore), 2021, 100(38): e27280. [2021-09-24]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8462547/pdf/medi-100-e27280.pdf. [51] ZHU X J, WANG W, DU B, et al. Wall imaging for unilateral intracranial vertebral artery hypoplasia with three-dimensional high-isotropic resolution magnetic resonance images[J]. Chinese Medical Journal, 2015, 128(12): 1601−1606. doi: 10.4103/0366-6999.158314 -

表(1)
计量
- 文章访问数: 30
- HTML全文浏览量: 12
- PDF下载量: 3
- 被引次数: 0