ISSN 1004-4140
CN 11-3017/P

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于CT影像特征术前预测肺腺癌气道播散研究进展

巴文娟 朱艳琳 魏梅 尹柯

巴文娟, 朱艳琳, 魏梅, 等. 基于CT影像特征术前预测肺腺癌气道播散研究进展[J]. CT理论与应用研究, 2023, 32(0): 1-6. DOI: 10.15953/j.ctta.2022.236
引用本文: 巴文娟, 朱艳琳, 魏梅, 等. 基于CT影像特征术前预测肺腺癌气道播散研究进展[J]. CT理论与应用研究, 2023, 32(0): 1-6. DOI: 10.15953/j.ctta.2022.236
BA W J, ZHU Y L, WEI M, et al. Advances in the Preoperative Prediction of the Spread of Lung Adenocarcinoma Through Air Spaces Using CT Features[J]. CT Theory and Applications, 2023, 32(0): 1-6. DOI: 10.15953/j.ctta.2022.236. (in Chinese)
Citation: BA W J, ZHU Y L, WEI M, et al. Advances in the Preoperative Prediction of the Spread of Lung Adenocarcinoma Through Air Spaces Using CT Features[J]. CT Theory and Applications, 2023, 32(0): 1-6. DOI: 10.15953/j.ctta.2022.236. (in Chinese)

基于CT影像特征术前预测肺腺癌气道播散研究进展

doi: 10.15953/j.ctta.2022.236
详细信息
    作者简介:

    巴文娟:女,硕士,研究方向为胸部疾病诊断,E-mail:1948644508@qq.com

    尹柯:男,主治医师,硕士,主要从事胸部肿瘤影像研究,E-mail:yinke93@163.com

    通讯作者:

    尹柯∗,

Advances in the Preoperative Prediction of the Spread of Lung Adenocarcinoma Through Air Spaces Using CT Features

  • 摘要: 气道播散(STAS)是肺腺癌侵袭性行为中的一种,是亚肺叶切除术后肺腺癌复发和预后较差的危险因素。基于计算机断层扫描(CT)的特征与STAS之间的关联,可以预测肺腺癌患者STAS状态,从而帮助临床选择合适的手术类型。本文就肺腺癌STAS的侵袭性以及基于CT特征及其新技术在术前预测STAS的研究现状进行综述。

     

  • [1] SIEGEL R L, MILLER K D, FUCHS H E, et al. Cancer Statistics, 2021[J]. Ca-a Cancer Journal For Clinicians, 2021, 71(1): 7−33. doi: 10.3322/caac.21654
    [2] AMIN M B, TAMBOLI P, MERCHANT S H, et al. Micropapillary component in lung adenocarcinoma: A distinctive histologic feature with possible prognostic significance[J]. American Journal of Surgical Pathology, 2002, 26(3): 358−364. doi: 10.1097/00000478-200203000-00010
    [3] BLAAUWGEERS H, FLIEDER D, WARTH A, et al. A prospective study of loose tissue fragments in non-small cell lung Cancer resection specimens: An alternative view to "spread through air spaces"[J]. American Journal of Surgical Pathology, 2017, 41(9): 1226−1230. doi: 10.1097/PAS.0000000000000889
    [4] KADOTA K, NITADORI J, SIMA C S, et al. Tumor spread through air spaces is an important pattern of invasion and impacts the frequency and Location of recurrences after limited resection for small stage I lung adenocarcinomas[J]. Journal of Thoracic Oncology, 2015, 10(5): 806−814. doi: 10.1097/JTO.0000000000000486
    [5] TRAVIS W D, BRAMBILLA E, NICHOLSON A G, et al. The 2015 World Health Organization classification of lung tumors: Impact of genetic, clinical and radiologic advances since the 2004 classification[J]. Journal of Thoracic Oncology, 2015, 10(9): 1243−1260. doi: 10.1097/JTO.0000000000000630
    [6] WARTH A. Spread through air spaces (STAS): A comprehensive update[J]. Translational Lung Cancer Research, 2017, 6(5): 501−507. doi: 10.21037/tlcr.2017.06.08
    [7] DETTERBECK F C, BOFFA D J, KIM A W, et al. The eighth edition lung cancer stage classification[J]. Chest, 2017, 151(1): 193−203. doi: 10.1016/j.chest.2016.10.010
    [8] SHIONO S, ENDO M, SUZUKI K, et al. Spread through air spaces is a prognostic factor in sublobar resection of non-small cell lung Cancer[J]. Annals of Thoracic Surgery, 2018, 106(2): 354−360. doi: 10.1016/j.athoracsur.2018.02.076
    [9] LIU H, YIN Q, YANG G, et al. Prognostic impact of tumor spread through air spaces in non-small cell lung cancers: A Meta-analysis including 3564 patients[J]. Pathology & Oncology Research, 2019, 25(4): 1303−1310.
    [10] DAVID E A, ATAY S M, MCFADDEN P M, et al. Sublobar or suboptimal: Does tumor spread through air spaces signify the end of sublobar resections for T1 N0 adenocarcinomas[J]? Journal of Thoracic Oncology. 2019, 14(1): 11-12.
    [11] DAI C, XIE H, SU H, et al. Tumor spread through air spaces affects the recurrence and overall survival in patients with lung? Adenocarcinoma > 2 to 3 cm[J]. Journal Of Thoracic Oncology, 2017, 12(7): 1052−1060. doi: 10.1016/j.jtho.2017.03.020
    [12] KADOTA K, KUSHIDA Y, KATSUKI N, et al. Tumor spread through air spaces is an independent predictor of recurrence-free survival in patients with resected lung squamous cell carcinoma[J]. American Journal of Surgical Pathology, 2017, 41(8): 1077−1086. doi: 10.1097/PAS.0000000000000872
    [13] YOKOYAMA S, MURAKAMI T, TAO H, et al. Tumor spread through air spaces identifies a distinct subgroup with poor prognosis in surgically resected lung pleomorphic carcinoma[J]. Chest, 2018, 154(4): 838−847. doi: 10.1016/j.chest.2018.06.007
    [14] CHEN D, MAO Y, WEN J, et al. Tumor spread through air spaces in non-small cell lung cancer: A systematic review and meta-analysis[J]. Annals of Thoracic Surgery, 2019, 108(3): 945−954. doi: 10.1016/j.athoracsur.2019.02.045
    [15] KIM S K, KIM T J, CHUNG M J, et al. Lung adenocarcinoma: CT features associated with spread through air spaces[J]. Radiology, 2018, 289(3): 831−840. doi: 10.1148/radiol.2018180431
    [16] MASAI K, SAKURAI H, SUKEDA A, et al. Prognostic impact of margin distance and tumor spread through air spaces in limited resection for primary lung cancer[J]. Journal of Thoracic Oncology, 2017, 12(12): 1788−1797. doi: 10.1016/j.jtho.2017.08.015
    [17] 江长思, 罗燕, 唐雪, 等. 基于CT机器学习模型预测肺腺癌气腔播散[J]. 中国医学影像技术, 2020,36(12): 1834−1838.

    JIANG CHANGSI, LUO YAN, TANG XUE, et al. CT-based machine learning model in prediction of spread through air space of lung adenocarcinoma[J]. Chinese Journal of Medical Imaging Technology, 2020, 36(12): 1834−1838. (in Chinese).
    [18] 阙敬文, 刘涛, 罗达远, 等. 炎症指标及CT影像学对可手术肺腺癌患者出现气道播散的预测价值[J]. 四川医学, 2022,43(4): 339−344.

    QUE J W, LIU T, LUO D Y, et al. The Predictive Value of Inflammatory Indexes and CT Imaging in Patients with Operable Lung Adenocarcinoma with Spread Through Air Space(STAS)[J]. Sichuan Medical Journal, 2022, 43(4): 339−344. (in Chinese).
    [19] TOYOKAWA G, YAMADA Y, TAGAWA T, et al. Significance of spread through air spaces in resected pathological stage Ⅰ lung adenocarcinoma[J]. Annals of Thoracic Surgery, 2018, 105(6): 1655−1663. doi: 10.1016/j.athoracsur.2018.01.037
    [20] KOEZUKA S, MIKAMI T, TOCHIGI N, et al. Toward improving prognosis prediction in patients undergoing small lung adenocarcinoma resection: Radiological and pathological assessment of diversity and intratumor heterogeneity[J]. Lung Cancer, 2019, 135: 40−46. doi: 10.1016/j.lungcan.2019.06.023
    [21] 尹柯, 巴文娟, 陶俊利, 等. 双能量CT定量参数预测实性肺腺癌气道播散[J]. 中国医学影像技术, 2022,38(10): 1514−1518.

    YIN K, BA W J, TAO J L, et al. Dual-energy CT quantitative parameters for predicting spreading through air spaces of solid lung adenocarcinoma[J]. Chinese Journal of Medical Imaging Technology, 2022, 38(10): 1514−1518. (in Chinese).
    [22] GU Y, SHE Y, XIE D, et al. A texture analysis-based prediction model for lymph node metastasis in stage IA lung adenocarcinoma[J]. Annals of Thoracic Surgery, 2018, 106(1): 214−220. doi: 10.1016/j.athoracsur.2018.02.026
    [23] LAMBIN P, RIOS-VELAZQUEZ E, LEIJENAAR R, et al. Radiomics: extracting more information from medical images using advanced feature analysis[J]. European Journal of Cancer, 2012, 48(4): 441−446. doi: 10.1016/j.ejca.2011.11.036
    [24] COROLLER T P, AGRAWAL V, HUYNH E, et al. Radiomic-based pathological response prediction from primary tumors and lymph nodes in NSCLC[J]. Journal of Thoracic Oncology, 2017, 12(3): 467−476. doi: 10.1016/j.jtho.2016.11.2226
    [25] COROLLER T P, AGRAWAL V, NARAYAN V, et al. Radiomic phenotype features predict pathological response in non-small cell lung cancer[J]. Radiotherapy And Oncology, 2016, 119(3): 480−486. doi: 10.1016/j.radonc.2016.04.004
    [26] LEE G, PARK H, SOHN I, et al. Comprehensive computed tomography radiomics analysis of lung adenocarcinoma for prognostication[J]. Oncologist, 2018, 23(7): 806−813. doi: 10.1634/theoncologist.2017-0538
    [27] CHEN D, SHE Y, WANG T, et al. Radiomics-based prediction for tumour spread through air spaces in stage Ⅰ lung adenocarcinoma using machine learning[J]. Journal of Cardiothoracic Surgery, 2020, 58(1): 51−58. doi: 10.1093/ejcts/ezaa011
    [28] JIANG C, LUO Y, YUAN J, et al. CT-based radiomics and machine learning to predict spread through air space in lung adenocarcinoma[J]. European Radiology, 2020, 30(7): 4050−4057. doi: 10.1007/s00330-020-06694-z
    [29] HAN X, FAN J, ZHENG Y, et al. The Value of CT-based radiomics for predicting spread through air spaces in stage IA lung adenocarcinoma[J]. Frontiers in Oncology, 2022, 12: 757389. doi: 10.3389/fonc.2022.757389
    [30] ZHUO Y, FENG M, YANG S, et al. Radiomics nomograms of tumors and peritumoral regions for the preoperative prediction of spread through air spaces in lung adenocarcinoma[J]. Translational Oncology, 2020, 13(10): 100820. doi: 10.1016/j.tranon.2020.100820
    [31] WU L, YANG X, CAO W, et al. Multiple level CT radiomics features preoperatively predict lymph node metastasis in esophageal cancer: A multicentre retrospective study[J]. Frontiers in Oncology, 2019, 9: 1548.
    [32] NAKAURA T, HIGAKI T, AWAI K, et al. A primer for understanding radiology articles about machine learning and deep learning[J]. Diagnostic and Interventional Imaging, 2020, 101(12): 765−770. doi: 10.1016/j.diii.2020.10.001
    [33] TAO J, LIANG C, YIN K. 3 D convolutional neural network model from contrast-enhanced CT to predict spread through air spaces in non-small cell lung cancer[J]. Diagnostic and Interventional Imaging. 2022, 103(11): 535-544.
  • 加载中
计量
  • 文章访问数:  36
  • HTML全文浏览量:  15
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-24
  • 修回日期:  2023-01-20
  • 录用日期:  2023-01-28
  • 网络出版日期:  2023-02-27

目录

    /

    返回文章
    返回