ISSN 1004-4140
CN 11-3017/P

The Feasibility of Texture-based Quantification for Evaluating Lumbar Intervertebral Disc Degeneration in Adolescent Idiopathic Scoliosis from Conventional T2-weighted Magnetic Resonance Imaging

WANG Fengxian, WANG Shoufeng, CHANG Ying, ZHOU Jin, CHEN Jing, ZHOU Zhengyang, WANG Dongmei

WANG F X, WANG S F, CHANG Y, et al. The Feasibility of Texture-based Quantification for Evaluating Lumbar Intervertebral Disc Degeneration in Adolescent Idiopathic Scoliosis from Conventional T2-weighted Magnetic Resonance Imaging[J]. CT Theory and Applications, 2023, 32(6): 735-745. DOI: 10.15953/j.ctta.2022.225.
Citation: WANG F X, WANG S F, CHANG Y, et al. The Feasibility of Texture-based Quantification for Evaluating Lumbar Intervertebral Disc Degeneration in Adolescent Idiopathic Scoliosis from Conventional T2-weighted Magnetic Resonance Imaging[J]. CT Theory and Applications, 2023, 32(6): 735-745. DOI: 10.15953/j.ctta.2022.225.
王凤仙, 王守丰, 常莹, 等. 基于MRI T2加权成像纹理分析评估青少年脊柱侧弯患者椎间盘退变的可行性研究[J]. CT理论与应用研究, 2023, 32(6): 735-745. DOI: 10.15953/j.ctta.2022.225.(英).
引用本文: 王凤仙, 王守丰, 常莹, 等. 基于MRI T2加权成像纹理分析评估青少年脊柱侧弯患者椎间盘退变的可行性研究[J]. CT理论与应用研究, 2023, 32(6): 735-745. DOI: 10.15953/j.ctta.2022.225.(英).

The Feasibility of Texture-based Quantification for Evaluating Lumbar Intervertebral Disc Degeneration in Adolescent Idiopathic Scoliosis from Conventional T2-weighted Magnetic Resonance Imaging

More Information
    Corresponding author:

    ZHOU Zhengyang: 男,南京大学医学院附属南京鼓楼医院主任医师、教授,主要研究方向为多排CT与MR的基础和临床应用研究和磁共振淋巴造影对肿瘤转移性淋巴结定性诊断的基础和临床研究,E-mail:zyzhou@nju.edu.cn

    WANG Dongmei: 女,上海中医药大学附属上海市中医院主任医师,主要骨肌影像学的诊断和成像新技术的开发与临床应用研究,E-mail:dongmeiwang9320@163.com

基于MRI T2加权成像纹理分析评估青少年脊柱侧弯患者椎间盘退变的可行性研究

详细信息
  • 中图分类号: R 445.2

  • Abstract:

    Objective: To investigate the utility of texture data based on T2-weighted magnetic resonance imaging (MRI) in determining intervertebral disc degeneration in adolescent idiopathic scoliosis (AIS). Materials and Methods: From October 2016 and March 2020, 122 patients with AIS and 40 volunteers who underwent 3.0T MRI were prospectively included. The following MRI texture data were generated: (1) mean, (2) standard deviation, (3) max, (4) min, (5) the fifth, 10th, 25th, 50th, 75th and 90th percentiles; (6) skewness; (7) kurtosis; and (8) entropy. The Pfirrmann system was used to evaluate the intervertebral discs of all participants. Patients with Pm I were divided into groups 1 and 2. Volunteers were classified into 0. Differences and correlations between the groups were analyzed. Results: The mean, standard deviation, max, entropy and the 5th, 10th, 25th, 50th, 75th, and 90th percentiles in group 2 were significantly lower than those in group 1 and group 0; the min in group 2 was significantly lower than in group 0; the skewness in group 2 was significantly higher than in group 1 and group 0; the kurtosis in group 2 was significantly lower than in group 1; the skewness in group 1 was significantly higher than in group 0 and the standard deviation, min, kurtosis and 5th, 10th, 25th, and 50th percentiles in group 1 were significantly lower than those in group 0. Conclusion: Texture analysis can be used to assess early degenerative changes in the intervertebral discs of patients with AIS.

    摘要:

    目的:探讨MRI T2加权成像纹理分析在青少年脊柱侧弯患者椎间盘退变中的应用价值。材料和方法:从2016年10月至2020年3月,前瞻性纳入122例AIS患者和40名志愿者行3.0 T磁共振成像(MRI)检查并得到患者图像MRI纹理参数值:①平均值,②标准差,③最大值,④最小值,⑤第5、10、25、50、75和90百分位数,⑥偏度,⑦峰度,⑧熵。采用Pfirrmann评分对所有参与者的椎间盘进行评估并分组,AIS患者中,评分为Pm I的患者纳入1组,其余患者纳入2组,志愿者纳入0组;分析组间差异性和相关性。结果:2组的均值、标准差、最大值、熵和第5、10、25、50、75、90百分位均显著低于1组和0组;2组min显著低于0组;2组偏度显著高于1组和0组;2组峰度显著低于1组;1组偏度显著高于0组,1组标准差、最小值、峰度和第5、10、25、50百分位显著低于0组。结论:纹理分析可用于评估AIS患者椎间盘早期退行性改变,且优于常规MRI T2加权成像。

  • Figure  1.   (a) Image of an 18-year-old female volunteer classified as group 0with a mean value of 150.19 ms; (b) Image of a 15-year-old female AIS patients classified as group 1with a mean value of 139.27 ms; (c) Images of a 17-year-old female AIS patients classified as group 2with a mean value of 93.72 ms; (d) Image of the histogram of the three participants in three different groups

    Figure  2.   Boxplots of the 5th, 10th, and 25th percentiles. The three parameters can distinguish the differences between the three groups and have a strong negative correlation with g (r=–0.665, –0.652, –0.610)

    Table  1   Kruskal-Wallis one-way ANOVA (K sample) test between group 0 and group 1

    ParamterGroupP
    0 1 
        mean202.103±74.038180.604±47.4841.000
        standard-deviation62.857±22.63477.961±25.3000.012*
        min28.325±18.9939.819±6.796<0.001*
        max301.825±97.987326.010±97.2480.336
        5th percentile86.000±32.21448.521±18.381<0.001*
        10th percentile106.150±36.77868.202±23.571<0.001*
        25th percentile156.250±61.812116.617±35.0370.001*
        50th percentile217.700±84.736190.276±51.0650.450*
        75th percentile249.500±88.844246.914±67.0771.000
        90th percentile272.250±93.633275.617±77.2671.000
        skewness−0.538±0.246−0.324±0.3020.004*
        kurtosis2.470±0.4562.080±0.335<0.001*
        entropy5.264±0.2165.410±0.3540.136
    NOTE: Mean and percentile values are in units of ms. Mean=mean T2 relaxation time; standard deviation=spread of distribution; min=minimum T2 relaxation time; max=maximum T2 relaxation time; the 5th, 10th, 25th, 50th, 75th, and 90th percentiles=nth percentile T2 relaxation time of a cumulative histogram; skewness=histogram asymmetry degree around the mean; kurtosis=measurement of the histogram sharpness; entropy=the distribution of T2 relaxation time levels over the ROI. *−Statistically significant. P<0.05 was considered statistically significant in differentiating the groups 0 ~ 1.
    下载: 导出CSV

    Table  2   Kruskal-Wallis one-way ANOVA (K sample) test between group 0 and group 2

    ParamterGroupP
    0 2 
        mean202.103±74.03878.691±44.100<0.001*
        standard-deviation62.857±22.63434.065±16.268<0.001*
        min28.325±18.99311.142±17.504<0.001*
        max301.825±97.987163.821±71.492<0.001*
        5th percentile86.000±32.21429.178±28.686<0.001*
        10th percentile106.150±36.77836.178±31.232<0.001*
        25th percentile156.250±61.81251.928±38.613<0.001*
        50th percentile217.700±84.73675.357±44.333<0.001*
        75th percentile249.500±88.844103.892±53.918<0.001*
        90th percentile272.250±93.633126.500±62.421<0.001*
        skewness−0.538±0.2460.233±0.406<0.001*
        kurtosis2.470±0.4562.499±0.5521.000
        entropy5.264±0.2164.636±0.313<0.001*
    NOTE: mean and all percentile values are in units of ms. Mean=mean T2 relaxation time; standard deviation=spread of distribution; min=minimum T2 relaxation time; max=maximum T2 relaxation time;the 5th, 10th, 25th, 50th, 75th, and 90th percentiles=nth percentile T2 relaxation time of a cumulative histogram; skewness=histogram asymmetry degree aroundthe mean; kurtosis=measurement ofthe histogram sharpness; entropy=the distribution of T2 relaxation time levels overthe ROI. *−Statistically significant. P<0.05 was considered statistically significant in differentiatingthe group 0 ~ 2.
    下载: 导出CSV

    Table  3   Kruskal-Wallis one-way ANOVA (K sample) test between group 1 and group 2

    ParamterGroupP
    1 2 
        mean180.604±47.48478.691±44.100<0.001*
        standard-deviation77.961±25.30034.065±16.268<0.001*
        min9.819±6.79611.142±17.5040.280
        max326.010±97.248163.821±71.492<0.001*
        5th percentile48.521±18.38129.1785±28.686<0.001*
        10th percentile68.202±23.57136.178±31.232<0.001*
        25th percentile116.617±35.03751.928±38.613<0.001*
        50th percentile190.276±51.06575.357±44.333<0.001*
        75th percentile246.914±67.077103.892±53.918<0.001*
        90th percentile275.617±77.267126.5±62.421<0.001*
        skewness−0.324±0.3020.233±0.406<0.001*
        kurtosis2.080±0.3352.499±0.552<0.001*
        entropy5.410±0.3544.636±0.313<0.001*
    NOTE: Mean and all percentile values are in units of ms. Mean=mean T2 relaxation time; standard deviation=spread of distribution; min=minimum T2 relaxation time; max=maximum T2 relaxation time;the 5th, 10th, 25th, 50th, 75th, and 90th percentiles=nth percentile T2 relaxation time of a cumulative histogram; skewness=histogram asymmetry degree aroundthe mean; kurtosis=measurement ofthe histogram sharpness; entropy=the distribution of T2 relaxation time levels overthe ROI. *−Statistically significant. P<0.05 was considered statistically significant in differentiatingthe group 1 ~ 2.
    下载: 导出CSV

    Table  4   Receiver operating characteristic curves of histogram parameters in distinguishing different groups

     ParameterCut-offSensitivity/%Specificity/%AccuracyAUCP
    Group 0 vs. Group 1 mean142.84028.70095.0000.4850.5480.380
     standard-deviation63.50064.90080.0000.6940.679<0.001*
     min23.00098.90057.5000.8650.796<0.001*
     max345.00044.70087.5000.5740.5990.064
     5th percentile61.00073.40090.0000.7830.865<0.001*
     10th percentile70.00060.60095.0000.7080.823<0.001*
     25th percentile100.00048.90095.0000.6260.727<0.001*
     50th percentile160.00038.30095.0000.5520.5940.072
     75th percentile199.00070.20050.0000.6410.5300.591
     90th percentile286.00041.50080.0000.5290.5400.475
     skewness−0.30052.100100.0000.6640.695<0.001*
     kurtosis1.95048.900100.0000.6410.767<0.001*
     entropy5.45053.20090.0000.6410.6370.005*
    Group 0 vs. Group 2 mean139.30092.90095.0000.9410.954<0.001*
     standard-deviation40.36078.600100.00000.9110.879<0.001*
     min9.00082.10080.0000.8080.809<0.001*
     max194.00082.10092.5000.8820.901<0.001*
     5th percentile52.00089.30095.0000.9260.933<0.001*
     10th percentile70.00092.90095.0000.9410.945<0.001*
     25th percentile92.00092.900100.0000.9700.955<0.001*
     50th percentile142.00096.40095.0000.9550.967<0.001*
     75th percentile134.00085.700100.0000.9410.934<0.001*
     90th percentile168.00085.700100.0000.9410.921<0.001*
     skewness−0.30089.300100.0000.9550.937<0.001*
     kurtosis2.48050.00070.0000.6170.5380.6111
     entropy5.02092.90090.0000.9110.962<0.001*
    Group 1 vs. Group 2 mean96.17085.700100.0000.9670.941<0.001*
     Standard-deviation41.78082.10095.7000.9260.936<0.001*
     min8.00078.60052.1000.5810.6340.042*
     max182.00078.600100.0000.9500.929<0.001*
     5th percentile30.00082.10086.2000.8520.839<0.001*
     10th percentile40.00082.10094.7000.9180.870<0.001*
     25th percentile69.00085.70096.8000.9420.929<0.001*
     50th percentile127.00089.30095.7000.9420.960<0.001*
     75th percentile134.00085.700100.0000.9670.952<0.001*
     90th percentile168.00085.70098.9000.9590.936<0.001*
     skewness0.01075.00088.3000.8520.863<0.001*
     kurtosis2.03085.70064.9000.6960.750<0.001*
     entropy4.89082.10090.4000.8850.937<0.001*
    NOTE: Mean and all percentile values are in units of ms. Mean=mean T2 relaxation time; standard deviation=spread of distribution; min=minimum T2 relaxation time; max=maximum T2 relaxation time; 5th, 10th, 25th, 50th, 75th, and 90th percentiles=nth percentile T2 relaxation time of a cumulative histogram; skewness=degree of histogram asymmetry around the mean; kurtosis=measurement of histogram sharpness; entropy=distribution of T2 relaxation time levels over the ROI. AUC: area under the receiver operating characteristic (ROC) curve. *−P<0.05.
    下载: 导出CSV

    Table  5   Intra- and Interobserver Agreement of All Parameters

    ParameterIntraobserver agreementInterobserver agreementP
    ICC95% CIICC95% CI
      mean0.8520.804, 0.8900.8190.761, 0.864<0.001
      standard deviation0.8690.826, 0.9020.8360.783, 0.877<0.001
      min0.8560.808, 0.8920.8060.745, 0.854<0.001
      max0.8810.841, 0.9110.8380.785, 0.879<0.001
      percentile 50.8460.796, 0.8850.8090.748, 0.856<0.001
      percentile 100.8660.822, 0.9000.8300.775, 0.872<0.001
      percentile 250.8690.826, 0.9020.8100.749, 0.857<0.001
      percentile 500.9000.865, 0.9250.8820.842, 0.912<0.001
      percentile 750.8740.832, 0.9060.8360.783, 0.877<0.001
      percentile 900.9000.865, 0.9250.8820.842, 0.912<0.001
      skewness0.9160.887, 0.9380.8990.865, 0.925<0.001
      kurtosis0.8870.849, 0.9160.8170.759, 0.863<0.001
      entropy0.8280.773, 0.8710.8030.741, 0.852<0.001
    NOTE: mean and all percentile values are in units of ms. Mean, mean T2 relaxation time; standard deviation, spread of distribution; min, minimum T2 relaxation time; max, maximum T2 relaxation time; the 5th, 10th, 25th, 50th, 75th, and 90th percentiles, nth percentile T2 relaxation time of a cumulative histogram; skewness, histogram asymmetry degree around the mean; kurtosis, measurement of the histogram sharpness; entropy the distribution of T2 relaxation time levels over the ROI. Abbreviations: ICC, intraclass correlation coefficient; CI, confidence interval. *-P<0.05.
    下载: 导出CSV
  • [1]

    JANICKI J A, ALMAN B. Scoliosis: Review of diagnosis and treatment[J]. Paediatrics and Child Health, 2007, 12(9): 771−776. doi: 10.1093/pch/12.9.771

    [2]

    KEENAN B E, IZATT M T, ASKIN G N, et al. Sequential magnetic resonance imaging reveals individual level deformities of vertebrae and discs in the growing scoliotic spine[J]. Spine Deformity, 2017, 5(3): 197−207. doi: 10.1016/j.jspd.2016.10.002

    [3]

    NOHARA A, KAWAKAMI N, TSUJI T, et al. Intervertebral disc degeneration during postoperative follow-up more than 10 years after corrective surgery in idiopathic scoliosis: Comparison between patients with and without surgery[J]. Spine, 2018, 43(4): 255−261. doi: 10.1097/BRS.0000000000002319

    [4]

    PFIRRMANN C W, METZDORF A, ZANETTI M, et al. Magnetic resonance classification of lumbar intervertebral disc degeneration[J]. Spine, 2001, 26(17): 1873−1878. doi: 10.1097/00007632-200109010-00011

    [5]

    MODIC M T, MASARYK T J, ROSS J S, et al. Imaging of degenerative disk disease[J]. Radiology, 1988, 168(1): 177−186. doi: 10.1148/radiology.168.1.3289089

    [6]

    BLANQUER S B, GRIJPMA D W, POOT A A. Delivery systems for the treatment of degenerated intervertebral discs[J]. Advanced Drug Delivery Reviews, 2015, 84: 172−187. doi: 10.1016/j.addr.2014.10.024

    [7]

    OROZCO L, SOLER R, MORERA C, et al. Intervertebral disc repair by autologous mesenchymal bone marrow cells: A pilot study[J]. Transplantation, 2011, 92(7): 822−828. doi: 10.1097/TP.0b013e3182298a15

    [8]

    BEATTIE P F, MORGAN P S, PETERS D. Diffusion-weighted magnetic resonance imaging of normal and degenerative lumbar intervertebral discs: A new method to potentially quantify the physiologic effect of physical therapy intervention[J]. Journal of Orthopaedic & Sports Physical Therapy, 2008, 38(2): 42−49.

    [9]

    ZHANG W, MA X, WANG Y, et al. Assessment of apparent diffusion coefficient in lumbar intervertebral disc degeneration[J]. European Spine Journal, 2014, 23(9): 1830−1836. doi: 10.1007/s00586-014-3285-z

    [10]

    YTRE-HAUGE S, DYBVIK J A, LUNDERVOLD A, et al. Preoperative tumor texture analysis on MRI predicts high-risk disease and reduced survival in endometrial cancer[J]. Journal of Magnetic Resonance Imaging, 2018, 48(6): 1637−1647. doi: 10.1002/jmri.26184

    [11]

    SALA E, MEMA E, HIMOTO Y, et al. Unravelling tumour heterogeneity using next-generation imaging: Radiomics, radiogenomics, and habitat imaging[J]. Clinical Radiology, 2017, 72(1): 3−10. DOI: 10.1016/j.crad.2016.09.013.

    [12]

    PANCHMATIA J R, ISAAC A, MUTHUKUMAR T, et al. The 10 key steps for radiographic analysis of adolescent idiopathic scoliosis[J]. Clinical Radiology, 2015, 70(3): 235−242. doi: 10.1016/j.crad.2014.11.013

    [13]

    STUDER D. Clinical investigation and imaging[J]. Journal of Childrens Orthopaedics, 2013, 7(1): 29−35. doi: 10.1007/s11832-012-0461-8

    [14]

    WANG D, WANG S, GAO Y, et al. Diffusion tensor imaging of lumbar vertebras in female adolescent idiopathic scoliosis: Initial findings[J]. Journal of Computer Assisted Tomography, 2018, 42(2): 317−322. doi: 10.1097/RCT.0000000000000667

    [15]

    SIEMIONOW K, AN H, MASUDA K, et al. The effects of age, sex, ethnicity, and spinal level on the rate of intervertebral disc degeneration: A review of 1712 intervertebral discs[J]. Spine, 2011, 36(17): 1333−1339. doi: 10.1097/BRS.0b013e3181f2a177

    [16]

    LIU S, SHI H, JI C, et al. Preoperative CT texture analysis of gastric cancer: Correlations with postoperative TNM staging[J]. Clinical Radiology, 2018, 73(8): 756.e1−756.e9. doi: 10.1016/j.crad.2018.03.005

    [17]

    LIU S, LIU S, JI C, et al. Application of CT texture analysis in predicting histopathological characteristics of gastric cancers[J]. European Radiology, 2017, 27(12): 4951−4959. doi: 10.1007/s00330-017-4881-1

    [18]

    VERGROESEN P P, KINGMA I, EMANUEL K S, et al. Mechanics and biology in intervertebral disc degeneration: A vicious circle[J]. Osteoarthritis and Cartilage, 2015, 23(7): 1057−1070. doi: 10.1016/j.joca.2015.03.028

    [19]

    WEILER C, NERLICH A G, ZIPPERER J, et al. 2002 SSE Award Competition in Basic Science: Expression of major matrix metalloproteinases is associated with intervertebral disc degradation and resorption[J]. European Spine Journal, 2002, 11(4): 308−320. doi: 10.1007/s00586-002-0472-0

    [20]

    ANTONIOU J, STEFFEN T, NELSON F, et al. The human lumbar intervertebral disc: Evidence for changes in the biosynthesis and denaturation of the extracellular matrix with growth, maturation, ageing, and degeneration[J]. Journal of Clinical Investigation, 1996, 98(4): 996−1003. doi: 10.1172/JCI118884

    [21]

    ZHANG Z, CHAN Q, ANTHONY M P, et al. Age-related diffusion patterns in human lumbar intervertebral discs: A pilot study in asymptomatic subjects[J]. Magnetic Resonance Imaging, 2012, 30(2): 181−188. doi: 10.1016/j.mri.2011.09.021

    [22]

    CARTER D R, WONG M. Modelling cartilage mechanobiology[J]. Philosophical Transactions of the Royal Society B-Biological Sciences, 2003, 358(1437): 1461−1471. doi: 10.1098/rstb.2003.1346

    [23]

    SZTROLOVICS R, ALINI M, ROUGHLEY P J, et al. Aggrecan degradation in human intervertebral disc and articular cartilage[J]. Biochemical Journal, 1997, 326(Pt 1): 235−241.

    [24]

    SMITH R L, CARTER D R, SCHURMAN D J. Pressure and shear differentially alter human articular chondrocyte metabolism: A review[J]. Clinical Orthopaedics and Related Research, 2004, (427 Suppl): S89-95.

    [25]

    ANTONIOU J, DEMERS C N, BEAUDOIN G, et al. Apparent diffusion coefficient of intervertebral discs related to matrix composition and integrity[J]. Magnetic Resonance Imaging, 2004, 22(7): 963−972. DOI: 10.1016/j.mri.2004.02.011.

    [26]

    ALOBAIDLI S, MCQUAID S, SOUTH C, et al. The role of texture analysis in imaging as an outcome predictor and potential tool in radiotherapy treatment planning[J]. British Journal of Radiology, 2014, 87(1042): 20140369. doi: 10.1259/bjr.20140369

    [27]

    ANTONIOU J, EPURE L M, MICHALEK A J, et al. Analysis of quantitative magnetic resonance imaging and biomechanical parameters on human discs with different grades of degeneration[J]. Journal of Magnetic Resonance Imaging, 2013, 38(6): 1402−1414. doi: 10.1002/jmri.24120

图(2)  /  表(5)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-13
  • 修回日期:  2023-04-27
  • 录用日期:  2023-05-04
  • 网络出版日期:  2023-06-04
  • 刊出日期:  2023-10-31

目录

    /

    返回文章
    返回
    x 关闭 永久关闭