The Feasibility of Texture-based Quantification for Evaluating Lumbar Intervertebral Disc Degeneration in Adolescent Idiopathic Scoliosis from Conventional T2-weighted Magnetic Resonance Imaging
-
Abstract:
Objective: To investigate the utility of texture data based on T2-weighted magnetic resonance imaging (MRI) in determining intervertebral disc degeneration in adolescent idiopathic scoliosis (AIS). Materials and Methods: From October 2016 and March 2020, 122 patients with AIS and 40 volunteers who underwent 3.0T MRI were prospectively included. The following MRI texture data were generated: (1) mean, (2) standard deviation, (3) max, (4) min, (5) the fifth, 10th, 25th, 50th, 75th and 90th percentiles; (6) skewness; (7) kurtosis; and (8) entropy. The Pfirrmann system was used to evaluate the intervertebral discs of all participants. Patients with Pm I were divided into groups 1 and 2. Volunteers were classified into 0. Differences and correlations between the groups were analyzed. Results: The mean, standard deviation, max, entropy and the 5th, 10th, 25th, 50th, 75th, and 90th percentiles in group 2 were significantly lower than those in group 1 and group 0; the min in group 2 was significantly lower than in group 0; the skewness in group 2 was significantly higher than in group 1 and group 0; the kurtosis in group 2 was significantly lower than in group 1; the skewness in group 1 was significantly higher than in group 0 and the standard deviation, min, kurtosis and 5th, 10th, 25th, and 50th percentiles in group 1 were significantly lower than those in group 0. Conclusion: Texture analysis can be used to assess early degenerative changes in the intervertebral discs of patients with AIS.
摘要:目的:探讨MRI T2加权成像纹理分析在青少年脊柱侧弯患者椎间盘退变中的应用价值。材料和方法:从2016年10月至2020年3月,前瞻性纳入122例AIS患者和40名志愿者行3.0 T磁共振成像(MRI)检查并得到患者图像MRI纹理参数值:①平均值,②标准差,③最大值,④最小值,⑤第5、10、25、50、75和90百分位数,⑥偏度,⑦峰度,⑧熵。采用Pfirrmann评分对所有参与者的椎间盘进行评估并分组,AIS患者中,评分为Pm I的患者纳入1组,其余患者纳入2组,志愿者纳入0组;分析组间差异性和相关性。结果:2组的均值、标准差、最大值、熵和第5、10、25、50、75、90百分位均显著低于1组和0组;2组min显著低于0组;2组偏度显著高于1组和0组;2组峰度显著低于1组;1组偏度显著高于0组,1组标准差、最小值、峰度和第5、10、25、50百分位显著低于0组。结论:纹理分析可用于评估AIS患者椎间盘早期退行性改变,且优于常规MRI T2加权成像。
-
-
Figure 1. (a) Image of an 18-year-old female volunteer classified as group 0with a mean value of 150.19 ms; (b) Image of a 15-year-old female AIS patients classified as group 1with a mean value of 139.27 ms; (c) Images of a 17-year-old female AIS patients classified as group 2with a mean value of 93.72 ms; (d) Image of the histogram of the three participants in three different groups
Table 1 Kruskal-Wallis one-way ANOVA (K sample) test between group 0 and group 1
Paramter Group P 0 1 mean 202.103±74.038 180.604±47.484 1.000 standard-deviation 62.857±22.634 77.961±25.300 0.012* min 28.325±18.993 9.819±6.796 <0.001* max 301.825±97.987 326.010±97.248 0.336 5th percentile 86.000±32.214 48.521±18.381 <0.001* 10th percentile 106.150±36.778 68.202±23.571 <0.001* 25th percentile 156.250±61.812 116.617±35.037 0.001* 50th percentile 217.700±84.736 190.276±51.065 0.450* 75th percentile 249.500±88.844 246.914±67.077 1.000 90th percentile 272.250±93.633 275.617±77.267 1.000 skewness −0.538±0.246 −0.324±0.302 0.004* kurtosis 2.470±0.456 2.080±0.335 <0.001* entropy 5.264±0.216 5.410±0.354 0.136 NOTE: Mean and percentile values are in units of ms. Mean=mean T2 relaxation time; standard deviation=spread of distribution; min=minimum T2 relaxation time; max=maximum T2 relaxation time; the 5th, 10th, 25th, 50th, 75th, and 90th percentiles=nth percentile T2 relaxation time of a cumulative histogram; skewness=histogram asymmetry degree around the mean; kurtosis=measurement of the histogram sharpness; entropy=the distribution of T2 relaxation time levels over the ROI. *−Statistically significant. P<0.05 was considered statistically significant in differentiating the groups 0 ~ 1. Table 2 Kruskal-Wallis one-way ANOVA (K sample) test between group 0 and group 2
Paramter Group P 0 2 mean 202.103±74.038 78.691±44.100 <0.001* standard-deviation 62.857±22.634 34.065±16.268 <0.001* min 28.325±18.993 11.142±17.504 <0.001* max 301.825±97.987 163.821±71.492 <0.001* 5th percentile 86.000±32.214 29.178±28.686 <0.001* 10th percentile 106.150±36.778 36.178±31.232 <0.001* 25th percentile 156.250±61.812 51.928±38.613 <0.001* 50th percentile 217.700±84.736 75.357±44.333 <0.001* 75th percentile 249.500±88.844 103.892±53.918 <0.001* 90th percentile 272.250±93.633 126.500±62.421 <0.001* skewness −0.538±0.246 0.233±0.406 <0.001* kurtosis 2.470±0.456 2.499±0.552 1.000 entropy 5.264±0.216 4.636±0.313 <0.001* NOTE: mean and all percentile values are in units of ms. Mean=mean T2 relaxation time; standard deviation=spread of distribution; min=minimum T2 relaxation time; max=maximum T2 relaxation time;the 5th, 10th, 25th, 50th, 75th, and 90th percentiles=nth percentile T2 relaxation time of a cumulative histogram; skewness=histogram asymmetry degree aroundthe mean; kurtosis=measurement ofthe histogram sharpness; entropy=the distribution of T2 relaxation time levels overthe ROI. *−Statistically significant. P<0.05 was considered statistically significant in differentiatingthe group 0 ~ 2. Table 3 Kruskal-Wallis one-way ANOVA (K sample) test between group 1 and group 2
Paramter Group P 1 2 mean 180.604±47.484 78.691±44.100 <0.001* standard-deviation 77.961±25.300 34.065±16.268 <0.001* min 9.819±6.796 11.142±17.504 0.280 max 326.010±97.248 163.821±71.492 <0.001* 5th percentile 48.521±18.381 29.1785±28.686 <0.001* 10th percentile 68.202±23.571 36.178±31.232 <0.001* 25th percentile 116.617±35.037 51.928±38.613 <0.001* 50th percentile 190.276±51.065 75.357±44.333 <0.001* 75th percentile 246.914±67.077 103.892±53.918 <0.001* 90th percentile 275.617±77.267 126.5±62.421 <0.001* skewness −0.324±0.302 0.233±0.406 <0.001* kurtosis 2.080±0.335 2.499±0.552 <0.001* entropy 5.410±0.354 4.636±0.313 <0.001* NOTE: Mean and all percentile values are in units of ms. Mean=mean T2 relaxation time; standard deviation=spread of distribution; min=minimum T2 relaxation time; max=maximum T2 relaxation time;the 5th, 10th, 25th, 50th, 75th, and 90th percentiles=nth percentile T2 relaxation time of a cumulative histogram; skewness=histogram asymmetry degree aroundthe mean; kurtosis=measurement ofthe histogram sharpness; entropy=the distribution of T2 relaxation time levels overthe ROI. *−Statistically significant. P<0.05 was considered statistically significant in differentiatingthe group 1 ~ 2. Table 4 Receiver operating characteristic curves of histogram parameters in distinguishing different groups
Parameter Cut-off Sensitivity/% Specificity/% Accuracy AUC P Group 0 vs. Group 1 mean 142.840 28.700 95.000 0.485 0.548 0.380 standard-deviation 63.500 64.900 80.000 0.694 0.679 <0.001* min 23.000 98.900 57.500 0.865 0.796 <0.001* max 345.000 44.700 87.500 0.574 0.599 0.064 5th percentile 61.000 73.400 90.000 0.783 0.865 <0.001* 10th percentile 70.000 60.600 95.000 0.708 0.823 <0.001* 25th percentile 100.000 48.900 95.000 0.626 0.727 <0.001* 50th percentile 160.000 38.300 95.000 0.552 0.594 0.072 75th percentile 199.000 70.200 50.000 0.641 0.530 0.591 90th percentile 286.000 41.500 80.000 0.529 0.540 0.475 skewness −0.300 52.100 100.000 0.664 0.695 <0.001* kurtosis 1.950 48.900 100.000 0.641 0.767 <0.001* entropy 5.450 53.200 90.000 0.641 0.637 0.005* Group 0 vs. Group 2 mean 139.300 92.900 95.000 0.941 0.954 <0.001* standard-deviation 40.360 78.600 100.0000 0.911 0.879 <0.001* min 9.000 82.100 80.000 0.808 0.809 <0.001* max 194.000 82.100 92.500 0.882 0.901 <0.001* 5th percentile 52.000 89.300 95.000 0.926 0.933 <0.001* 10th percentile 70.000 92.900 95.000 0.941 0.945 <0.001* 25th percentile 92.000 92.900 100.000 0.970 0.955 <0.001* 50th percentile 142.000 96.400 95.000 0.955 0.967 <0.001* 75th percentile 134.000 85.700 100.000 0.941 0.934 <0.001* 90th percentile 168.000 85.700 100.000 0.941 0.921 <0.001* skewness −0.300 89.300 100.000 0.955 0.937 <0.001* kurtosis 2.480 50.000 70.000 0.617 0.538 0.6111 entropy 5.020 92.900 90.000 0.911 0.962 <0.001* Group 1 vs. Group 2 mean 96.170 85.700 100.000 0.967 0.941 <0.001* Standard-deviation 41.780 82.100 95.700 0.926 0.936 <0.001* min 8.000 78.600 52.100 0.581 0.634 0.042* max 182.000 78.600 100.000 0.950 0.929 <0.001* 5th percentile 30.000 82.100 86.200 0.852 0.839 <0.001* 10th percentile 40.000 82.100 94.700 0.918 0.870 <0.001* 25th percentile 69.000 85.700 96.800 0.942 0.929 <0.001* 50th percentile 127.000 89.300 95.700 0.942 0.960 <0.001* 75th percentile 134.000 85.700 100.000 0.967 0.952 <0.001* 90th percentile 168.000 85.700 98.900 0.959 0.936 <0.001* skewness 0.010 75.000 88.300 0.852 0.863 <0.001* kurtosis 2.030 85.700 64.900 0.696 0.750 <0.001* entropy 4.890 82.100 90.400 0.885 0.937 <0.001* NOTE: Mean and all percentile values are in units of ms. Mean=mean T2 relaxation time; standard deviation=spread of distribution; min=minimum T2 relaxation time; max=maximum T2 relaxation time; 5th, 10th, 25th, 50th, 75th, and 90th percentiles=nth percentile T2 relaxation time of a cumulative histogram; skewness=degree of histogram asymmetry around the mean; kurtosis=measurement of histogram sharpness; entropy=distribution of T2 relaxation time levels over the ROI. AUC: area under the receiver operating characteristic (ROC) curve. *−P<0.05. Table 5 Intra- and Interobserver Agreement of All Parameters
Parameter Intraobserver agreement Interobserver agreement P ICC 95% CI ICC 95% CI mean 0.852 0.804, 0.890 0.819 0.761, 0.864 <0.001 standard deviation 0.869 0.826, 0.902 0.836 0.783, 0.877 <0.001 min 0.856 0.808, 0.892 0.806 0.745, 0.854 <0.001 max 0.881 0.841, 0.911 0.838 0.785, 0.879 <0.001 percentile 5 0.846 0.796, 0.885 0.809 0.748, 0.856 <0.001 percentile 10 0.866 0.822, 0.900 0.830 0.775, 0.872 <0.001 percentile 25 0.869 0.826, 0.902 0.810 0.749, 0.857 <0.001 percentile 50 0.900 0.865, 0.925 0.882 0.842, 0.912 <0.001 percentile 75 0.874 0.832, 0.906 0.836 0.783, 0.877 <0.001 percentile 90 0.900 0.865, 0.925 0.882 0.842, 0.912 <0.001 skewness 0.916 0.887, 0.938 0.899 0.865, 0.925 <0.001 kurtosis 0.887 0.849, 0.916 0.817 0.759, 0.863 <0.001 entropy 0.828 0.773, 0.871 0.803 0.741, 0.852 <0.001 NOTE: mean and all percentile values are in units of ms. Mean, mean T2 relaxation time; standard deviation, spread of distribution; min, minimum T2 relaxation time; max, maximum T2 relaxation time; the 5th, 10th, 25th, 50th, 75th, and 90th percentiles, nth percentile T2 relaxation time of a cumulative histogram; skewness, histogram asymmetry degree around the mean; kurtosis, measurement of the histogram sharpness; entropy the distribution of T2 relaxation time levels over the ROI. Abbreviations: ICC, intraclass correlation coefficient; CI, confidence interval. *-P<0.05. -
[1] JANICKI J A, ALMAN B. Scoliosis: Review of diagnosis and treatment[J]. Paediatrics and Child Health, 2007, 12(9): 771−776. doi: 10.1093/pch/12.9.771
[2] KEENAN B E, IZATT M T, ASKIN G N, et al. Sequential magnetic resonance imaging reveals individual level deformities of vertebrae and discs in the growing scoliotic spine[J]. Spine Deformity, 2017, 5(3): 197−207. doi: 10.1016/j.jspd.2016.10.002
[3] NOHARA A, KAWAKAMI N, TSUJI T, et al. Intervertebral disc degeneration during postoperative follow-up more than 10 years after corrective surgery in idiopathic scoliosis: Comparison between patients with and without surgery[J]. Spine, 2018, 43(4): 255−261. doi: 10.1097/BRS.0000000000002319
[4] PFIRRMANN C W, METZDORF A, ZANETTI M, et al. Magnetic resonance classification of lumbar intervertebral disc degeneration[J]. Spine, 2001, 26(17): 1873−1878. doi: 10.1097/00007632-200109010-00011
[5] MODIC M T, MASARYK T J, ROSS J S, et al. Imaging of degenerative disk disease[J]. Radiology, 1988, 168(1): 177−186. doi: 10.1148/radiology.168.1.3289089
[6] BLANQUER S B, GRIJPMA D W, POOT A A. Delivery systems for the treatment of degenerated intervertebral discs[J]. Advanced Drug Delivery Reviews, 2015, 84: 172−187. doi: 10.1016/j.addr.2014.10.024
[7] OROZCO L, SOLER R, MORERA C, et al. Intervertebral disc repair by autologous mesenchymal bone marrow cells: A pilot study[J]. Transplantation, 2011, 92(7): 822−828. doi: 10.1097/TP.0b013e3182298a15
[8] BEATTIE P F, MORGAN P S, PETERS D. Diffusion-weighted magnetic resonance imaging of normal and degenerative lumbar intervertebral discs: A new method to potentially quantify the physiologic effect of physical therapy intervention[J]. Journal of Orthopaedic & Sports Physical Therapy, 2008, 38(2): 42−49.
[9] ZHANG W, MA X, WANG Y, et al. Assessment of apparent diffusion coefficient in lumbar intervertebral disc degeneration[J]. European Spine Journal, 2014, 23(9): 1830−1836. doi: 10.1007/s00586-014-3285-z
[10] YTRE-HAUGE S, DYBVIK J A, LUNDERVOLD A, et al. Preoperative tumor texture analysis on MRI predicts high-risk disease and reduced survival in endometrial cancer[J]. Journal of Magnetic Resonance Imaging, 2018, 48(6): 1637−1647. doi: 10.1002/jmri.26184
[11] SALA E, MEMA E, HIMOTO Y, et al. Unravelling tumour heterogeneity using next-generation imaging: Radiomics, radiogenomics, and habitat imaging[J]. Clinical Radiology, 2017, 72(1): 3−10. DOI: 10.1016/j.crad.2016.09.013.
[12] PANCHMATIA J R, ISAAC A, MUTHUKUMAR T, et al. The 10 key steps for radiographic analysis of adolescent idiopathic scoliosis[J]. Clinical Radiology, 2015, 70(3): 235−242. doi: 10.1016/j.crad.2014.11.013
[13] STUDER D. Clinical investigation and imaging[J]. Journal of Childrens Orthopaedics, 2013, 7(1): 29−35. doi: 10.1007/s11832-012-0461-8
[14] WANG D, WANG S, GAO Y, et al. Diffusion tensor imaging of lumbar vertebras in female adolescent idiopathic scoliosis: Initial findings[J]. Journal of Computer Assisted Tomography, 2018, 42(2): 317−322. doi: 10.1097/RCT.0000000000000667
[15] SIEMIONOW K, AN H, MASUDA K, et al. The effects of age, sex, ethnicity, and spinal level on the rate of intervertebral disc degeneration: A review of 1712 intervertebral discs[J]. Spine, 2011, 36(17): 1333−1339. doi: 10.1097/BRS.0b013e3181f2a177
[16] LIU S, SHI H, JI C, et al. Preoperative CT texture analysis of gastric cancer: Correlations with postoperative TNM staging[J]. Clinical Radiology, 2018, 73(8): 756.e1−756.e9. doi: 10.1016/j.crad.2018.03.005
[17] LIU S, LIU S, JI C, et al. Application of CT texture analysis in predicting histopathological characteristics of gastric cancers[J]. European Radiology, 2017, 27(12): 4951−4959. doi: 10.1007/s00330-017-4881-1
[18] VERGROESEN P P, KINGMA I, EMANUEL K S, et al. Mechanics and biology in intervertebral disc degeneration: A vicious circle[J]. Osteoarthritis and Cartilage, 2015, 23(7): 1057−1070. doi: 10.1016/j.joca.2015.03.028
[19] WEILER C, NERLICH A G, ZIPPERER J, et al. 2002 SSE Award Competition in Basic Science: Expression of major matrix metalloproteinases is associated with intervertebral disc degradation and resorption[J]. European Spine Journal, 2002, 11(4): 308−320. doi: 10.1007/s00586-002-0472-0
[20] ANTONIOU J, STEFFEN T, NELSON F, et al. The human lumbar intervertebral disc: Evidence for changes in the biosynthesis and denaturation of the extracellular matrix with growth, maturation, ageing, and degeneration[J]. Journal of Clinical Investigation, 1996, 98(4): 996−1003. doi: 10.1172/JCI118884
[21] ZHANG Z, CHAN Q, ANTHONY M P, et al. Age-related diffusion patterns in human lumbar intervertebral discs: A pilot study in asymptomatic subjects[J]. Magnetic Resonance Imaging, 2012, 30(2): 181−188. doi: 10.1016/j.mri.2011.09.021
[22] CARTER D R, WONG M. Modelling cartilage mechanobiology[J]. Philosophical Transactions of the Royal Society B-Biological Sciences, 2003, 358(1437): 1461−1471. doi: 10.1098/rstb.2003.1346
[23] SZTROLOVICS R, ALINI M, ROUGHLEY P J, et al. Aggrecan degradation in human intervertebral disc and articular cartilage[J]. Biochemical Journal, 1997, 326(Pt 1): 235−241.
[24] SMITH R L, CARTER D R, SCHURMAN D J. Pressure and shear differentially alter human articular chondrocyte metabolism: A review[J]. Clinical Orthopaedics and Related Research, 2004, (427 Suppl): S89-95.
[25] ANTONIOU J, DEMERS C N, BEAUDOIN G, et al. Apparent diffusion coefficient of intervertebral discs related to matrix composition and integrity[J]. Magnetic Resonance Imaging, 2004, 22(7): 963−972. DOI: 10.1016/j.mri.2004.02.011.
[26] ALOBAIDLI S, MCQUAID S, SOUTH C, et al. The role of texture analysis in imaging as an outcome predictor and potential tool in radiotherapy treatment planning[J]. British Journal of Radiology, 2014, 87(1042): 20140369. doi: 10.1259/bjr.20140369
[27] ANTONIOU J, EPURE L M, MICHALEK A J, et al. Analysis of quantitative magnetic resonance imaging and biomechanical parameters on human discs with different grades of degeneration[J]. Journal of Magnetic Resonance Imaging, 2013, 38(6): 1402−1414. doi: 10.1002/jmri.24120