Comparative Analysis of Clinical and Computed Tomography Imaging Features of COVID-19 with Different Disease Courses
-
摘要: 目的:比较分析不同病程的新型冠状病毒感染(COVID-19)患者的临床与胸部CT影像特征。方法:回顾性分析2022年12月至2023年1月期间于首都医科大学附属北京世纪坛医院发热门诊收治的161例COVID-19确诊且胸部CT显示肺部感染阳性的病例,按CT检查时发病时间不同分为两组:<10 d及≥10 d,对两组病例的临床表现和胸部CT影像学特征进行统计学分析。结果:<10 d组共92例(57.1%)、≥10 d组共69例(42.9%),两组病例临床症状比较显示,两组间咽痛和肌痛的比例存在统计学差异;实验室指标显示,<10 d组的C反应蛋白更高、淋巴细胞计数更低,其差异存在统计学意义;在CT影像特征方面,<10 d组患者存在血管周、混合分布、大片、空气支气管征的比例更高,≥10 d组患者存在边界不规则、病灶内索条、反晕征、胸膜尾征、胸膜下线、胸膜下栅栏的比例更高,差异有统计学意义。结论:COVID-19的临床症状、实验室指标、CT影像特征随病程不同发生变化,探索其中的规律可以帮助临床医生更好地诊断和治疗COVID-19肺部感染。Abstract: Objective: To compare and analyze the clinical and chest computed tomography (CT) imaging features of COVID-19 patients with different disease courses. Methods: A retrospective analysis was performed for 161 cases with confirmed COVID-19 and positive chest CT lung infections from December 2022 to January 2023 at the fever clinic of Beijing Shijitan Hospital affiliated with Capital Medical University. The patients were divided into two groups based on the time of CT examination: <10 days and ≥10 days. We statistically analyzed the clinical manifestations and chest CT imaging characteristics of the two groups. Results: Of the 161 cases, 92 cases (57.1%) were in the <10-day group, and 69 cases (42.9%) were in the ≥10-day group. The clinical symptoms of the two groups showed that there was a statistical difference in the proportion of sore throat and myalgia between the two groups. Laboratory indicators showed that the C-reactive protein and lymphocyte count were significantly higher in the <10-day group. In terms of CT imaging features, the proportion of patients with perivascular, mixed distribution, large area, and air bronchogram was higher in the patients from the <10-day group, while the patients in the ≥10-day group had a significantly higher proportion of irregular boundaries, intralesional cord, reversed halo sign, pleural tail sign, subpleural line, and subpleural palisade. Conclusion: The clinical symptoms, laboratory indexes, and CT imaging features of COVID-19 pulmonary infection differed depending on the disease course, and exploring these differences can help clinicians diagnose and treat COVID-19 lung infections more effectively.
-
Keywords:
- CT /
- COVID-19 /
- lung infections /
- imaging features
-
-
表 1 不同病程患者组临床症状占比情况
Table 1 Proportion of clinical symptoms in different disease course groups
临床指标 组别 统计检验 <10 d ≥10 d $Z/\chi^{2}$ P 年龄($M(Q_1,Q_3)$) 69(59,82) 70(59,79) -0.328 0.743 性别(男,例(%)) 52(56.5) 39(56.5) 0.000 1.000 发热/(例(%)) 92(100.0) 69(100.0) — — 憋气/(例(%)) 13(14.1) 14(20.3) 1.072 0.301 咳嗽/(例(%)) 45(48.9) 37(53.6) 0.112 0.738 咳痰/(例(%)) 84(91.3) 64(92.8) 0.350 0.554 咽痛/(例(%)) 43(46.7) 19(27.5) 6.140 0.013 肌痛/(例(%)) 3(3.3) 9(13.0) 5.470 0.019 表 2 不同病程患者组实验室指标对比情况
Table 2 Comparison of laboratory indicators in different disease course groups
实验室指标($M(Q_1,Q_3)$) 组别 统计检验 <10 d ≥10 d Z P C反应蛋白/(mg/L) 32.71(11.52,67.57) 15.70(2.88,50.93) -2.761 0.006 白细胞/(×109/L) 6.23(4.82,7.74) 6.99(5.10,8.29) -1.570 0.116 淋巴细胞/(×109/L) 1.31(0.99,1.69) 1.78(1.03,2.41) -2.979 0.003 单核细胞/(×109/L) 0.35(0.44,0.61) 0.47(0.37,0.59) -0.297 -0.766 中性粒细胞/(×109/L) 4.09(3.01,5.89) 4.22(3.19,5.90) -0.478 0.632 表 3 不同病程患者组病灶各类影像征象占比情况
Table 3 Proportion of various imaging signs in the lesions of patients with different disease course
影像指标 组别 统计检验 <10 d(92例) ≥10 d(69例) $\chi^{2} $ P 分布特征/(例(%)) 周围 88(95.7) 68(98.6) 1.101 0.294 胸膜下 67(72.8) 49(71.0) 0.064 0.800 胸膜内 85(92.4) 66(95.7) 0.720 0.396 中央 74(80.4) 45(65.2) 4.735 0.030 血管周 74(80.4) 43(62.3) 6.515 0.011 血管外 10(10.9) 8(11.6) 0.021 0.885 混合 71(77.2) 42(60.9) 5.009 0.025 分布优势/(例(%)) 上肺为主 10(10.9) 6(8.7) 0.208 0.648 下肺为主 41(44.6) 43(62.3) 3.846 0.050 病变形态/(例(%)) 斑片状 81(88.0) 56(81.2) 1.473 0.225 大片状 56(60.9) 25(36.2) 9.574 0.002 束带状 39(42.4) 34(49.3) 0.754 0.385 实变相关征象/(例(%)) 42(45.7) 29(42.0) 0.210 0.647 铺路石征 56(60.9) 35(50.7) 1.651 1.199 空气支气管征 69(75.0) 32(46.4) 13.817 0.000 空泡征 52(56.5) 38(55.9) 0.006 0.936 机化纤维化征象/(例(%)) 蜂窝 9(9.8) 9(13.0) 9.414 0.516 边界不规则 40(43.5) 44(63.8) 6.505 0.011 病灶内索条 22(23.9) 37(53.6) 14.991 0.000 纤维索条 61(66.3) 51(73.9) 1.078 0.299 牵拉支扩 50(54.3) 45(65.2) 1.926 0.165 反晕征 30(32.6) 37(53.6) 7.166 0.007 煎蛋征 46(50.0) 42(60.9) 1.880 0.170 胸膜尾征 38(41.3) 44(63.8) 7.961 0.005 胸膜下线 21(22.8) 34(49.3) 12.264 0.000 胸膜下栅栏 7(7.6) 26(37.7) 21.881 0.000 胸膜病变/(例(%)) 胸膜增厚 68(73.9) 56(81.2) 1.170 0.279 叶间裂增厚 14(15.2) 17(24.6) 2.251 0.134 胸腔积液 3(3.3) 3(4.3) 0.130 0.719 -
[1] WHO Coronavirus (COVID-19) Dashboard. Worle health organization[EB/OL]. [2023-02]. https://covid19.who.int.
[2] YE Z, ZHANG Y, WANG Y, et al. Chest CT manifestations of new coronavirus disease 2019 (COVID-19): A pictorial review[J]. European Radiology, 2020, 30(8): 4381−4389.
[3] SINGANAYAGAM A, PATEL M, CHARLETT A, et al. Duration of infectiousness and correlation with RT-PCR cycle threshold values in cases of COVID-19, England, January to May 2020[J]. European Surveillance, 2020, 25(32): 2001483.
[4] 李华侨, 陈建新, 黄云华, 等. 新型冠状病毒肺炎患者临床及CT影像特点分析[J]. 国际病毒学杂志, 2022,29(1): 1−4. DOI: 10.3760/cma.j.issn.1673-4092.2022.01.001. LI H J, CHEN J X, HUANG Y H, et al. Ananalysis on clinical and CT imaging features of COVID-19 patients[J]. International Journal of Virology, 2022, 29(1): 1−4. DOI: 10.3760/cma.j.issn.1673-4092.2022.01.001. (in Chinese).
[5] SMILOWITZ N R, KUNICHOFF D, GARSHICK M, et al. C-reactive protein and clinical outcomes in patients with COVID-19[J]. European Heart Journal, 2021, 42(23): 2270−2279. DOI: 10.1093/eurheartj/ehaa1103.
[6] VOLANAKIS J E. Human C-reactive protein: Expression, structure, and function[J]. Molecular Immunology, 2001, 38(2/3): 189−197.
[7] LENTNER J, ADAMS T, KNUTSON V, et al. C-reactive protein levels associated with COVID-19 outcomes in the United States[J]. Journal of Osteopathic Medicine, 2021, 121(12): 869−873. doi: 10.1515/jom-2021-0103
[8] PONTI G, MACCAFERRI M, RUINI C, et al. Biomarkers associated with COVID-19 disease progression[J]. Critical Reviews in Clinical Laboratory Sciences, 2020, 57(6): 389−399. doi: 10.1080/10408363.2020.1770685
[9] 陈婉玲, 王伟峰, 李文涛, 等. COVID-19患者外周血T淋巴细胞计数动态变化研究[J]. 中华微生物学和免疫学杂志, 2020,40(7): 495−498. DOI: 10.3760/cma.j.cn112309-20200301-00089. CHEN W L, WANG W F, LI W T, et al. Dynamic changes of peripheral blood T lymphocytes in COVID-19 patients[J]. Chinese Journal of Microbiology and Immunology, 2020, 40(7): 495−498. DOI: 10.3760/cma.j.cn112309-20200301-00089. (in Chinese).
[10] LIU C, CAI J, ZHANG M, et al. Clinical characteristics and CT imaging features of COVID-19 on admission: A retrospective study[J]. Current Medical Imaging, 2021, 17(11): 1324−1329.
[11] XU X, CHEN P, WANG J, et al. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission[J]. Science China Life Sciences, 2020, 63(3): 457−460. doi: 10.1007/s11427-020-1637-5
[12] BATAH S S, FABRO A T. Pulmonary pathology of ARDS in COVID-19: A pathological review for clinicians[J]. Respiratory Medicine, 2021, 176: 106239. doi: 10.1016/j.rmed.2020.106239
[13] YAO X H, LUO T, SHI Y, et al. A cohort autopsy study defines COVID-19 systemic pathogenesis[J]. Cell Research., 2021, 31(8): 836−846. doi: 10.1038/s41422-021-00523-8
[14] HANSELL D M, BANKIER A A, Mac MAHON H, et al. Fleischner Society: Glossary of terms for thoracic imaging[J]. Radiology, 2008, 246(3): 697−722. doi: 10.1148/radiol.2462070712
[15] HUANG P, LIU T, HUANG L, et al. Use of chest CT in combination with negative RT-PCR assay for the 2019 novel coronavirus but high clinical suspicion[J]. Radiology, 2020, 295(1): 22−23. doi: 10.1148/radiol.2020200330
[16] KONG W, AGARWAL P P. Chest imaging appearance of COVID-19 infection[J]. Radiology Cardiothoracic Imaging, 2020, 2(1): e200028. doi: 10.1148/ryct.2020200028
[17] PAN Y, GUAN H, ZHOU S, et al. Initial CT findings and temporal changes in patients with the novel coronavirus pneumonia (2019-nCoV): A study of 63 patients in Wuhan, China[J]. European Radiology, 2020, 30(6): 3306−3309. doi: 10.1007/s00330-020-06731-x
[18] PAN F, YE T, SUN P, et al. Time course of lung changes at chest CT during recovery from coronavirus disease 2019 (COVID-19)[J]. Radiology, 2020, 295(3): 715−721. doi: 10.1148/radiol.2020200370