ISSN 1004-4140
CN 11-3017/P

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

AVO信息约束匹配追踪技术在富煤储层刻画中的应用

刘庆文 秦德文 胡伟

刘庆文, 秦德文, 胡伟. AVO信息约束匹配追踪技术在富煤储层刻画中的应用[J]. CT理论与应用研究, 2023, 32(2): 189-197. DOI: 10.15953/j.ctta.2022.218
引用本文: 刘庆文, 秦德文, 胡伟. AVO信息约束匹配追踪技术在富煤储层刻画中的应用[J]. CT理论与应用研究, 2023, 32(2): 189-197. DOI: 10.15953/j.ctta.2022.218
LIU Q W, QIN D W, HU W. Application of AVO Information-constrained Matching Pursuit Technique in Rich Coal Reservoir Characterization[J]. CT Theory and Applications, 2023, 32(2): 189-197. DOI: 10.15953/j.ctta.2022.218. (in Chinese)
Citation: LIU Q W, QIN D W, HU W. Application of AVO Information-constrained Matching Pursuit Technique in Rich Coal Reservoir Characterization[J]. CT Theory and Applications, 2023, 32(2): 189-197. DOI: 10.15953/j.ctta.2022.218. (in Chinese)

AVO信息约束匹配追踪技术在富煤储层刻画中的应用

doi: 10.15953/j.ctta.2022.218
基金项目: 中国海油“七年行动计划”东海专项课题(西湖凹陷西部地区勘探开发关键技术研究(CNOOCKJ 135 ZDXM39 SH01));中国海油“十四五”重大科技项目“海上深层/超深层油气勘探技术”(KJGG2022-0402)。
详细信息
    作者简介:

    刘庆文:男,硕士,中海石油(中国)有限公司上海分公司研究院工程师,主要从事海油石油勘探地球物理研究,E-mail:liuqw3@cnooc.com.cn

    通讯作者:

    刘庆文*,

  • 中图分类号: P  631.4;P  315

Application of AVO Information-constrained Matching Pursuit Technique in Rich Coal Reservoir Characterization

  • 摘要: 针对西湖凹陷富煤环境下储层刻画精度低问题,本文结合煤层AVO截距、梯度特征,提出一种基于AVO信息约束的匹配追踪技术,压制煤层强反射引起的岩性假象,凸显储层真实、有效信号。该方法首先利用煤层4类AVO负强截距P、正强梯度G特点,构建煤层地震敏感因子P - G,放大煤层地震响应,并压制非煤层强振幅影响,实现煤层位置精细定位;在此基础上,将该煤层地震信息作为匹配追踪需要分解、重构的原始信号,利用复地震道分析技术提高信号快速匹配分解的效率,完成煤层强反射解耦。模型试算及实际资料应用表明:匹配追踪技术在精细定位煤层地震响应基础上,提高了匹配追踪算法去煤层强振幅效率;煤层解耦后地震数据较好地凸显储层横向展布变化,提高主力气层的纵向刻画精度。

     

  • 图  1  靶区不同岩性AVO类型

    Figure  1.  AVO type of different lithologies in the target area

    图  2  理论模型匹配追踪去煤层强振幅效果对比

    Figure  2.  Strong reflection elimination comparison of theoretical model based on matching pursuit

    图  3  N-1井匹配追踪去强振幅分析

    Figure  3.  High-amplitude elimination analysis of well N-1 based on matching pursuit

    图  4  靶区P6b层砂体横向展布

    Figure  4.  P6b sandstone distribution of the target area

    图  5  过三口钻井叠加地震及Vp/Vs反演剖面

    Figure  5.  Post-stack seismic and Vp/Vs inversion section through three drilled wells

    图  6  过三口钻井P-G煤层地震敏感因子剖面

    Figure  6.  Seismic sensitive factor P - G of coal identification section through three drilled wells

    图  7  匹配追踪去煤层强振幅前后对比分析

    Figure  7.  High-amplitude elimination comparison before and after matching pursuit

    图  8  去煤层强振幅前后Vp/Vs反演对比

    Figure  8.  Vp/Vs inversion comparison before and after high amplitude elimination

    图  9  去煤层强振幅前后P6b砂体平面展布对比

    Figure  9.  P6b sandstone-distribution comparison before and after high-amplitude elimination

    表  1  靶区不同岩性弹性参数

    Table  1.   Elastic parameters of different lithologies in the target area

    岩性  Vp/(m/s)Vs/(m/s)密度/(g/cm3纵波阻抗/
    ((m/s)·(g/cm3))
      泥岩415022202.6510998
      Ⅲ 类砂岩350023752.40 8400
      Ⅱ类a型砂岩460027502.4911454
      Ⅱ类b型砂岩430026102.4710621
      Ⅰ类砂岩530032502.5513515
      煤层290015002.00 5800
    下载: 导出CSV

    表  2  靶区不同岩性截距P、梯度GPG

    Table  2.   Intercept P, gradient G, and PG of different lithologies in the target area

    岩性截距P梯度GP-G
        Ⅲ 类砂岩-0.135-0.123-0.012
        Ⅱ类a型砂岩 0.020-0.183 0.203
        Ⅱ类b型砂岩-0.017-0.147 0.130
        Ⅰ类砂岩 0.103-0.357 0.460
        煤层-0.301 0.369-0.670
    下载: 导出CSV
  • [1] 姜勇, 秦德文, 俞伟哲. 东海某凹陷大型砂体优势储层预测技术研究与应用[J]. 石油物探, 2020,59(6): 949−960. doi: 10.3969/j.issn.1000-1441.2020.06.013

    JIANG Y, QIN D W, YU W Z. Prediction of favorable reservoirs in large sandstone reservoirs in a sag of the East China Sea[J]. Geophysical Prospecting for Petroleum, 2020, 59(6): 949−960. (in Chinese). doi: 10.3969/j.issn.1000-1441.2020.06.013
    [2] 刘江, 李炳颖, 包全, 等. 煤相约束叠前地质统计学在东海A气田实践[J]. 海洋石油, 2020,40(2): 1−8.

    LIU J, LI B Y, BAO Q, et al. The practice of coal facies constrained pre-stack geo-statistics in a gas field of the East China Sea[J]. Offshore Oil, 2020, 40(2): 1−8. (in Chinese).
    [3] 张军华, 刘振, 刘炳杨, 等. 强屏蔽层下弱反射储层特征分析及识别方法[J]. 特种油气田, 2012,19(1): 23−26.

    ZHANG J H, LIU Z, LIU B Y, et al. Analysis and identification of reservoir characteristics of weak reflectors under strong shielding layer[J]. Special Oil & Gas Reservoirs, 2012, 19(1): 23−26. (in Chinese).
    [4] 秦雪霏, 李巍. 大牛地气田煤系地层去煤影响储层预测技术[J]. 吉林大学学报(地球科学版), 2014,44(3): 1048−1054. doi: 10.13278/j.cnki.jjuese.201403306

    QIN X F, LI W. Identification and trimming of coal-bed interference in Daniudi Gas Field[J]. Journal of Jilin University (Earth Science Edition), 2014, 44(3): 1048−1054. (in Chinese). doi: 10.13278/j.cnki.jjuese.201403306
    [5] WANG Y H. Seismic time-frequency spectral decomposition by matching pursuit[J]. Geophysics, 2007, 72(1): 13−20.
    [6] WANG Y H. Multichannel matching pursuit for seismic trace decomposition[J]. Geophysics, 2010, 75(4): 61−66.
    [7] 朱博华, 向雪梅, 张卫华. 匹配追踪强反射层分离方法及应用[J]. 石油物探, 2016,55(2): 280−287. doi: 10.3969/j.issn.1000-1441.2016.02.014

    ZHU B H, XIANG X M, ZHANG W H. Strong reflection horizon separation based on matching pursuit algorithm and its application[J]. Geophysical Prospecting for Petroleum, 2016, 55(2): 280−287. (in Chinese). doi: 10.3969/j.issn.1000-1441.2016.02.014
    [8] 李海山, 杨午阳, 田军, 等. 匹配追踪煤层强反射分离方法[J]. 石油地球物理勘探, 2014,49(5): 866−870.

    LI H S, YANG W Y, TIAN J, et al. Coal seam strong reflection separation with matching pursuit[J]. Oil Geophysical Prospecting, 2014, 49(5): 866−870. (in Chinese).
    [9] 李海山. 基于稀疏表示理论的地震信号处理方法研究[D]. 青岛: 中国石油大学(华东), 2013.

    LI H S. Seismic signal processing methods based on sparse representation theory[D]. Qingdao: China University of Petroleum (East China), 2013. (in Chinese).
    [10] 张在金, 张军华, 李军, 等. 煤系地层地震强反射剥离方法研究及低频伴影分析[J]. 石油地球物理勘探, 2016,51(2): 376−383.

    ZHANG Z J, ZHANG J H, LI J, et al. A method for stripping coal seam strong reflection and low-frequency shadow analysis[J]. Oil Geophysical Prospecting, 2016, 51(2): 376−383. (in Chinese).
    [11] 何峰, 翁斌, 韩刚, 等. 一种基于地震约束的井控匹配追踪煤层强反射消除技术[J]. 中国海上油气, 2019,31(1): 61−66.

    HE F, WENG B, HAN G, et al. A seismic constraint-based technology for elimination of strong coal seam reflection via well-control and matching pursuit[J]. China Offshore Oil and Gas, 2019, 31(1): 61−66. (in Chinese).
    [12] 张云银, 魏欣伟, 谭明友, 等. 基于压缩感知技术的去除强屏蔽研究及应用[J]. 岩性油气藏, 2019,31(4): 85−91. doi: 10.12108/yxyqc.20190409

    ZHANG Y Y, WEI X W, TAN M Y, et al. Removal of seismic strong shield interface based on compressed sensing technology and its application[J]. Lithologic Reservoirs, 2019, 31(4): 85−91. (in Chinese). doi: 10.12108/yxyqc.20190409
    [13] 张军华, 王静, 王延光, 等. 基于压缩感知的反射系数域沿层L2范数约束去强屏蔽方法[J]. 石油地球物理勘, 2022,57(2): 405−413.

    ZHANG J H, WANG J, WANG Y G, et al. A strong shielding removal method of reflection coefficient domain based on compressed sensing with L2 norm constraint along layer[J]. Oil Geophgsical Prospecting, 2022, 57(2): 405−413. (in Chinese).
    [14] 邓勇, 潘光超, 李明, 等. 莺歌海盆地“平点”叠前AVO特征及识别[J]. 石油地球物理勘探, 2019,54(5): 1123−1130.

    DENG Y, PAN G C, LI M, et al. Prestack AVO characteristics and identification of flat spots in Yinggehai Basin[J]. Oil Geophgsical Prospecting, 2019, 54(5): 1123−1130. (in Chinese).
    [15] 侯波, 康洪全, 程涛. 有效压力与饱和度变化的气藏多波时移地震AVO响应[J]. CT理论与应用研究, 2018,27(5): 601−608. DOI: 10.15953/j.1004-4140.2018.27.05.06.

    HOU B, KANG H Q, CHENG T. Multi-wave time-lapse seismic AVO responses in gas reservoir vary with effective pressure and saturation[J]. CT Theory and Applications, 2018, 27(5): 601−608. DOI: 10.15953/j.1004-4140.2018.27.05.06. (in Chinese).
    [16] MALLAT S, ZHANG Z. Matching pursuit with time-frequency dictionaries[J]. IEEI Transactions on Signal Processing, 1993, 41(12): 3397−3415. doi: 10.1109/78.258082
    [17] 张繁昌, 兰南英, 李传辉, 等. 地震匹配追踪技术与应用研究进展[J]. 石油物探, 2020,59(4): 491−504. doi: 10.3969/j.issn.1000-1441.2020.04.001

    ZHANG F C, LAN N Y, LI C H, et al. Review of seismic matching pursuit[J]. Geophysical Prospecting for Petroleum, 2020, 59(4): 491−504. (in Chinese). doi: 10.3969/j.issn.1000-1441.2020.04.001
    [18] LIU J, MARFURT K. Instantaneous spectral decomposition by matching pursuit[J]. Geophysics, 2007, 72(1): V13-20.
    [19] 陈发宇, 杨长春. 对依据频率的匹配追踪快速算法的改进[J]. 石油物探, 2009,48(1): 80−83. doi: 10.3969/j.issn.1000-1441.2009.01.015

    CHEN F Y, YANG C C. An improvement for frequency-dominated fast matching pursuits algorithm[J]. Geophysical Prospecting for Petroleum, 2009, 48(1): 80−83. (in Chinese). doi: 10.3969/j.issn.1000-1441.2009.01.015
    [20] SHUEY R T. A simplification of the Zoeppritz equations[J]. Geophysics, 1985, 50(4): 609-614.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  33
  • HTML全文浏览量:  13
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-08
  • 修回日期:  2022-12-19
  • 录用日期:  2023-01-11
  • 网络出版日期:  2023-02-15
  • 刊出日期:  2023-03-31

目录

    /

    返回文章
    返回