Removal of Gridline Artifacts in Cone-beam CT Based on Wavelet Transform
-
摘要: 采用平板探测器的X射线锥束成像系统中,由于散射会带来图像伪影从而劣化图像质量,通常采用在平板探测器前安装滤线栅来去除散射,但滤线栅会在获取的图像上形成周期性的条状伪影,如何去除条状伪影是X射线锥束成像系统中的一个关键技术问题。本文对已有的滤线栅条纹去除方法进行概述,创新性地提出基于频谱拼接的小波变换方法,既能在损失物体细节信息少的前提下很好地去除滤线栅条纹,又不会引入小波变换谐波。通过实际实验,检验该方法的有效性。Abstract: In cone-beam computed tomography with flat-panel imagers, scattered X-ray photons lead to reduced image quality. Insertion of an anti-scatter grid between the patient or object and the flat-panel imagers is one of the most used techniques for reducing scattered radiation. However, while the scatter is reduced, gridline artifacts can be visible. Suppressing gridline artifacts in cone-beam computed tomography is significant. In this paper, the existing methods of removing gridline artifacts are summarized. Moreover, the wavelet transform method based on spectrum coalescence is innovatively proposed for removing gridline artifacts. Wavelet transform can remove gridline artifacts effectively and without introducing wavelet transform harmonics thus reducing the loss of object details. The effectiveness of this method is verified by experiments.
-
Key words:
- gridline artifacts /
- wavelet transform /
- spectrum coalescence
-
表 1 频谱拼接的定量效果
Table 1. Quantitative effect of spectrum coalescence
统计参数 加条纹图像 不做频谱拼接图像 做频谱拼接图像 峰值信噪比 29.719 34.475 37.758 结构相似性 0.984 0.995 0.998 与原图差异的标准差 9.122 5.085 3.458 -
[1] 庄天戈. CT原理与算法[M]. 1版. 上海: 上海交通大学出版社, 1992. [2] 金慧君, 张蔚, 焦启刚, 等. 应用于口腔医学的锥束CT技术[J]. 口腔材料器械, 2011,20(3): 158−161.JIN H J, ZHANG W, JIAO Q G, et al. Technique of cone-beam computed tomography for oral clinical practice[J]. Oral Material and Equipment, 2011, 20(3): 158−161. (in Chinese). [3] 吴彦举, 郝冰, 常华峰, 等. 工业锥束CT在直升机承力件检测方面的应用[J]. 新型工业化, 2020,10(5): 67−69. [4] FELDKAMP L A, DAVIS L C, KRESS J W. Practical cone-beam algorithm[J]. Journal of the Optical Society of America A, 1984, 1(6): 612−619. doi: 10.1364/JOSAA.1.000612 [5] RÜHRNSCHOPFA E P, KLINGENBECK K. A general framework and review of scatter correction methods in X-ray cone-beam computerized tomography. Part 1: Scatter compensation approaches[J]. Medical Physics, 2011, 38(7): 4296−4311. doi: 10.1118/1.3599033 [6] RÜHRNSCHOPFA E P, KLINGENBECK K. A general framework and review of scatter correction methods in X-ray cone-beam computerized tomography. Part 2: Scatter estimation approaches[J]. Medical Physics, 2011, 38(9): 5186−5199. doi: 10.1118/1.3589140 [7] KIM D S, LEE S, YOON J K. Grid artifact reduction based on homomorphic filtering in digital radiography imaging[J]. Proc. of SPIE, 2013, 8668: 86682C-1−86682C-9. [8] LIN C Y, LEE W J, CHEN S J, et al. A study of grid artifacts formation and elimination in computed radiographic images[J]. Journal of Digital Imaging, 2006, 19(4): 351−361. doi: 10.1007/s10278-006-0630-8 [9] TANG H. A new stationary gridline artifact suppression method based on the 2D discrete wavelet transform[J]. Medical Physics, 2015, 42(4): 1721−1729. doi: 10.1118/1.4914861 [10] YU Y. A novel grid regression demodulation method for radiographic grid artifact correction[J]. Medical Physics, 2021, 48(7): 3790−3803. doi: 10.1002/mp.14932 [11] WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: From error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600−612. DOI: 1109/TIP.2003.819861. -