ISSN 1004-4140
CN 11-3017/P

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高分辨磁共振血管壁成像在颅内动脉狭窄病因鉴别中研究进展

林小翼 蒋宁平

林小翼, 蒋宁平. 高分辨磁共振血管壁成像在颅内动脉狭窄病因鉴别中研究进展[J]. CT理论与应用研究, 2023, 32(0): 1-8. DOI: 10.15953/j.ctta.2022.215
引用本文: 林小翼, 蒋宁平. 高分辨磁共振血管壁成像在颅内动脉狭窄病因鉴别中研究进展[J]. CT理论与应用研究, 2023, 32(0): 1-8. DOI: 10.15953/j.ctta.2022.215
LIN X Y, JIANG N P. Research Progress of High-resolution Magnetic Resonance Vessel Wall Imaging in the Identification of Intracranial Arterial Stenosis Etiology[J]. CT Theory and Applications, 2023, 32(0): 1-8. DOI: 10.15953/j.ctta.2022.215. (in Chinese)
Citation: LIN X Y, JIANG N P. Research Progress of High-resolution Magnetic Resonance Vessel Wall Imaging in the Identification of Intracranial Arterial Stenosis Etiology[J]. CT Theory and Applications, 2023, 32(0): 1-8. DOI: 10.15953/j.ctta.2022.215. (in Chinese)

高分辨磁共振血管壁成像在颅内动脉狭窄病因鉴别中研究进展

doi: 10.15953/j.ctta.2022.215
基金项目: 重庆医药高等专科学校校级项目(颅内椎—基底动脉血管壁粥样斑块特征分析与后循环缺血的相关性:4D-ASL与HR-VWI的联合应用研究(ygz2021131));重庆市沙坪坝区科学技术局2022年决策咨询与管理创新项目(Jcd202221)。
详细信息
    作者简介:

    林小翼:男,重庆理工大学药学与生物工程学院非全日制药学专业在读硕士研究生,重庆市沙坪坝区陈家桥医院放射科主治医师,主要从事医学影像诊断工作,E-mail:642727203@qq.com

    蒋宁平:男,主治医师,重庆市沙坪坝区陈家桥医院放射科主治医师,主要从事医学影像诊断工作,E-mail:305864402@qq.com

    通讯作者:

    蒋宁平*,

  • 中图分类号: R445.2

Research Progress of High-resolution Magnetic Resonance Vessel Wall Imaging in the Identification of Intracranial Arterial Stenosis Etiology

  • 摘要: 颅内动脉狭窄(ICAS)导致的缺血性脑卒中,具有高致残率和致死率的特点。临床上常规检查方法包括经颅多普勒超声、CT血管造影、磁共振血管造影和X射线数字减影血管造影等。上述方法都是针对血管狭窄,不能显示血管壁病变。高分辨磁共振血管壁成像技术(HR-VWI)是一种新出现的影像学检查手段,能够无创性显示血管壁病变,对判断ICAS病变性质具有重要价值。本文针对HR-VWI在ICAS病因鉴别中的应用研究进展进行综述。

     

  • 表  1  动脉粥样硬化斑块的HR-VWI信号特征

    Table  1.   HR-VWI signal characteristics of atherosclerotic plaque

    成分T1WIT2WI增强T1WIPDWI3D-TOF
      急性出血(Acute Hemorrhage)高  等/低无强化等/高
      钙化(Calcifications)低  低  无强化低 
      脂质核心(LRNC)等/高等/高无强化等/高
      疏松的间质(Loose Stroma)低/等高  有强化低/等
      纤维化组织(Fibrotic Tissue)等  等/高有强化等/高
      纤维帽(Fiber Cap)等/高等/高无强化等/高
    下载: 导出CSV
  • [1] PAN Y, WAN W, XIANG M, et al. Transcranial Doppler ultrasonography as a diagnostic tool for cerebrovascular disorders [J/OL]. Front Hum Neurosci, 2022, 16: 841809. [2022-04-29]. https://www. ncbi.nlm.nih.gov/pmc/articles/PMC9101315/pdf/fnhum-16-841809.pdf.
    [2] MALIKOVA H, WEICHET J. Diagnosis of ischemic stroke: As simple as possible [J/OL]. Diagnostics (Basel), 2022, 12(6): 1452. [2022-06-13]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9221735/pdf/ diagnostics-12-01452.pdf.
    [3] ZHANG F, RAN Y, ZHU M, et al. The use of pointwise encoding time reduction with radial acquisition mra to assess middle cerebral artery stenosis pre- and post-stent angioplasty: Comparison with 3D time-of-flight MRA and DSA [J/OL]. Frontiers in Cardiovascular Medicine, 2021, 8: 739332. [2021-09-09]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8458737/pdf/fcvm-08-739332.pdf.
    [4] ZHU X J, WANG W, LIU Z J. High-resolution magnetic resonance vessel wall imaging for intracranial arterial stenosis[J]. Chinese Medical Journal, 2016, 129(11): 1363−1370. doi: 10.4103/0366-6999.182826
    [5] SHAO X, YAN L, MA S J, et al. High-resolution neurovascular imaging at 7T: Arterial spin labeling perfusion, 4-Dimensional MR angiography, and black blood MR imaging[J]. Magnetic Resonance Imaging Clinics of North America, 2021, 29(1): 53−65. doi: 10.1016/j.mric.2020.09.003
    [6] XIE Y, YANG Q, XIE G, et al. Improved black-blood imaging using DANTE-SPACE for simultaneous carotid and intracranial vessel wall evaluation[J]. Magnetic Resonance Medicine, 2016, 75(6): 2286−2294. doi: 10.1002/mrm.25785
    [7] LI R, JIN S, WU T, et al. Usefulness of silent magnetic resonance angiography (MRA) for the diagnosis of atherosclerosis of the internal carotid artery siphon in comparison with time-of-flight MRA [J/OL]. European Journal of Medical Research, 2022, 27(1): 44. [2022-03-21]. https://www.ncbi.nlm.nih. gov/pmc/articles/PMC8935786/pdf/40001_2022_Article_673.pdf.
    [8] CHAGANTI J, WOODFORD H, TOMLINSON S, et al. Black blood imaging of intracranial vessel walls [J/OL]. Practical Neurology. [2020-12-29]. https://pn.bmj.com/lookup/pmidlookup?view=long&pmid=33376151.
    [9] YANG H, ZHANG X, QIN Q, et al. Improved cerebrospinal fluid suppression for intracranial vessel wall MRI[J]. Journal of Magnetic Resonance Imaging, 2016, 44(3): 665−672. doi: 10.1002/jmri.25211
    [10] LI F, WANG Y, HU T, et al. Application and interpretation of vessel wall magnetic resonance imaging for intracranial atherosclerosis: A narrative review [J/OL]. Annals of Translation Medicine, 2022, 10(12): 714. [2022-06-30]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9279807/pdf/atm-10-12- 714.pdf.
    [11] ZHU X, SHAN Y, GUO R, et al. Three-dimensional high-resolution magnetic resonance imaging for the assessment of cervical artery dissection [J/OL]. Front Aging Neurosci, 2022, 14: 785661. [2022-07-05]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9295408/pdf/fnagi-14-785661.pdf.
    [12] ZHU C, TIAN B, CHEN L, et al. Accelerated whole brain intracranial vessel wall imaging using black blood fast spin echo with compressed sensing (CS-SPACE)[J]. Magma (New York, N. Y. ), 2018, 31(3): 457−467.
    [13] BALU N, ZHOU Z, HIPPE D S, et al. Accelerated multi-contrast high isotropic resolution 3D intracranial vessel wall MRI using a tailored k-space undersampling and partially parallel reconstruction strategy[J]. Magma (New York, N. Y. ), 2019, 32(3): 343−357.
    [14] OKUCHI S, FUSHIMI Y, OKADA T, et al. Visualization of carotid vessel wall and atherosclerotic plaque: T1-SPACE vs. compressed sensing T1-SPACE[J]. European Radiology, 2019, 29(8): 4114−4122. doi: 10.1007/s00330-018-5862-8
    [15] ZHOU H, XIAO J, GANESH S, et al. VWI-APP: Vessel wall imaging-dedicated automated processing pipeline for intracranial atherosclerotic plaque quantification [J/OL]. Medical Physics, 2022, 1-11. [2022-11-07]. https://pubmed.ncbi.nlm.nih.gov/36345580.
    [16] GONG Y, CAO C, GUO Y, et al. Quantification of intracranial arterial stenotic degree evaluated by high-resolution vessel wall imaging and time-of-flight MR angiography: Reproducibility, and diagnostic agreement with DSA[J]. European Radiology, 2021, 31(8): 5479−5489. doi: 10.1007/s00330-021-07719-x
    [17] ZHAO D L, LI C, CHEN X H, et al. Reproducibility of 3.0 T high-resolution magnetic resonance imaging for the identification and quantification of middle cerebral arterial atherosclerotic plaques[J]. Journal of Stroke and Cerebrovascular Diseases, 2019, 28(7): 1824−1831. doi: 10.1016/j.jstrokecerebrovasdis.2019.04.020
    [18] GUTIERREZ J, TURAN T N, HOH B L, et al. Intracranial atherosclerotic stenosis: Risk factors, diagnosis, and treatment[J]. Lancet Neurology, 2022, 21(4): 355−368. doi: 10.1016/S1474-4422(21)00376-8
    [19] KAMTCHUM-TATUENE J, NOMANI A Z, Falcione S, et al. Non-stenotic carotid plaques in embolic stroke of unknown source [J/OL]. Frontiers in Neurology, 2021, 12: 719329. [2021-09-21]. https://www.ncbi. nlm.nih.gov/pmc/articles/PMC8492999/pdf/fneur-12-719329.pdf.
    [20] SABA L, SAAM T, JÄGER H R, et al. Imaging biomarkers of vulnerable carotid plaques for stroke risk prediction and their potential clinical implications[J]. Lancet Neurology, 2019, 18(6): 559−572. doi: 10.1016/S1474-4422(19)30035-3
    [21] PARK J E, JUNG S C, LEE S H, et al. Comparison of 3D magnetic resonance imaging and digital subtraction angiography for intracranial artery stenosis[J]. European Radiology, 2017, 27(11): 4737−4746. doi: 10.1007/s00330-017-4860-6
    [22] SUN J, FENG X R, FENG P Y, et al. HR-MRI findings of intracranial artery stenosis and distribution of atherosclerotic plaques caused by different etiologies[J]. Neurological Sciences, 2022, 43(9): 5421−5430. doi: 10.1007/s10072-022-06132-6
    [23] MANDELL D M, MOSSA-BASHA M, QIAO Y, et al. Intracranial vessel wall MRI: Principles and expert consensus recommendations of the American society of neuroradiology[J]. American Journal of Neuroradiology, 2017, 38(2): 218−229. doi: 10.3174/ajnr.A4893
    [24] SONG J W, PAVLOU A, XIAO J, et al. Vessel Wall magnetic resonance imaging biomarkers of symptomatic intracranial atherosclerosis: A meta-analysis[J]. Stroke, 2021, 52(1): 193−202. doi: 10.1161/STROKEAHA.120.031480
    [25] ZHAO J J, LU Y, CUI J Y, et al. Characteristics of symptomatic plaque on high-resolution magnetic resonance imaging and its relationship with the occurrence and recurrence of ischemic stroke[J]. Neurological Sciences, 2021, 42(9): 3605−3613. doi: 10.1007/s10072-021-05457-y
    [26] LIU Z, ZHONG F, XIE Y, et al. A Predictive model for the risk of posterior circulation stroke in patients with intracranial atherosclerosis based on high resolution MRI [J/OL]. Diagnostics (Basel), 2022, 12(4): 812. [2022-08-29]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9497493/pdf/diagnostics-12- 02088.pdf.
    [27] RAN Y, WANG Y, ZHU M, et al. Higher plaque burden of middle cerebral artery is associated with recurrent ischemic stroke: A quantitative magnetic resonance imaging study[J]. Stroke, 2020, 51(2): 659−662. doi: 10.1161/STROKEAHA.119.028405
    [28] SHEN Z Z, REN S J, WU R R, et al. Temporal changes in plaque characteristics after treatment and their relationship with stroke recurrence: A quantitative study using magnetic resonance imaging[J]. Quantitative Imaging in Medicine and Surgery, 2022, 12(9): 4559−4569. doi: 10.21037/qims-22-210
    [29] GEIGER M A, FLUMIGNAN R L G, SOBREIRA M L, et al. Carotid plaque composition and the importance of non-invasive in imaging stroke prevention [J/OL]. Frontiers Cardiovascular Medicine, 2022, 9: 885483. [2022-05-16]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9149096/pdf/fcvm-09-885483.pdf.
    [30] DENG F, MU C, YANG L, et al. Carotid plaque magnetic resonance imaging and recurrent stroke risk: A systematic review and meta-analysis [J/OL]. Medicine (Baltimore), 2020, 99(13): e19377[2020-03-30]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7220511/pdf/medi-99-e19377.pdf.
    [31] SCHINDLER A, SCHINNER R, Altaf N, et al. Prediction of stroke risk by detection of hemorrhage in carotid plaques: Meta-analysis of individual patient data[J]. JACC. Cardiovasc Imaging, 2020, 13(2Pt 1): 395-406.
    [32] QIAO H, LI D, CAO J, et al. Quantitative evaluation of carotid atherosclerotic vulnerable plaques using in vivo T1 mapping cardiovascular magnetic resonaonce: Validation by histology [J/OL]. Journal Cardiovascular Magnetic Resonance, 2020, 22(1): 38[2020-05-21]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7240932/.
    [33] MAZZACANE F, MAZZOLENI V, SCOLa E, et al. Vessel Wall Magnetic Resonance Imaging in Cerebrovascular Diseases [J/OL]. Diagnostics (Basel), 2022, 12(2): 258. [2022-01-20]. https://www.ncbi.nlm.nih.gov/ pmc/articles/PMC8871392/pdf/diagnostics-12-00258. pdf.
    [34] SAKAI Y, LEHMAN V T, EISENMENGER L B, et al. Vessel wall MR imaging of aortic arch, cervical carotid and intracranial arteries in patients with embolic stroke of undetermined source: A narrative review [J/OL]. Frontiers in Neurology, 2022, 13: 968390. [2022-07-28]. https://pubmed.ncbi.nlm.nih. gov/35968273.
    [35] WATASE H, SHEN M, SUI B, et al. Differences in atheroma between Caucasian and Asian subjects with anterior stroke: A vessel wall MRI study[J]. Stroke and Vascular Neurology, 2021, 6(1): 25−32. doi: 10.1136/svn-2020-000370
    [36] IKEBE Y, ISHIMARU H, IMAI H, et al. Quantitative susceptibility mapping for carotid atherosclerotic plaques: A pilot study[J]. Magnetic Resonance in Medical Sciences, 2020, 19(2): 135−140. doi: 10.2463/mrms.mp.2018-0077
    [37] ALKHALIL M, BIASIOLLI L, CHAI J T, et al. Quantification of carotid plaque lipid content with magnetic resonance T2 mapping in patients undergoing carotid endarterectomy [J/OL]. Public Library of Science one, 2017, 12(7): e0181668. [2017-07-26]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5528883/.
    [38] JIANG Y, ZHU C, PENG W, et al. Ex-vivo imaging and plaque type classification of intracranial atherosclerotic plaque using high resolution MRI [J/OL]. Atherosclerosis, 2016, 249: 10-16. [2016-03-30]. https://pubmed.ncbi.nlm.nih.gov/27062404.
    [39] FOX B M, DORSCHEL K B, LAWTON M T, et al. Pathophysiology of vascular stenosis and remodeling in moyamoya disease [J/OL]. Frontiers in Neurology, 2021, 12: 661578. [2021-11-26]. https://www.ncbi.nlm.nih. gov/pmc/articles/PMC8663087/pdf/fneur-12-812027. pdf.
    [40] DU L, JIANG H, LI J, et al. Imaging methods for surgical revascularization in patients with moyamoya disease: An updated review[J]. Neurosurgical Review, 2022, 45(1): 343−356. doi: 10.1007/s10143-021-01596-0
    [41] MURAOKA S, ARAKI Y, TAOKA T, et al. Prediction of intracranial arterial stenosis progression in patients with moyamoya vasculopathy: Contrast-enhanced high-resolution magnetic resonance vessel wall imaging [J/OL]. World Neurosurgery, 2018, 116: e1114-e1121. [2018-06-01]. https://www.sciencedirect. com/science/article/abs/pii/S1878875018311355?via%3Dihub.
    [42] HAN C, LI M L, XU Y Y, et al. Adult moyamoya-atherosclerosis syndrome: Clinical and vessel wall imaging features[J]. Journal of the neurological sciences, 2016, 369: 181−184. doi: 10.1016/j.jns.2016.08.020
    [43] RYU J, LEE K M, KIM H G, et al. Diagnostic performance of high-resolution vessel wall magnetic resonance imaging and digital subtraction angiography in intracranial vertebral artery dissection [J/OL]. Diagnostics (Basel), 2022, 12(2): 432. [2022-02-08]. https://www.ncbi.nlm.nih.gov/pmc/articles/ PMC8871073/pdf/diagnostics-12-00432.pdf.
    [44] SUNDARAM S, KUMAR P N, SHARMA D P, et al. High-resolution vessel wall imaging in primary angiitis of central nervous system[J]. Annals of Indian Academy of Neurology, 2021, 24(4): 524−530.
    [45] PADRICK M M, MAYA M M, FAN Z, et al. Magnetic resonance vessel wall imaging in central nervous system vasculitides: A case series[J]. Neurologist, 2020, 25(6): 174−177. doi: 10.1097/NRL.0000000000000298
    [46] SHIMOYAMA T, UCHINO K, CALABRESE L H, et al. Serial vessel wall enhancement pattern on high-resolution vessel wall magnetic resonance imaging and clinical implications in patients with central nervous system vasculitis[J]. Clinical and Experimental Rheumatology, 2022, 40(4): 811−818.
    [47] NARVAEZ E O, RAMOS M C, FARIA DO AMARAL L L, et al. Neurosyphilis and high-resolution vessel wall imaging: A powerful tool to detect vasculitis and neuritis[J]. Neurology India, 2022, 70(1): 160−161.
    [48] SPADARO A, SCOTT K R, KOYFMAN A, et al. Reversible cerebral vasoconstriction syndrome: A narrative review for emergency clinicians[J]. The American Journal of Emergency Medicine, 2021, 50: 765−772. doi: 10.1016/j.ajem.2021.09.072
    [49] EDJLALI M, QIAO Y, BOULOUIS G, et al. Vessel wall MR imaging for the detection of intracranial inflammatory vasculopathies[J]. Cardiovascular Diagnosis and Therapy, 2020, 10(4): 1108−1119. doi: 10.21037/cdt-20-324
    [50] DINÇ Y, ÖZPAR R, EMIR B, et al. Vertebral artery hypoplasia as an independent risk factor of posterior circulation atherosclerosis and ischemic stroke [J/OL]. Medicine (Baltimore), 2021, 100(38): e27280. [2021-09-24]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8462547/pdf/medi-100-e27280.pdf.
    [51] ZHU X J, WANG W, DU B, et al. Wall imaging for unilateral intracranial vertebral artery hypoplasia with three-dimensional high-isotropic resolution magnetic resonance images[J]. Chinese Medical Journal, 2015, 128(12): 1601−1606. doi: 10.4103/0366-6999.158314
  • 加载中
表(1)
计量
  • 文章访问数:  30
  • HTML全文浏览量:  12
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-04
  • 修回日期:  2023-01-11
  • 录用日期:  2023-01-12
  • 网络出版日期:  2023-02-22

目录

    /

    返回文章
    返回