ISSN 1004-4140
CN 11-3017/P

高分辨磁共振血管壁成像在颅内动脉狭窄病因鉴别中的研究进展

林小翼, 蒋宁平

林小翼, 蒋宁平. 高分辨磁共振血管壁成像在颅内动脉狭窄病因鉴别中的研究进展[J]. CT理论与应用研究(中英文), 2024, 33(1): 97-104. DOI: 10.15953/j.ctta.2022.215.
引用本文: 林小翼, 蒋宁平. 高分辨磁共振血管壁成像在颅内动脉狭窄病因鉴别中的研究进展[J]. CT理论与应用研究(中英文), 2024, 33(1): 97-104. DOI: 10.15953/j.ctta.2022.215.
LIN X Y, JIANG N P. Research Progress of High-resolution Magnetic Resonance Vessel Wall Imaging in the Identification of Intracranial Arterial Stenosis Etiology[J]. CT Theory and Applications, 2024, 33(1): 97-104. DOI: 10.15953/j.ctta.2022.215. (in Chinese).
Citation: LIN X Y, JIANG N P. Research Progress of High-resolution Magnetic Resonance Vessel Wall Imaging in the Identification of Intracranial Arterial Stenosis Etiology[J]. CT Theory and Applications, 2024, 33(1): 97-104. DOI: 10.15953/j.ctta.2022.215. (in Chinese).

高分辨磁共振血管壁成像在颅内动脉狭窄病因鉴别中的研究进展

基金项目: 重庆医药高等专科学校校级项目(颅内椎—基底动脉血管壁粥样斑块特征分析与后循环缺血的相关性:4D-ASL与HR-VWI的联合应用研究(ygz2021131));重庆市沙坪坝区科学技术局2022年决策咨询与管理创新项目(Jcd202221)。
详细信息
    作者简介:

    林小翼: 男,重庆理工大学药学与生物工程学院非全日制药学专业在读硕士研究生,重庆市沙坪坝区陈家桥医院放射科主治医师,主要从事医学影像诊断工作,E-mail:642727203@qq.com

    蒋宁平: 男,重庆市沙坪坝区陈家桥医院放射科主治医师,主要从事医学影像诊断工作,E-mail:305864402@qq.com

    通讯作者:

    蒋宁平: 男,重庆市沙坪坝区陈家桥医院放射科主治医师,主要从事医学影像诊断工作,E-mail:305864402@qq.com

  • 中图分类号: R  445.2

Research Progress of High-resolution Magnetic Resonance Vessel Wall Imaging in the Identification of Intracranial Arterial Stenosis Etiology

  • 摘要:

    颅内动脉狭窄(ICAS)导致的缺血性脑卒中,具有高致残率和致死率的特点。临床上常规检查方法包括经颅多普勒超声、CT血管造影、磁共振血管造影和X射线数字减影血管造影等,上述方法都是针对血管狭窄,不能显示血管壁病变。高分辨磁共振血管壁成像技术(HR-VWI)是一种新出现的影像学检查手段,能够无创性显示血管壁病变,对判断ICAS病变性质具有重要价值。本文针对HR-VWI在ICAS病因鉴别中的应用研究进展进行综述。

    Abstract:

    Ischemic stroke caused by intracranial arterial stenosis (ICAS) is characterized by high morbidity and mortality. Conventional clinical examination methods include transcranial Doppler ultrasound, CT angiography, magnetic resonance angiography, and X-ray digital subtraction angiography. These methods are aimed at vascular stenosis and do not show vascular wall lesions. High-resolution magnetic resonance vessel wall imaging (HR-VWI) is a new imaging method that can non-invasively display vascular wall lesions and has important value in judging the nature of ICAS lesions. In this paper, the application of HR-VWI in the identification of ICAS etiology is reviewed.

  • 颅内动脉狭窄(intracranial arterial stenosis,ICAS)是临床最常见脑血管病。ICAS病因复杂,包括颅内动脉粥样硬化(intracranial atherosclerotic disease,ICAD)、烟雾病(moyamoya disease,MMD)、颅内动脉夹层(intracranial artery dissection,IAD)、中枢神经系统血管炎(central nervous system vasculitis,CNSV)和可逆性脑血管收缩综合征(reversible cerebral vasoconstriction syndrome,RCVS)等。

    目前,ICAS常用检查方法包括经颅多普勒超声(transcranial doppler ultrasound,TCD)、CT血管造影(computed tomographic angiography,CTA)、磁共振血管造影(magnetic resonance angiography,MRA)和X射线数字减影血管造影(digital subtraction angiography,DSA)。TCD和MRA在诊断大脑前动脉(anterior cerebral artery,ACA)和大脑后动脉(posterior cerebral artery,PCA)狭窄的一致性为0.56和0.04[1]。CTA相较MRA具有更高敏感性和阳性预测值;但CTA需要注射碘造影剂,且多达20% 的ACA闭塞在初始CTA评估中被漏诊[2]。虽然DSA一直是ICAS的金标准,但DSA是一项具有辐射暴露、造影剂相关并发症可能的侵入性检查技术,操作复杂且费用昂贵,长期随访价值有限[3]

    以上检查在监测疾病活动性的能力有限。高分辨磁共振血管壁成像(high-resolution magnetic resonance vessel wall imaging,HR-VWI)是一种非侵入性检查技术,具有分辨率高、多参数成像,可视化小而薄的颅内动脉管腔和管壁结构特征。HR-VWI在ICAS中判断狭窄的原因、确定脑卒中机制、患者风险评估等方面具有较高价值[4]。本文概述HR-VWI的成像原理,并综述HR-VWI在ICAS病因鉴别中的研究进展,以提高对HR-VWI的认识。

    HR-VWI的常见序列包括T1加权成像(T1 weighted imaging,T2WI)、T2加权成像(T2 weighted imaging,T2WI)以及质子密度加权成像(proton density weighted imaging,PDWI)、磁敏感加权成像(susceptibility weighted imaging,SWI)等,主要以“黑血”技术和“亮血”技术。“黑血”技术又称预饱和技术,指抑制血液信号,即在血液进入感兴趣前施加一个饱和射频脉冲得到预饱和状态,当血液进入感兴趣时在施加射频脉冲,预饱和状态的血液缺少纵向磁化矢量而呈低信号,血管壁、斑块呈高信号,从而可视化血管壁、斑块的细微特征。“黑血”技术具有高空间分辨率、有效抑制血管波动伪影、覆盖范围大等优势,但采集时间相对较长[5-6]

    “亮血”技术又称三维时间飞跃法(3D time-of-flight,3D-TOF)技术,以血液流入增强效应为基础,采用短重复时间(repetition time,TR)的快速扰相梯度回波T1WI序列,感兴趣的静止组织被反复激发而达到饱和状态,磁化矢量小而抑制静止的背景组织呈低信号,缺少射频脉冲的非饱和状态的血液呈高信号。“亮血”技术TR、回波时间(echo time,TE)短,成像速度快,适合中快速血流成像。颅内动脉走行弯曲,管腔细小,且解剖位置较深,“亮血”技术会导致假阳性或夸大管腔的狭窄程度[7]

    HR-VWI在ICAS的鉴别诊断和斑块活动性评估中依赖对比增强VWI[8]。因此,HR-VWI应包括T1WI、T2WI、对比增强T1WI,其中T1WI、T2WI能够可视化血管壁的基本特征,T1WI最大的优势是反映斑块的出血,T2WI可反映管壁和斑块的边界,而增强T1WI可评估斑块活动性(炎症)。此外,3D-TOF MRA可视化血管轮廓,HR-VWI以病变血管扫描定位。PDWI的信噪比高,数据测量优于T1WI,对斑块边界的显示优于T1WI和T2WI。SWI对血管壁斑块出血敏感。HR-VWI需要抑制脑脊液(cerebral spinal fluid,CSF)信号以定位血管边界,反驱动平衡脉冲结合可变翻转角快速自旋回波的三维高分辨率黑血MRI(3D BB MRI)可改善CSF抑制效果[9]。脂肪抑制在颈外动脉分支的HR-VWI具有必要性。

    HR-VWI以2D、3D多平面采集技术,2D采集包括空间预饱和技术、时间-空间双重标记翻转恢复成像技术等,2D的平面图像分辨率优于3D,推荐体素大小为2.0 mm×0.4 mm×0.4 mm,但成像范围小,血管倾斜和弯曲因部分容积效应而混淆血管外壁[10]。3D采集主要包括运动敏化驱动平衡技术、三维磁化准备快速梯度回波序列、可变翻转角涡轮自旋回波等,3D采集时间短、成像范围广,可达亚毫米体素大小(各向同性分辨率可达0.4 mm),与多平面重建结合避免在不同平面上多次2D采集[11-12]。成像加速算法在保证图像质量的同时缩短扫描时间,基于特定的k-空间欠采样和部分并行图像重建 3D采集技术,具有0.5 mm各向同性分辨率,每个序列的扫描时间为5 min[13]

    在3D T1快速自旋回波成像中,压缩感知T1-SPACE较常规T1-SPACE在评估血管壁方面具有更好的可视化能力和清晰度,以更短的采集时间提供更好的图像质量[14]。VWI专用的自动化处理通道是一种准确有效的斑块定量分析方法,病变的定量分析时间由手动的675.7 s缩短至自动238.3 s[15]。HR-VWI比TOF-MRA的重现性更好,与DSA的诊断一致性较高[16]。Zhao等[17]证明HR-VWI在识别和量化动脉粥样硬化斑块方面具有出色的可重复性。

    ICAD是全球常见的脑卒中诱因,动脉粥样硬化斑块进展、脱落诱发原位血栓、血流动力学障碍而导致脑组织缺血,颈内动脉(internal carotid artery,ICA)、大脑中动脉(middle cerebral artery,MCA)、基底动脉(basilar artery,BA)为好发部位,ICAD致脑卒中的复发风险高,且非狭窄的患者也会有卒中风险[18-19]。斑块内出血(intraplaque hemorrhage,IPH)、脂质核(lipid-rich necrotic core,LRNC)、低纤维含量、炎性细胞浸润、薄或破裂纤维帽、斑块表面溃疡以及新生血管往往提示斑块易损性[20]。HR-VWI量化了管腔的狭窄程度,评估斑块活动性,与金标准DSA具有较高的一致性[21]

    ICAD斑块的HR-VWI特征。①斑块位置:症状性MCA狭窄中,上壁斑块居多;在BA狭窄的患者中,斑块多位于腹侧壁,其次是左侧壁及背侧壁[22]。HR-VWI在斑块的定位中优于常规检查。②斑块形态:ICAD的HR-VWI特征是局灶性偏心性管壁增厚[23],偏心性即管壁受累范围在360° 以内或者管壁最大厚度与最小厚度之比大于2,取偏心指数0.5为偏心性斑块,<0.5为同心性斑块。症状性斑块表面往往不规则[24]。③重构效应:血管通过正向重构或负向重构对斑块作出反应,正向重构避免了管腔的狭窄,但因炎症和出血使斑块脆性增加,正向重构与脑卒中的发生密切相关[25];负性重构稳定性更高,但加剧了管腔的狭窄。血管重构有利于对患者的风险评估,具有斑块易损性的正向重构往往需要药物积极治疗[26]。④斑块负荷:管腔狭窄、斑块表面张力高往往引起斑块表面壁剪切力减低,而高斑块负荷与卒中的发生、复发独立相关[27]。因此,斑块负荷的进展可作为预测卒中复发的独立标志物,HR-VWI是研究斑块负荷的重要定量手段[28]。⑤IPH:IPH与组织学、临床症状密切相关,是缺血性卒中的预测因子之一[29]。在症状性颈动脉狭窄患者中,IPH是卒中复发的有效预测因素,风险比达7.14[30]。Schindler等[31]认为症状性颈动脉狭窄患者的IPH发生率超过50%,IPH与新生血管或滋养血管破裂有关。斑块成分的T1值能对IPH进行鉴别和分期,T1 mapping具有潜在评估脆弱斑块成分的能力[32]

    不同HR-VWI序列上颅外颈动脉粥样硬化斑块成分的特征见表1[33]。颅内动脉和颅外动脉的一些结构差异可能导致斑块成分和易损斑块特征出现差异,目前,颅内动脉斑块成分识别缺乏病理验证。颅内动脉IPH在T1WI呈高信号,较相邻灰质或肌肉的T1信号强度>150%,发生率在12%~30%,与同侧缺血性脑卒中有关[34]。受限于空间分辨率,在颅内HR-VWI上检测LRNC是一项挑战。然而,一些放射-病理学相关性研究证实颅内斑块中LRNC的存在,LRNC在T1WI脂肪抑制和短时反转恢复(STIR)序列呈低信号,T1WI为等/高信号和T2WI为等/低信号[34-35]。钙化通常是斑块稳定的标志,当纤维帽钙化内移时,钙化成为纤维帽破裂的危险因素。颅内HR-VW有助于鉴别内膜钙化,通常在3D-TOF、T1WI、T2WI、PDWI序列上为低信号。定量磁化率映射是一种新的定量MRI,能够可靠地区分IPH、LRNC和钙化,有助于识别易损斑块[36]。斑块脂质是斑块转归的重要因素,T2 mapping定量MR技术能够量化脂质含量,有助于症状性斑块的鉴别[37]

    表  1  动脉粥样硬化斑块的HR-VWI信号特征
    Table  1.  HR-VWI signal characteristics of atherosclerotic plaque
    成分  T1WIT2WI增强T1WIPDWI3D-TOF
       急性出血高  等/低无强化等/高
       钙化低  低  无强化低 
       脂质核心等/高等/高无强化等/高
       疏松的间质低/等高  有强化低/等
       纤维化组织等  等/高有强化等/高
       纤维帽等/高等/高无强化等/高
    下载: 导出CSV 
    | 显示表格

    研究认为LRNC的T2和T2*值低于纤维帽,质子密度值较低;与纤维帽相比,LRNC T1值更短;纤维帽具有最高的质子密度时间,而钙化具有最低值[38]。斑块强化与近期缺血性卒中密切相关,是脑卒中的独立危险因素,其病理生理基础可能是斑块内炎症活动或新生血管形成。

    颅内动脉进行性狭窄、闭塞,局部脑卒中,伴血管网异常增生是MMD的特征性表现。MMD缺乏根治性治疗方法,准确评估动脉狭窄进展所致的卒中风险十分必要。与MMD狭窄相关的病理特征包括动脉内膜增生、内弹力层破坏和中膜萎缩变薄[39]。HR-VWI以双侧ICA远端向心性均匀增厚和MCA收缩为特征,负向重构,弥漫性同心增强反映管壁的过度增殖,动脉壁的明显增强与血管病变进展和缺血性梗死的高风险有关[40]

    研究表明,血管壁强化程度与MMD动脉狭窄病程呈正相关,无或弱强化往往提示动脉狭窄具有稳定性[41]。HR-VWI能鉴别MMD有无斑块存在,以辅助治疗策略,可作为MMD的无创诊断工具[42]

    IAD是多种原因引起的颅内动脉壁内出血,可导致头痛、动脉狭窄和动脉瘤等。颅内椎动脉夹层(VAD)与蛛网膜下腔出血、Wallenberg综合征具有相关性,Ryu等[43]研究发现HR-VWI在诊断VAD的准确性达91.9%,在识别双腔、内膜瓣、壁内血肿等细微结构较DSA更具有优势。当IAD出现局限性狭窄或完全闭塞时,诊断往往具有一定难度;尤其MCA夹层中,因为壁内血肿和IPH具有相似性。

    CNSV是一种罕见的脑卒中诱因,头痛、认知障碍为常见的临床表现,包括原发性中枢神经系统血管炎(primaryangiitis of the central nervous system,PACNS)和自身免疫性疾病或感染性疾病引起继发性中枢神经系统血管炎。HR-VWI是CNSV的一种无创成像方式,HR-VWI特征为多灶性管壁同心性增厚、管腔狭窄和管壁强化。

    Sundaram等[44]研究认为 PACNS最常累及MCA近端和ICA,血管壁常呈同心性增厚,血管呈负性重构,增强可见血管壁弥漫性强化。管壁强化也可为多灶性或节段性表现[45]。CNSV的强化时间持续较长,随着时间的推移,血管壁强化分数显着下降[46]。Narvaez等[47]对1例神经梅毒的病例报道,总结神经梅毒表现为大、中动脉和/或小动脉的炎症,脑膜血管可受累,HR-VWI在脑卒中前检测到血管炎,为临床预防性治疗提供影像学证据。

    RCVS是一种罕见的霹雳样头痛原因,可伴发局灶性蛛网膜下腔出血、永久性神经功能损伤[48]。HR-VWI为多灶性节段性血管不规则狭窄,血管壁呈环形增厚,无强化或轻微强化,管壁增厚及强化会完全消退[49]。RCVS与CNSV的鉴别存在一定困难,而RCVS在一定时间内可自行缓解。

    VAH的管腔直径小于3 mm,局部脑血流灌注不足,与后循环缺血、偏头痛等相关,是椎基底动脉循环动脉粥样硬化狭窄的先兆[50]。HR-VWI可视化VAH管腔变窄,管壁正常或增厚,一定程度上鉴别VAH和ICAS[51]

    HR-VWI是一种新兴的影像学检查手段,以无创性的方式研究活体血管壁,能准确评估ICAS的影像学特征,为卒中患者的风险评估提供重要参考。目前,HR-VWI存在自身的一些不足,如HR-VWI序列中不完全的血液信号抑制可能会误诊为偏心或同心血管壁增厚;颅内斑块成分缺乏病理对照研究,对颅内动脉斑块VWI的信号特征理解仍存在不足;HR-VWI数据采集和评估方法的多样性导致研究结果的差异等。同时,HR-VWI是多序列成像,成像时间相对较长;血管的搏动、呼吸吞咽运动等都会影响成像质量。因此,需要更多的成像技术和算法应用于HR-VWI,比如压缩感知技术、k-空间欠采样和部分并行图像重建3D采集技术。

    HR-VWI是临床医生研究ICAS的重要工具,具有较高的可行性和可靠性。HR-VWI实现了对动脉壁的亚毫米级评估,辅助ICAS的病变定位和定性、明确狭窄原因和机制、病情的风险评估和指导临床治疗方案的选择。颅内动脉细小、位置较深,1.5 T MRI在可视化细微结构上不足,推荐使用3.0 T以上的超高磁场MRI,特别是7.0 T MRI的高对比度和高分辨率,必将推动HR-VWI的快速发展。未来,HR-VWI有望成为ICAS诊断和鉴别诊断的常规影像学评价手段,为患者、临床医生带来实用价值。

  • 表  1   动脉粥样硬化斑块的HR-VWI信号特征

    Table  1   HR-VWI signal characteristics of atherosclerotic plaque

    成分  T1WIT2WI增强T1WIPDWI3D-TOF
       急性出血高  等/低无强化等/高
       钙化低  低  无强化低 
       脂质核心等/高等/高无强化等/高
       疏松的间质低/等高  有强化低/等
       纤维化组织等  等/高有强化等/高
       纤维帽等/高等/高无强化等/高
    下载: 导出CSV
  • [1]

    PAN Y, WAN W, XIANG M, et al. Transcranial Doppler ultrasonography as a diagnostic tool for cerebrovascular disorders[J/OL]. Front Hum Neurosci, 2022, 16: 841809. [2022-04-29]. https://www. ncbi.nlm.nih.gov/pmc/articles/PMC9101315/pdf/fnhum-16-841809.pdf.

    [2]

    MALIKOVA H, WEICHET J. Diagnosis of ischemic stroke: As simple as possible[J/OL]. Diagnostics (Basel), 2022, 12(6): 1452. [2022-06-13]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9221735/pdf/ diagnostics-12-01452.pdf.

    [3]

    ZHANG F, RAN Y, ZHU M, et al. The use of pointwise encoding time reduction with radial acquisition MRA to assess middle cerebral artery stenosis pre- and post-stent angioplasty: Comparison with 3D time-of-flight MRA and DSA[J/OL]. Frontiers in Cardiovascular Medicine, 2021, 8: 739332. [2021-09-09]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8458737/pdf/fcvm-08-739332.pdf.

    [4]

    ZHU X J, WANG W, LIU Z J. High-resolution magnetic resonance vessel wall imaging for intracranial arterial stenosis[J]. Chinese Medical Journal, 2016, 129(11): 1363−1370. doi: 10.4103/0366-6999.182826

    [5]

    SHAO X, YAN L, MA S J, et al. High-resolution neurovascular imaging at 7T: Arterial spin labeling perfusion, 4-Dimensional MR angiography, and black blood MR imaging[J]. Magnetic Resonance Imaging Clinics of North America, 2021, 29(1): 53−65. doi: 10.1016/j.mric.2020.09.003

    [6]

    XIE Y, YANG Q, XIE G, et al. Improved black-blood imaging using DANTE-SPACE for simultaneous carotid and intracranial vessel wall evaluation[J]. Magnetic Resonance Medicine, 2016, 75(6): 2286−2294. doi: 10.1002/mrm.25785

    [7]

    LI R, JIN S, WU T, et al. Usefulness of silent magnetic resonance angiography (MRA) for the diagnosis of atherosclerosis of the internal carotid artery siphon in comparison with time-of-flight MRA[J/OL]. European Journal of Medical Research, 2022, 27(1): 44. [2022-03-21]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8935786/pdf/40001_2022_Article_673.pdf.

    [8]

    CHAGANTI J, WOODFORD H, TOMLINSON S, et al. Black blood imaging of intracranial vessel walls[J/OL]. Practical Neurology. [2020-12-29]. https://pn.bmj.com/lookup/pmidlookup?view=long&pmid=33376151.

    [9]

    YANG H, ZHANG X, QIN Q, et al. Improved cerebrospinal fluid suppression for intracranial vessel wall MRI[J]. Journal of Magnetic Resonance Imaging, 2016, 44(3): 665−672. doi: 10.1002/jmri.25211

    [10]

    LI F, WANG Y, HU T, et al. Application and interpretation of vessel wall magnetic resonance imaging for intracranial atherosclerosis: A narrative review[J/OL]. Annals of Translation Medicine, 2022, 10(12): 714. [2022-06-30]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9279807/pdf/atm-10-12-714.pdf.

    [11]

    ZHU X, SHAN Y, GUO R, et al. Three-dimensional high-resolution magnetic resonance imaging for the assessment of cervical artery dissection[J/OL]. Front Aging Neurosci, 2022, 14: 785661. [2022-07-05]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9295408/pdf/fnagi-14-785661.pdf.

    [12]

    ZHU C, TIAN B, CHEN L, et al. Accelerated whole brain intracranial vessel wall imaging using black blood fast spin echo with compressed sensing (CS-SPACE)[J]. Magnetic Resonance Materials in Physics, Biology and Medicine, 2017, 31(3): 457−467.

    [13]

    BALU N, ZHOU Z, HIPPE D S, et al. Accelerated multi-contrast high isotropic resolution 3D intracranial vessel wall MRI using a tailored k-space undersampling and partially parallel reconstruction strategy[J]. Magnetic Resonance Materials in Physics, Biology and Medicine, 2019, 32(3): 343−357.

    [14]

    OKUCHI S, FUSHIMI Y, OKADA T, et al. Visualization of carotid vessel wall and atherosclerotic plaque: T1-SPACE vs. compressed sensing T1-SPACE[J]. European Radiology, 2019, 29(8): 4114−4122. doi: 10.1007/s00330-018-5862-8

    [15]

    ZHOU H, XIAO J, GANESH S, et al. VWI-APP: Vessel wall imaging-dedicated automated processing pipeline for intracranial atherosclerotic plaque quantification[J/OL]. Medical Physics, 2022: 1-11. [2022-11-07]. https://pubmed.ncbi.nlm.nih.gov/36345580.

    [16]

    GONG Y, CAO C, GUO Y, et al. Quantification of intracranial arterial stenotic degree evaluated by high-resolution vessel wall imaging and time-of-flight MR angiography: Reproducibility, and diagnostic agreement with DSA[J]. European Radiology, 2021, 31(8): 5479−5489. doi: 10.1007/s00330-021-07719-x

    [17]

    ZHAO D L, LI C, CHEN X H, et al. Reproducibility of 3.0 T high-resolution magnetic resonance imaging for the identification and quantification of middle cerebral arterial atherosclerotic plaques[J]. Journal of Stroke and Cerebrovascular Diseases, 2019, 28(7): 1824−1831. doi: 10.1016/j.jstrokecerebrovasdis.2019.04.020

    [18]

    GUTIERREZ J, TURAN T N, HOH B L, et al. Intracranial atherosclerotic stenosis: Risk factors, diagnosis, and treatment[J]. Lancet Neurology, 2022, 21(4): 355−368. doi: 10.1016/S1474-4422(21)00376-8

    [19]

    KAMTCHUM-TATUENE J, NOMANI A Z, Falcione S, et al. Non-stenotic carotid plaques in embolic stroke of unknown source[J/OL]. Frontiers in Neurology, 2021, 12: 719329. [2021-09-21]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8492999/pdf/fneur-12-719329.pdf.

    [20]

    SABA L, SAAM T, JÄGER H R, et al. Imaging biomarkers of vulnerable carotid plaques for stroke risk prediction and their potential clinical implications[J]. Lancet Neurology, 2019, 18(6): 559−572. doi: 10.1016/S1474-4422(19)30035-3

    [21]

    PARK J E, JUNG S C, LEE S H, et al. Comparison of 3D magnetic resonance imaging and digital subtraction angiography for intracranial artery stenosis[J]. European Radiology, 2017, 27(11): 4737−4746. doi: 10.1007/s00330-017-4860-6

    [22]

    SUN J, FENG X R, FENG P Y, et al. HR-MRI findings of intracranial artery stenosis and distribution of atherosclerotic plaques caused by different etiologies[J]. Neurological Sciences, 2022, 43(9): 5421−5430. doi: 10.1007/s10072-022-06132-6

    [23]

    MANDELL D M, MOSSA-BASHA M, QIAO Y, et al. Intracranial vessel wall MRI: Principles and expert consensus recommendations of the American society of neuroradiology[J]. American Journal of Neuroradiology, 2017, 38(2): 218−229. doi: 10.3174/ajnr.A4893

    [24]

    SONG J W, PAVLOU A, XIAO J, et al. Vessel wall magnetic resonance imaging biomarkers of symptomatic intracranial atherosclerosis: A Meta-analysis[J]. Stroke, 2021, 52(1): 193−202. doi: 10.1161/STROKEAHA.120.031480

    [25]

    ZHAO J J, LU Y, CUI J Y, et al. Characteristics of symptomatic plaque on high-resolution magnetic resonance imaging and its relationship with the occurrence and recurrence of ischemic stroke[J]. Neurological Sciences, 2021, 42(9): 3605−3613. doi: 10.1007/s10072-021-05457-y

    [26]

    LIU Z, ZHONG F, XIE Y, et al. A predictive model for the risk of posterior circulation stroke in patients with intracranial atherosclerosis based on high resolution MRI[J/OL]. Diagnostics (Basel), 2022, 12(4): 812. [2022-08-29]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9497493/pdf/diagnostics-12-02088.pdf.

    [27]

    RAN Y, WANG Y, ZHU M, et al. Higher plaque burden of middle cerebral artery is associated with recurrent ischemic stroke: A quantitative magnetic resonance imaging study[J]. Stroke, 2020, 51(2): 659−662. doi: 10.1161/STROKEAHA.119.028405

    [28]

    SHEN Z Z, REN S J, WU R R, et al. Temporal changes in plaque characteristics after treatment and their relationship with stroke recurrence: A quantitative study using magnetic resonance imaging[J]. Quantitative Imaging in Medicine and Surgery, 2022, 12(9): 4559−4569. doi: 10.21037/qims-22-210

    [29]

    GEIGER M A, FLUMIGNAN R L G, SOBREIRA M L, et al. Carotid plaque composition and the importance of non-invasive in imaging stroke prevention[J/OL]. Frontiers Cardiovascular Medicine, 2022, 9: 885483. [2022-05-16]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9149096/pdf/fcvm-09-885483.pdf.

    [30]

    DENG F, MU C, YANG L, et al. Carotid plaque magnetic resonance imaging and recurrent stroke risk: A systematic review and meta-analysis[J/OL]. Medicine (Baltimore), 2020, 99(13): e19377. [2020-03-30]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7220511/pdf/medi-99-e19377.pdf.

    [31]

    SCHINDLER A, SCHINNER R, Altaf N, et al. Prediction of stroke risk by detection of hemorrhage in carotid plaques: Meta-analysis of individual patient data[J]. JACC. Cardiovasc Imaging, 2020, 13(2 Pt 1): 395-406.

    [32]

    QIAO H, LI D, CAO J, et al. Quantitative evaluation of carotid atherosclerotic vulnerable plaques using in vivo T1 mapping cardiovascular magnetic resonaonce: Validation by histology[J/OL]. Journal Cardiovascular Magnetic Resonance, 2020, 22(1): 38. [2020-05-21]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7240932/.

    [33]

    MAZZACANE F, MAZZOLENI V, SCOLA E, et al. Vessel wall magnetic resonance imaging in cerebrovascular diseases[J/OL]. Diagnostics (Basel), 2022, 12(2): 258. [2022-01-20]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8871392/pdf/diagnostics-12-00258.pdf.

    [34]

    SAKAI Y, LEHMAN V T, EISENMENGER L B, et al. Vessel wall MR imaging of aortic arch, cervical carotid and intracranial arteries in patients with embolic stroke of undetermined source: A narrative review[J/OL]. Frontiers in Neurology, 2022, 13: 968390. [2022-07-28]. https://pubmed.ncbi.nlm.nih.gov/35968273.

    [35]

    WATASE H, SHEN M, SUI B, et al. Differences in atheroma between Caucasian and Asian subjects with anterior stroke: A vessel wall MRI study[J]. Stroke and Vascular Neurology, 2021, 6(1): 25−32. doi: 10.1136/svn-2020-000370

    [36]

    IKEBE Y, ISHIMARU H, IMAI H, et al. Quantitative susceptibility mapping for carotid atherosclerotic plaques: A pilot study[J]. Magnetic Resonance in Medical Sciences, 2020, 19(2): 135−140. doi: 10.2463/mrms.mp.2018-0077

    [37]

    ALKHALIL M, BIASIOLLI L, CHAI J T, et al. Quantification of carotid plaque lipid content with magnetic resonance T2 mapping in patients undergoing carotid endarterectomy[J/OL]. Public Library of Science One, 2017, 12(7): e0181668. [2017-07-26]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5528883/.

    [38]

    JIANG Y, ZHU C, PENG W, et al. Ex-vivo imaging and plaque type classification of intracranial atherosclerotic plaque using high resolution MRI[J/OL]. Atherosclerosis, 2016, 249: 10-16. [2016-03-30]. https://pubmed.ncbi.nlm.nih.gov/27062404.

    [39]

    FOX B M, DORSCHEL K B, LAWTON M T, et al. Pathophysiology of vascular stenosis and remodeling in moyamoya disease[J/OL]. Frontiers in Neurology, 2021, 12: 661578. [2021-11-26]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8663087/pdf/fneur-12-812027.pdf.

    [40]

    DU L, JIANG H, LI J, et al. Imaging methods for surgical revascularization in patients with moyamoya disease: An updated review[J]. Neurosurgical Review, 2022, 45(1): 343−356. doi: 10.1007/s10143-021-01596-0

    [41]

    MURAOKA S, ARAKI Y, TAOKA T, et al. Prediction of intracranial arterial stenosis progression in patients with moyamoya vasculopathy: Contrast-enhanced high-resolution magnetic resonance vessel wall imaging[J/OL]. World Neurosurgery, 2018, 116: e1114-e1121. [2018-06-01]. https://www.sciencedirect.com/science/article/abs/pii/S1878875018311355?via%3Dihub.

    [42]

    HAN C, LI M L, XU Y Y, et al. Adult moyamoya-atherosclerosis syndrome: Clinical and vessel wall imaging features[J]. Journal of the Neurological Sciences, 2016, 369: 181−184. doi: 10.1016/j.jns.2016.08.020

    [43]

    RYU J, LEE K M, KIM H G, et al. Diagnostic performance of high-resolution vessel wall magnetic resonance imaging and digital subtraction angiography in intracranial vertebral artery dissection[J/OL]. Diagnostics (Basel), 2022, 12(2): 432. [2022-02-08]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8871073/pdf/diagnostics-12-00432.pdf.

    [44]

    SUNDARAM S, KUMAR P N, SHARMA D P, et al. High-resolution vessel wall imaging in primary angiitis of central nervous system[J]. Annals of Indian Academy of Neurology, 2021, 24(4): 524−530.

    [45]

    PADRICK M M, MAYA M M, FAN Z, et al. Magnetic resonance vessel wall imaging in central nervous system vasculitides: A case series[J]. Neurologist, 2020, 25(6): 174−177. doi: 10.1097/NRL.0000000000000298

    [46]

    SHIMOYAMA T, UCHINO K, CALABRESE L H, et al. Serial vessel wall enhancement pattern on high-resolution vessel wall magnetic resonance imaging and clinical implications in patients with central nervous system vasculitis[J]. Clinical and Experimental Rheumatology, 2022, 40(4): 811−818.

    [47]

    NARVAEZ E O, RAMOS M C, FARIA DO AMARAL L L, et al. Neurosyphilis and high-resolution vessel wall imaging: A powerful tool to detect vasculitis and neuritis[J]. Neurology India, 2022, 70(1): 160−161.

    [48]

    SPADARO A, SCOTT K R, KOYFMAN A, et al. Reversible cerebral vasoconstriction syndrome: A narrative review for emergency clinicians[J]. The American Journal of Emergency Medicine, 2021, 50: 765−772. doi: 10.1016/j.ajem.2021.09.072

    [49]

    EDJLALI M, QIAO Y, BOULOUIS G, et al. Vessel wall MR imaging for the detection of intracranial inflammatory vasculopathies[J]. Cardiovascular Diagnosis and Therapy, 2020, 10(4): 1108−1119. doi: 10.21037/cdt-20-324

    [50]

    DINÇ Y, ÖZPAR R, EMIR B, et al. Vertebral artery hypoplasia as an independent risk factor of posterior circulation atherosclerosis and ischemic stroke[J/OL]. Medicine (Baltimore), 2021, 100(38): e27280. [2021-09-24]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8462547/pdf/medi-100-e27280.pdf.

    [51]

    ZHU X J, WANG W, DU B, et al. Wall imaging for unilateral intracranial vertebral artery hypoplasia with three-dimensional high-isotropic resolution magnetic resonance images[J]. Chinese Medical Journal, 2015, 128(12): 1601−1606. doi: 10.4103/0366-6999.158314

表(1)
计量
  • 文章访问数:  321
  • HTML全文浏览量:  92
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-03
  • 修回日期:  2023-01-10
  • 录用日期:  2023-01-11
  • 网络出版日期:  2023-02-21
  • 刊出日期:  2024-01-09

目录

/

返回文章
返回
x 关闭 永久关闭