[1] |
SIEGEL R L, MILLER K D, FUCHS H E, et al. Cancer Statistics, 2021[J]. Ca-a Cancer Journal For Clinicians, 2021, 71(1): 7−33. doi: 10.3322/caac.21654
|
[2] |
AMIN M B, TAMBOLI P, MERCHANT S H, et al. Micropapillary component in lung adenocarcinoma: A distinctive histologic feature with possible prognostic significance[J]. American Journal of Surgical Pathology, 2002, 26(3): 358−364. doi: 10.1097/00000478-200203000-00010
|
[3] |
BLAAUWGEERS H, FLIEDER D, WARTH A, et al. A prospective study of loose tissue fragments in non-small cell lung Cancer resection specimens: An alternative view to "spread through air spaces"[J]. American Journal of Surgical Pathology, 2017, 41(9): 1226−1230. doi: 10.1097/PAS.0000000000000889
|
[4] |
KADOTA K, NITADORI J, SIMA C S, et al. Tumor spread through air spaces is an important pattern of invasion and impacts the frequency and Location of recurrences after limited resection for small stage I lung adenocarcinomas[J]. Journal of Thoracic Oncology, 2015, 10(5): 806−814. doi: 10.1097/JTO.0000000000000486
|
[5] |
TRAVIS W D, BRAMBILLA E, NICHOLSON A G, et al. The 2015 World Health Organization classification of lung tumors: Impact of genetic, clinical and radiologic advances since the 2004 classification[J]. Journal of Thoracic Oncology, 2015, 10(9): 1243−1260. doi: 10.1097/JTO.0000000000000630
|
[6] |
WARTH A. Spread through air spaces (STAS): A comprehensive update[J]. Translational Lung Cancer Research, 2017, 6(5): 501−507. doi: 10.21037/tlcr.2017.06.08
|
[7] |
DETTERBECK F C, BOFFA D J, KIM A W, et al. The eighth edition lung cancer stage classification[J]. Chest, 2017, 151(1): 193−203. doi: 10.1016/j.chest.2016.10.010
|
[8] |
SHIONO S, ENDO M, SUZUKI K, et al. Spread through air spaces is a prognostic factor in sublobar resection of non-small cell lung Cancer[J]. Annals of Thoracic Surgery, 2018, 106(2): 354−360. doi: 10.1016/j.athoracsur.2018.02.076
|
[9] |
LIU H, YIN Q, YANG G, et al. Prognostic impact of tumor spread through air spaces in non-small cell lung cancers: A Meta-analysis including 3564 patients[J]. Pathology & Oncology Research, 2019, 25(4): 1303−1310.
|
[10] |
DAVID E A, ATAY S M, MCFADDEN P M, et al. Sublobar or suboptimal: Does tumor spread through air spaces signify the end of sublobar resections for T1 N0 adenocarcinomas[J]? Journal of Thoracic Oncology. 2019, 14(1): 11-12.
|
[11] |
DAI C, XIE H, SU H, et al. Tumor spread through air spaces affects the recurrence and overall survival in patients with lung? Adenocarcinoma > 2 to 3 cm[J]. Journal Of Thoracic Oncology, 2017, 12(7): 1052−1060. doi: 10.1016/j.jtho.2017.03.020
|
[12] |
KADOTA K, KUSHIDA Y, KATSUKI N, et al. Tumor spread through air spaces is an independent predictor of recurrence-free survival in patients with resected lung squamous cell carcinoma[J]. American Journal of Surgical Pathology, 2017, 41(8): 1077−1086. doi: 10.1097/PAS.0000000000000872
|
[13] |
YOKOYAMA S, MURAKAMI T, TAO H, et al. Tumor spread through air spaces identifies a distinct subgroup with poor prognosis in surgically resected lung pleomorphic carcinoma[J]. Chest, 2018, 154(4): 838−847. doi: 10.1016/j.chest.2018.06.007
|
[14] |
CHEN D, MAO Y, WEN J, et al. Tumor spread through air spaces in non-small cell lung cancer: A systematic review and meta-analysis[J]. Annals of Thoracic Surgery, 2019, 108(3): 945−954. doi: 10.1016/j.athoracsur.2019.02.045
|
[15] |
KIM S K, KIM T J, CHUNG M J, et al. Lung adenocarcinoma: CT features associated with spread through air spaces[J]. Radiology, 2018, 289(3): 831−840. doi: 10.1148/radiol.2018180431
|
[16] |
MASAI K, SAKURAI H, SUKEDA A, et al. Prognostic impact of margin distance and tumor spread through air spaces in limited resection for primary lung cancer[J]. Journal of Thoracic Oncology, 2017, 12(12): 1788−1797. doi: 10.1016/j.jtho.2017.08.015
|
[17] |
江长思, 罗燕, 唐雪, 等. 基于CT机器学习模型预测肺腺癌气腔播散[J]. 中国医学影像技术, 2020,36(12): 1834−1838.JIANG CHANGSI, LUO YAN, TANG XUE, et al. CT-based machine learning model in prediction of spread through air space of lung adenocarcinoma[J]. Chinese Journal of Medical Imaging Technology, 2020, 36(12): 1834−1838. (in Chinese).
|
[18] |
阙敬文, 刘涛, 罗达远, 等. 炎症指标及CT影像学对可手术肺腺癌患者出现气道播散的预测价值[J]. 四川医学, 2022,43(4): 339−344.QUE J W, LIU T, LUO D Y, et al. The Predictive Value of Inflammatory Indexes and CT Imaging in Patients with Operable Lung Adenocarcinoma with Spread Through Air Space(STAS)[J]. Sichuan Medical Journal, 2022, 43(4): 339−344. (in Chinese).
|
[19] |
TOYOKAWA G, YAMADA Y, TAGAWA T, et al. Significance of spread through air spaces in resected pathological stage Ⅰ lung adenocarcinoma[J]. Annals of Thoracic Surgery, 2018, 105(6): 1655−1663. doi: 10.1016/j.athoracsur.2018.01.037
|
[20] |
KOEZUKA S, MIKAMI T, TOCHIGI N, et al. Toward improving prognosis prediction in patients undergoing small lung adenocarcinoma resection: Radiological and pathological assessment of diversity and intratumor heterogeneity[J]. Lung Cancer, 2019, 135: 40−46. doi: 10.1016/j.lungcan.2019.06.023
|
[21] |
尹柯, 巴文娟, 陶俊利, 等. 双能量CT定量参数预测实性肺腺癌气道播散[J]. 中国医学影像技术, 2022,38(10): 1514−1518.YIN K, BA W J, TAO J L, et al. Dual-energy CT quantitative parameters for predicting spreading through air spaces of solid lung adenocarcinoma[J]. Chinese Journal of Medical Imaging Technology, 2022, 38(10): 1514−1518. (in Chinese).
|
[22] |
GU Y, SHE Y, XIE D, et al. A texture analysis-based prediction model for lymph node metastasis in stage IA lung adenocarcinoma[J]. Annals of Thoracic Surgery, 2018, 106(1): 214−220. doi: 10.1016/j.athoracsur.2018.02.026
|
[23] |
LAMBIN P, RIOS-VELAZQUEZ E, LEIJENAAR R, et al. Radiomics: extracting more information from medical images using advanced feature analysis[J]. European Journal of Cancer, 2012, 48(4): 441−446. doi: 10.1016/j.ejca.2011.11.036
|
[24] |
COROLLER T P, AGRAWAL V, HUYNH E, et al. Radiomic-based pathological response prediction from primary tumors and lymph nodes in NSCLC[J]. Journal of Thoracic Oncology, 2017, 12(3): 467−476. doi: 10.1016/j.jtho.2016.11.2226
|
[25] |
COROLLER T P, AGRAWAL V, NARAYAN V, et al. Radiomic phenotype features predict pathological response in non-small cell lung cancer[J]. Radiotherapy And Oncology, 2016, 119(3): 480−486. doi: 10.1016/j.radonc.2016.04.004
|
[26] |
LEE G, PARK H, SOHN I, et al. Comprehensive computed tomography radiomics analysis of lung adenocarcinoma for prognostication[J]. Oncologist, 2018, 23(7): 806−813. doi: 10.1634/theoncologist.2017-0538
|
[27] |
CHEN D, SHE Y, WANG T, et al. Radiomics-based prediction for tumour spread through air spaces in stage Ⅰ lung adenocarcinoma using machine learning[J]. Journal of Cardiothoracic Surgery, 2020, 58(1): 51−58. doi: 10.1093/ejcts/ezaa011
|
[28] |
JIANG C, LUO Y, YUAN J, et al. CT-based radiomics and machine learning to predict spread through air space in lung adenocarcinoma[J]. European Radiology, 2020, 30(7): 4050−4057. doi: 10.1007/s00330-020-06694-z
|
[29] |
HAN X, FAN J, ZHENG Y, et al. The Value of CT-based radiomics for predicting spread through air spaces in stage IA lung adenocarcinoma[J]. Frontiers in Oncology, 2022, 12: 757389. doi: 10.3389/fonc.2022.757389
|
[30] |
ZHUO Y, FENG M, YANG S, et al. Radiomics nomograms of tumors and peritumoral regions for the preoperative prediction of spread through air spaces in lung adenocarcinoma[J]. Translational Oncology, 2020, 13(10): 100820. doi: 10.1016/j.tranon.2020.100820
|
[31] |
WU L, YANG X, CAO W, et al. Multiple level CT radiomics features preoperatively predict lymph node metastasis in esophageal cancer: A multicentre retrospective study[J]. Frontiers in Oncology, 2019, 9: 1548.
|
[32] |
NAKAURA T, HIGAKI T, AWAI K, et al. A primer for understanding radiology articles about machine learning and deep learning[J]. Diagnostic and Interventional Imaging, 2020, 101(12): 765−770. doi: 10.1016/j.diii.2020.10.001
|
[33] |
TAO J, LIANG C, YIN K. 3 D convolutional neural network model from contrast-enhanced CT to predict spread through air spaces in non-small cell lung cancer[J]. Diagnostic and Interventional Imaging. 2022, 103(11): 535-544.
|