ISSN 1004-4140
CN 11-3017/P

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

背景噪声和密集台阵成像技术在哈尔乌素露天煤矿采空区的应用

颜杰 张立树 洪鹤庭 黄泉城 雷宇航 廖小龙 桂来保 杨旋

颜杰, 张立树, 洪鹤庭, 等. 背景噪声和密集台阵成像技术在哈尔乌素露天煤矿采空区的应用[J]. CT理论与应用研究, 2023, 32(4): 461-470. DOI: 10.15953/j.ctta.2023.023
引用本文: 颜杰, 张立树, 洪鹤庭, 等. 背景噪声和密集台阵成像技术在哈尔乌素露天煤矿采空区的应用[J]. CT理论与应用研究, 2023, 32(4): 461-470. DOI: 10.15953/j.ctta.2023.023
YAN J, ZHANG L S, HONG H T, et al. Application of Ambient Noise and Dense Seismic Array Imaging Techniques in Goaf Detection Beneath Coal Mines at Haerwusu[J]. CT Theory and Applications, 2023, 32(4): 461-470. DOI: 10.15953/j.ctta.2023.023. (in Chinese)
Citation: YAN J, ZHANG L S, HONG H T, et al. Application of Ambient Noise and Dense Seismic Array Imaging Techniques in Goaf Detection Beneath Coal Mines at Haerwusu[J]. CT Theory and Applications, 2023, 32(4): 461-470. DOI: 10.15953/j.ctta.2023.023. (in Chinese)

背景噪声和密集台阵成像技术在哈尔乌素露天煤矿采空区的应用

doi: 10.15953/j.ctta.2023.023
基金项目: 中央高校基本科研业务费专项(分布式光纤温度传感设备研制);中国科学技术大学重要方向项目培育基金(分布式光纤温度传感设备研制);中国科学技术大学“鲲鹏计划”(分布式光纤传感设备研发)。
详细信息
    作者简介:

    颜杰:男,中国神华能源股份有限公司哈尔乌素露天煤矿总工程师,工程师,主要从事采矿设计、爆破方面研究,E-mail:10570440@ceic.com

    通讯作者:

    男,智地感知(合肥)科技有限公司工程师,主要从事天然源面波、背景噪声成像等方面研究,E-mail:zls018@126.com

  • 中图分类号: P  315;P  631

Application of Ambient Noise and Dense Seismic Array Imaging Techniques in Goaf Detection Beneath Coal Mines at Haerwusu

  • 摘要: 未知煤矿采空区是煤矿安全生产的巨大隐患,探测煤矿采空区的位置和形态对于保障煤矿安全生产具有重要意义,因此煤矿采空区探测是煤矿安全生产的关键内容之一。目前采空区探测方法较多,但存在成本高、周期长、效率低等问题。近些年来随着密集台阵观测技术的快速发展,背景噪声成像分析在浅层结构探测方面也得到了广泛应用。本文采用基于节点地震仪密集台阵观测和背景噪声成像技术,在内蒙古哈尔乌素露天煤矿区附近布设的145个台站,台间距为16 m,开展为期10 d的连续观测,利用背景噪声成像技术对煤矿采空区进行成像分析。结果表明:①通过背景噪声、ESPAC等方法获得探测区的橫波速度结构,背景噪声探测方法可以较好地圈划出测区内的横波低速异常体;②根据横波低速区域分布特征获得采空区潜在位置,与钻孔验证揭示的采空区位置吻合较好,验证该方法勾画采空区的良好效果。相关成果显示,利用地表密集地震台阵观测开展背景噪声成像并结合ESPAC方法进行数据处理是进行露天矿采空区探测的一种经济、有效的手段,具有广泛的应用前景。

     

  • 图  1  哈尔乌素露天煤矿交通位置图

    Figure  1.  Map of the Haerwusu surface coal mine

    图  2  哈尔乌素露天煤矿现场(部分)无人机正射影像及布设位置示意图

    图中红色图标为节点式地震仪,蓝色图标为智能节点仪器。

    Figure  2.  Satellite image of the Haerwusu coal mine and locations of the seismic arrays

    图  3  测区的面波频散曲线(部分)

    Figure  3.  Surface wave dispersion curve in the survey area

    图  4  测区背景噪声层析成像的水平向切片结果

    Figure  4.  Horizontal cross-sections of the tomographic images in our study region

    图  5  测区按测线方向层析成像的垂向切片结果

    图中实线表示钻孔位置在测线上,虚线表示钻孔位置在测线附近;紫色线表示测区原有钻孔,红色线表示本次探测后打的钻孔。

    Figure  5.  Vertical cross-sections of the tomographic images along the survey lines in our study region

    图  6  综合探测的低速区域空间分布

    Figure  6.  3D view of the low velocity anomalies beneath our study region from the joint inversions of the ambient noise and ESPAC

    图  7  测区布局及下方采空区分布

    图中S1-S7线测线方向均为从左向右,从上向下。

    Figure  7.  Map of the gob areas and survey lines in our study region

    表  1  测区地层特征

    Table  1.   Geological features of our study region

    代号厚度/m主要岩性
    第四系Q0~90.68土黄色粉砂质黄土、风积沙、冲洪积物
    第三系N20~59.48红色、棕红色钙质红土层,含砂质及钙质结核
    二叠系上石盒子组P2 s最大厚49.19上部为绛紫色泥岩、砂质泥岩、粉砂岩与灰白黄绿色砂岩互层。下部为灰白、黄绿色中、粗砂岩
    下石盒子组P1 x30.3~99.1上部以黄绿色、紫色泥岩、砂质泥岩为主
    下部为黄褐色砂岩和紫色、杂色泥岩、粘土岩互层
    山西组  P1 s30.7~97.8灰白和黄褐色长石、石英砂岩、灰白和灰黑色细、粗砂岩、砂质泥岩和粘土岩、深灰色和灰白色中粗粒砂岩。为本区主要含煤地层,含1、2、3、4、5号煤层
    石炭系太原组  C3 t37.9~115.9黑灰色砂质泥岩、粘土岩及多层砂岩和煤层;为本区主要含煤地层,含煤七层:6上、6、6下、8、9、9下、10号煤。6上煤层为不稳定煤层,6号煤层为巨厚煤层,厚0.40~39.54 m,除浅部风化变薄外,全区可采
    本溪组  C2 b7.9~33.4深灰色、灰黑色砂泥岩、泥岩、粘土岩,褐灰色灰岩、灰色泥灰岩,偶夹1~2层薄煤层。泥灰岩中含海相生物化石;下部为浅灰、暗紫色铝土岩和铝质粘土岩
    奥陶系马家沟组 O2 m>200上部以浅灰色石灰岩;中部为土黄色灰岩、豹皮状灰岩,含较多的砂质、泥质;下部为浅黄色、黄色白云质灰岩夹薄层状泥质、钙质白云岩
    亮甲山组 O1 L
    下载: 导出CSV
  • [1] 韩连生, 雷洪才. 采空区的危害及探测方法分析[J]. 价值工程, 2018,37(32): 240−241.
    [2] 郭爱萍. 煤矿采空区的危害及防治[J]. 内蒙古煤炭经济, 2014,(10): 88−89. doi: 10.3969/j.issn.1008-0155.2014.10.053
    [3] 刘爱兄, 祁金保, 张文罡. 哈尔乌素露天煤矿过东宝煤矿采空区技术研究[C]//第十届全国采矿学术会议, 2015.
    [4] 薛国强, 潘冬明, 于景邨. 煤矿采空区地球物理探测应用综述[J]. 地球物理学进展, 2018,33(5): 2187−2192. doi: 10.6038/pg2018BB0294

    XUE G Q, PAN D M, YU J C. Review the applications of geophysical methods for mapping coal-mine voids[J]. Progress in Geophysics, 2018, 33(5): 2187−2192. (in Chinese). doi: 10.6038/pg2018BB0294
    [5] 李晓斌. 物探方法在煤矿采空区的应用[J]. 中国矿业, 2011,20(S): 196−200.

    LI X B. The applying geophysical exploration for gob area of coal minus[J]. China Mining Magazine, 2011, 20(S): 196−200. (in Chinese).
    [6] 徐胜, 唐科远. 物探技术在朱仙庄煤矿采空区探测中的应用[J]. 地质找矿论丛, 2020, 35(4): 481-486.

    XU S, TANG K Y. Application of geophysical technology to the detection of goaf-settlement area in Zhuxianzhuang coal mine, Anhui province[J]. Contributions to Geology and Mineral Resources Research, 2020, 35(4): 481-486. (in Chinese).
    [7] 李万伦, 田黔宁, 刘素芳, 等. 城市浅层地震勘探技术进展[J]. 物探与化探, 2018,42(4): 653−661.

    LI W L, TIAN Q N, LIU S F, et al. Progress in the study of shallow seismic exploration technology in urban areas[J]. Geophysical and Geochemical Exploration, 2018, 42(4): 653−661. (in Chinese).
    [8] 王康东. 基于地震成像技术的矿山采空区探测研究和应用[D]. 合肥: 中国科学技术大学, 2022.

    WANG K D. Research and application of mine goaf detection by seismic imaging methods[D]. Hefei: University of Science and Technology of China, 2022. (in Chinese).
    [9] 于淼, 林君. 天然源面波在采空区探测中的应用[J]. 煤炭技术, 2013,12(44): 85−87.

    YU M, LIN J. Application of natural source surface waves in goaf survey[J]. Coal Science and Technology, 2013, 12(44): 85−87. (in Chinese).
    [10] 马丽, 金溪, 贺正东. 微动物探方法探测采空区[J]. 中国煤炭地质, 2013, 25(5): 50-54.

    MA L, JIN X, HE Z D. Gob area detection through microtremor surveying[J]. Coal Geology of China, 2013, 25(5): 50-54. (in Chinese).
    [11] 李成. 基于背景噪声面波的浅层地壳结构成像: 方法研究及其应用[D]. 合肥: 中国科学技术大学, 2019.

    LI C. Imaging shallow crust structure from ambient noise surface wave: Methodology and applications[D]. Hefei: University of Science and Technology of China, 2019. (in Chinese).
    [12] 赵尹桃, 岳之峰. 哈尔乌素露天煤矿新揭露地堑构造与F3逆断层的关系研究[J]. 煤矿安全, 2015,46(9): 31−34.

    ZHAO Y T, YUE Z F. Study on relationship between new disclosure graben structure and F3 reverse fault in haerwusu open-pit mine[J]. Safety in Coal Mines, 2015, 46(9): 31−34. (in Chinese).
    [13] 王娟娟, 姚华建, 王伟涛, 等. 基于背景噪声成像方法的新疆呼图壁储气库地区近地表速度度结构研究[J]. 地球物理学报, 2018,61(11): 4436−4447. doi: 10.6038/cjg2018M0025

    WANG J J, YAO H J, WANG W T, et al. Study of the near-surface velocity structure of the Hutubi gas storage area in Xinjiang from ambient noise tomography[J]. Chinese Journal of Geophysics, 2018, 61(11): 4436−4447. (in Chinese). doi: 10.6038/cjg2018M0025
    [14] 李娜, 何正勤, 叶太兰, 等. 天然源面波勘探台阵对比实验[J]. 地震学报, 2015,37(2): 323−334. doi: 10.11939/j.issn:0253-3782.2015.02.012

    LI N, HE Z Q, YE T L, et al. Test for comparison of array layout in natural source surface wave exploration[J]. Acta Seismologica Sinica, 2015, 37(2): 323−334. (in Chinese). doi: 10.11939/j.issn:0253-3782.2015.02.012
    [15] 赵东. 被动源面波勘探方法与应用[J]. 物探与化探, 2010,34(6): 759−764.

    ZHAO D. Passive surface waves: Methods and applications[J]. Geophysical and Geochemical Exploration, 2010, 34(6): 759−764. (in Chinese).
    [16] 孙飞. 基于微动探测的煤矿采空区勘察及其稳定性评价研究[J]. 能源与环保, 2022,44(1): 159−164.

    SUN F. Research on mine goaf investigation and stability evaluation based on micro-motion detection[J]. China Energy and Environmental Protection, 2022, 44(1): 159−164. (in Chinese).
    [17] 煤炭科学技术研究院有限公司. CK52-1077采空区探测报告[R]. 2022.
    [18] 煤炭科学技术研究院有限公司. CK68-1085采空区探测报告[R]. 2022.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  238
  • HTML全文浏览量:  110
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-18
  • 修回日期:  2023-03-22
  • 录用日期:  2023-03-23
  • 网络出版日期:  2023-04-24
  • 刊出日期:  2023-07-31

目录

    /

    返回文章
    返回