ISSN 1004-4140
CN 11-3017/P

填方土体压实效果多道瞬态瑞雷波快速检测方法

吴传洋

吴传洋. 填方土体压实效果多道瞬态瑞雷波快速检测方法[J]. CT理论与应用研究, 2023, 32(6): 703-712. DOI: 10.15953/j.ctta.2022.243.
引用本文: 吴传洋. 填方土体压实效果多道瞬态瑞雷波快速检测方法[J]. CT理论与应用研究, 2023, 32(6): 703-712. DOI: 10.15953/j.ctta.2022.243.
WU C Y. Rapid and Continuous Detection Method for Soil-compaction Degrees of Fill Foundation Based on Multichannel Transient Rayleigh Wave Detecting[J]. CT Theory and Applications, 2023, 32(6): 703-712. DOI: 10.15953/j.ctta.2022.243. (in Chinese).
Citation: WU C Y. Rapid and Continuous Detection Method for Soil-compaction Degrees of Fill Foundation Based on Multichannel Transient Rayleigh Wave Detecting[J]. CT Theory and Applications, 2023, 32(6): 703-712. DOI: 10.15953/j.ctta.2022.243. (in Chinese).

填方土体压实效果多道瞬态瑞雷波快速检测方法

详细信息
    通讯作者:

    吴传洋: 男,中铁二十四局集团安徽工程有限公司高级工程师,长期从事市政、机场、房建等土木工程施工与管理,E-mail:549803532@qq.com

  • 中图分类号: P  315.9;U  416.1

Rapid and Continuous Detection Method for Soil-compaction Degrees of Fill Foundation Based on Multichannel Transient Rayleigh Wave Detecting

  • 摘要:

    大型工程场地挖填方地基处理面积大、工期紧,需要及时、快速掌握地基加固处理的质量情况,以确保工程质量和进度;同时为确保工程的安全稳定,大型工程对地基土体加固效果的均匀性往往有较高要求。地基土体压实效果常规检测方法主要有原位载荷试验、原位灌砂和土样测试等方法,这些方法要么设备笨重、耗时,要么会造成已加固的地基土体的破坏,从而无法对地基土体展开快速、连续检测。为克服上述问题,本文采用考虑道间时差相位的多道瞬态瑞雷波探测方法,辅以抽样点的取土试验测试,对某大型工程填方地基土体压实加固效果展开快速、连续检测,获得地基土体弹性波速的三维连续图像,进而生成附加应力影响深度范围内地基土体的瑞雷波相速度成像水平切片和地基土体深度平均压实系数水平分布成像。这些地基土体成像结果可以较好地反映出地基土体压实加固效果,从而为地基土体加固质量评价提供重要参考。

    Abstract:

    To address the large treatment area and tight construction period of large-scale engineering site filling foundations and to ensure the quality and progress of the project, understanding the foundation-reinforcement treatment quickly and accurately is essential. Additionally, to ensure the safety and stability of projects, large-scale projects often have higher requirements for the uniformity of the foundation-soil reinforcement effect. The quality-evaluation indices of foundation-soil compaction and reinforcement mainly include the foundation-bearing capacity, foundation-soil deformation modulus, and compaction coefficient. Conventional testing methods primarily include in-situ loading tests, in-situ sand filling, and soil-sample testing. These methods are either labor-intensive and time-consuming or harmful to the reinforced foundation-soil mass, preventing rapid and continuous detection of the foundation-soil mass. To perform rapid and continuous detection of the compaction and reinforcement effects of foundation-soil mass, the multichannel transient Rayleigh wave-detection method, considering the time difference phase between channels, was used in this study. Additionally, the method was supplemented by the sampling tests of soil mass at selected points in this study. Consequently, continuous three-dimensional imaging of the elastic wave velocity of the foundation-soil mass was obtained, along with the horizontal slice of the Rayleigh wave phase velocity imaging and the horizontal-distribution imaging of the depth-average compaction coefficient of the foundation-soil mass. The results reveal that the foundation-soil mass imaging can accurately reflect the compaction and reinforcement effects of the foundation-soil mass, thereby providing a reliable basis for evaluating the quality of foundation-soil mass reinforcement.

  • 图  1   瞬态瑞雷波激发和观测系统及探测仪器设备

    Figure  1.   Schematic diagram of the transient Rayleigh wave generating and observing device system

    图  2   地基土体瑞雷波相速度三维成像的空间架构

    Figure  2.   Spatial architecture of the Rayleigh wave phase velocity 3D imaging

    图  3   填方地基土体压实效果检测场地瑞雷波测线及土体抽样点布置图

    Figure  3.   Layout of the Rayleigh wave survey lines and soil sampling points at the testing site for the compaction effect of filling foundation soil mass

    图  4   填方地基土体瑞雷波相速度成像剖面

    Figure  4.   Rayleigh wave phase velocity-depth imaging profile of the foundation soil mass

    图  5   Z=5填方地基土体瑞雷波相速度VR成像水平切片

    Figure  5.   VR imaging horizontal section of the Rayleigh wave phase velocity in the foundation soil mass at Z=5

    图  6   地基土体瑞雷波相速度与压实系数的统计关系

    Figure  6.   Statistical relationship between the Rayleigh wave phase velocity and the compaction coefficient of the foundation soil

    图  7   填方地基持力层土体(Z≤5)深度平均压实系数水平分布成像($\bar \gamma - X - Y - {Z_\sigma }$

    Figure  7.   Horizontal distribution imaging of the depth-average compaction coefficient of the bearing layer soil mass (Z≤5) in the filling foundation($ \bar \gamma - X - Y - {Z_\sigma } $

    表  1   填方地基压实土体瑞雷波相速度$ {V_{\text{R}}} $分级与土体性状对照表

    Table  1   Comparison table between the Rayleigh wave phase velocity $({V_{\text{R}}} )$ classification and the soil properties of compacted soil mass

    土体性状软弱土体中软土体中硬土体坚硬土体岩体
    VR/(m/s)≤150150~250250~500500~800≥800
     
    下载: 导出CSV

    表  2   填方地基压实土体深度压实系数$\bar \gamma $分级与土体性状对照表

    Table  2   Comparison table between the classification of depth compaction coefficient ($\bar \gamma $) and the soil properties of compacted soil mass

    土体性状软弱土体
    压实程度较低
    中软土体
    压实程度中等
    中硬土体
    压实程度较高
    坚硬土体
    压实程度高
    $\bar \gamma $0~0.780.78~0.830.83~0.950.95~1
     
    下载: 导出CSV

    表  3   填方地基土体抽样点土体参数测试结果一览表

    Table  3   Test results of soil parameters at filling foundation soil sampling points

    抽样点
    编号
    $\bar \gamma(Z_\sigma )$$V_{\rm{R}}(Z_\sigma )$/m·s−1抽样点
    编号
    $\bar \gamma(Z_\sigma )$$V_{\rm{R}}(Z_\sigma )$/m·s−1抽样点
    编号
    $\bar \gamma(Z_\sigma )$$V_{\rm{R}}(Z_\sigma )$/m·s−1
    10.83524640.83925070.862263
    20.84428550.80731380.824223
    30.83320360.81622890.847251
    下载: 导出CSV
  • [1] JGJ 79-2012, 建筑地基处理技术规范[S]. 北京: 中国规划出版社, 2012.
    [2] 王少锋. 天津快速轨道软土地基处理对策及效果分析[J]. 铁道建筑, 2003, (6): 46-48.

    WANG S F, Countermeasures and effect analysis of soft soil foundation treatment for Tianjin fast track[J]. Railway Engineering, 2003, (6): 46-48. (in Chinese).

    [3] 王树栋, 娄国充. 水泥搅拌桩在天津沿海软基加固中的应用[J]. 铁道建筑, 2008,(10): 88−89. doi: 10.3969/j.issn.1003-1995.2008.10.027

    WANG S D, LOU G C. Application of cement mixing pile in Tianjin coastal soft foundation reinforcement[J]. Railway Engineering, 2008, (10): 88−89. (in Chinese). doi: 10.3969/j.issn.1003-1995.2008.10.027

    [4] GB 50202-2018, 建筑地基基础工程施工质量验收标准[S]. 北京: 中国规划出版社, 2018.
    [5] GB/T50123-2019, 土工试验方法标准[S]. 北京: 中国规划出版社, 2019.
    [6] 孔得天, 李高, 郑旭辉, 等. 弹性波CT技术在大足石刻岩体破碎带探测中的应用[J]. CT理论与应用研究, 2018,27(1): 35−44. DOI: 10.15935/j.1004-4140.2018.27.01.05.

    KONG D T, LI G, ZHENG X H, et al. Application of elastic wave CT technique on detection of fracture zone in the rock mass of dazu stone carvings[J]. CT Theory and Applications, 2018, 27(1): 35−44. DOI: 10.15935/j.1004-4140.2018.27.01.05. (in Chinese).

    [7] 向俊锋, 周仕礼, 蒋晓菁, 等. 大足石刻北山168窟围岩病害高频瑞雷波成像[J]. CT理论与应用研究, 2021, 30(4): 425-436. DOI: 10.15953/j.1004-4140.2021.30.04.03.

    XIANG J F, ZHOU S L, JIANG X J, et al. High-frequency Rayleigh wave imaging of diseases in surrounding rock mass of Beishan Cave 168 of Dazu rock carvings[J]. CT Theory and Applications 2021, 30(4): 425-436. DOI:10.15953/j.1004-4140.2021.30.04.03. (in Chinese).

    [8] 孙进忠, 祁生文, 张辉, 等. 瑞雷波探测方法在工程无损检测中的应用[J]. 工程地质学报, 2004,12(S): 427−432. doi: 10.3969/j.issn.1004-9665.2004.z1.089

    SUN J Z, QI S W, ZHANG H, et al. Application of Rayleigh wave detection in nondestructive testing for engineering[J]. Journal of Engineering Geology, 2004, 12(S): 427−432. (in Chinese). doi: 10.3969/j.issn.1004-9665.2004.z1.089

    [9] 刘磊, 周富彪, 孙进忠, 等. 考虑道间时差相位的多道瞬态瑞雷波探测方法[J]. 地球物理学进展, 2019,34(1): 331−341. doi: 10.6038/pg2019BB0176

    LIU L, ZHOU F B, SUN J Z, et al. Multichannel method of transient Rayleigh wave detection in considering of arrival time difference phase between channels[J]. Progress in Geophysics, 2019, 34(1): 331−341. (in Chinese). doi: 10.6038/pg2019BB0176

    [10] 祁生文, 孙进忠, 万智清. 瞬态瑞雷波勘探方法的一点改进[J]. 辽宁工程技术大学学报(自然科学版), 2001,20(4): 466−468. doi: 10.3969/j.issn.1008-0562.2001.04.030

    QI S W, SUN J Z, WAN Z Q. Improvement in transient Rayleigh wave exploration method[J]. Journal of Liaoning Technical University (Natural Science), 2001, 20(4): 466−468. (in Chinese). doi: 10.3969/j.issn.1008-0562.2001.04.030

    [11] 白朝旭, 刘洋, 王典, 等. 瑞雷波测试技术在岩土工程中的应用研究[J]. 地球物理学进展, 2007,22(6): 1959−1965. doi: 10.3969/j.issn.1004-2903.2007.06.046

    BAI C X, LIU Y, WANG D, et al. Application of Rayleigh wave testing techniques in geotechnical engineering[J]. Progress in Geophysics, 2007, 22(6): 1959−1965. (in Chinese). doi: 10.3969/j.issn.1004-2903.2007.06.046

    [12] 刘治峰, 孙进忠, 梁向前, 等. 一种地基强夯加固质量三维连续检测方法: 中国, ZL 201310459842.9[P]. 2015-06-17.
    [13] 田爱苹, 柳亚千, 戴彦杰, 等. 南口污水处理厂强夯处理地基瑞雷波检测[J]. 地球物理学进展, 2009,24(4): 1533−1539. doi: 10.3969/j.issn.1004-2903.2009.04.049

    TIAN A P, LIU Y Q, DAI Y J, et al. Rayleigh wave detection to dynamic consolidation effect of foundation at the Nankou sewage treatment plant[J]. Progress in Geophysics, 2009, 24(4): 1533−1539. (in Chinese). doi: 10.3969/j.issn.1004-2903.2009.04.049

    [14] 郑治真, 波谱分析基础[M]. 北京: 地震出版社, 1983.
    [15] 赵鸿儒, 孙进忠, 唐文榜. 全波震相分析的应用[J]. 地球物理学报, 1990,(1): 54−63. doi: 10.3321/j.issn:0001-5733.1990.01.006

    ZHAO H R, SUN J Z, TANG W B. the application of full wave phase analysis[J]. Chinese Journal of Geophysics, 1990, (1): 54−63. (in Chinese). doi: 10.3321/j.issn:0001-5733.1990.01.006

    [16] 张朋辉, 韩赛超, 张晓东, 等. 吹填砂场地强夯振动特性研究及安全评估[J]. 探矿工程, 2014,41(8): 58−61.

    ZHANG P H, HAN S C, ZHANG X D, et al. Vibration characteristics of dynamic compaction and safety assessment in hydraulic fill site[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2014, 41(8): 58−61. (in Chinese).

    [17] GB 50011-2010, 建筑抗震设计规范[S]. 北京: 中国建筑工业出版社, 2016.
图(7)  /  表(3)
计量
  • 文章访问数:  282
  • HTML全文浏览量:  118
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-01
  • 修回日期:  2023-01-06
  • 录用日期:  2023-01-12
  • 网络出版日期:  2023-02-19
  • 刊出日期:  2023-10-31

目录

    /

    返回文章
    返回
    x 关闭 永久关闭