ISSN 1004-4140
CN 11-3017/P

不同中性粒细胞与淋巴细胞比值组间COVID-19胸部HRCT表现分析

霍萌, 李玲, 孙莹, 张明霞, 孙磊, 郭佳, 杜常月, 李兴鹏, 郝琪, 张妍, 段淑红, 刘晓燕, 刘薇, 段永利, 张春燕, 王仁贵

霍萌, 李玲, 孙莹, 等. 不同中性粒细胞与淋巴细胞比值组间COVID-19胸部HRCT表现分析[J]. CT理论与应用研究, 2023, 32(3): 387-394. DOI: 10.15953/j.ctta.2023.027.
引用本文: 霍萌, 李玲, 孙莹, 等. 不同中性粒细胞与淋巴细胞比值组间COVID-19胸部HRCT表现分析[J]. CT理论与应用研究, 2023, 32(3): 387-394. DOI: 10.15953/j.ctta.2023.027.
HUO M, LI L G, SUN Y, et al. Analysis of Coronavirus Disease 2019 Chest High-resolution Computed Tomography Manifestations between Groups with Different Neutrophil- to-Lymphocyte Ratios[J]. CT Theory and Applications, 2023, 32(3): 387-394. DOI: 10.15953/j.ctta.2023.027. (in Chinese).
Citation: HUO M, LI L G, SUN Y, et al. Analysis of Coronavirus Disease 2019 Chest High-resolution Computed Tomography Manifestations between Groups with Different Neutrophil- to-Lymphocyte Ratios[J]. CT Theory and Applications, 2023, 32(3): 387-394. DOI: 10.15953/j.ctta.2023.027. (in Chinese).

不同中性粒细胞与淋巴细胞比值组间COVID-19胸部HRCT表现分析

详细信息
    作者简介:

    霍萌: 女,医学博士,首都医科大学附属北京世纪坛医院放射中心主治医师,主要从事胸部影像学及淋巴系统多模态成像研究,E-mail:huomeng@bjsjth.cn

    通讯作者:

    张春燕: 女,医学博士,首都医科大学附属北京世纪坛医院放射中心副主任医师,主要从事呼吸系统、淋巴系统影像学研究,E-mail:linyajun20002004@163.com

    王仁贵: 男,医学博士,首都医科大学附属北京世纪坛医院放射中心主任、主任医师、教授、博士生导师,主要从事淋巴影像学、呼吸肿瘤和肺部弥漫性疾病的影像学研究,E-mail:wangrg@bjsjth.cn

  • 中图分类号: R  814

Analysis of Coronavirus Disease 2019 Chest High-resolution Computed Tomography Manifestations between Groups with Different Neutrophil- to-Lymphocyte Ratios

  • 摘要: 目的:探讨中性粒细胞与淋巴细胞比(NLR)与COVID-19胸部HRCT表现的相关性。材料与方法:回顾性分析132例于2022年12月1日至2023年2月1日就诊于首都医科大学附属北京世纪坛医院感染科确诊COVID-19患者的NLR与胸部HRCT,以NLR截断值3.0把患者分为两组,分析其HRCT影像特征、影像表现模式。对于正态分布的计量资料组间采用连续变量的t检验;对于非正态分布的数据以中位数、四分位数表示,通过Mann-Whitney U检验进行比较;对于计数资料通过频率表示,并采用卡方检验或Fisher精确检验进行组间比较。结果:低NLR组比高NLR组有更多的≤5个病灶及病灶占比≤10%,高NLR组比低NLR组有更多的病灶数目>10个及病灶占比>50%;高NLR组比低NLR组更易出现混合密度影、铺路石征、马赛克征、反晕征、胸膜下黑带、拱廊征、牵拉支扩;高NLR组比低NLR组更易表现为非特异性间质性肺炎样、机化性肺炎样、弥漫肺泡损伤样改变。结论:不同NLR其COVID-19胸部HRCT表现不同,高NLR组更易出现混合密度影、铺路石征、马赛克征、反晕征、胸膜下黑带、拱廊征、牵拉支扩;影像表现模式更易表现为非特异性间质型肺炎、机化性肺炎、弥漫性肺泡损伤。
    Abstract: Objective: This study aimed to investigate the correlation between the neutrophil-to-lymphocyte ratio (NLR) and chest high-resolution computed tomography (HRCT) findings of coronavirus disease 2019 (COVID-19). Materials and Methods: NLR and chest HRCT findings of 132 patients diagnosed with COVID-19 in the department of infectious diseases of Beijing Shijitan Hospital Capital Medical University from December 1, 2022 to February 1, 2023 were retrospectively analyzed. The patients were divided into two groups with NLR cut-off value of 3.0, and their HRCT characteristics and imaging manifestation patterns were analyzed. For the measurement data of normal distribution, the t-test of continuous variables was used between the groups. The data of non-normal distribution are expressed as median and quartile and compared using Mann-Whitney U test. The counting data are expressed as frequency, and the chi-squared or Fisher's exact test was used for comparison between the groups. P<0.05 indicates that the difference is statistically significant. Results: The number of lesions ≤5 and the proportion of lesions ≤10% were higher in the low NLR group than that in the high NLR group. The number of lesions >10 and the proportion of lesions >50% were higher in the high NLR group than that in the low NLR group. The high NLR group was prone to mixed density shadow, crazy-paving pattern, mosaic sign, anti-halo sign, subpleural black belt, arcade-like sign than that in the low NLR group. The high NLR group was most likely to have nonspecific interstitial pneumonia-like, organizing pneumonia-like, and diffuse alveolar damage-like patterns than that in the low NLR group. Conclusion: Different NLRs have different manifestations of COVID-19 chest HRCT. The high NLR group is more prone to mixed density shadow, crazy-paving pattern, mosaic sign, anti-halo sign, subpleural black belt, and arcade-like sign, as well as most likely to have radiologic patterns of nonspecific interstitial pneumonia, organizing pneumonia, diffuse alveolar damage.
  • 新型冠状病毒感染(coronavirus disease 2019,COVID-19)作为2019年12月以来在全球范围传播最广、最受关注的突发传染病事件,对全球公共卫生系统造成了巨大影响和威胁。认识其临床、影像、实验室指标及其相关性,对疾病的诊断、预测预后及指导治疗具有重要意义。

    中性粒细胞与淋巴细胞比(neutrophil-to-lymphocyte ratio,NLR)作为一种新兴的炎性标志物,易得且价格低廉,近年来作为研究热点已被证实是多种疾病严重程度和死亡率预测的可靠标志物,尤其在对炎症性疾病的识别、预测及评估有重要意义,有研究表明NLR可作为COVID-19感染不良结局及死亡的独立预测因子[1-3]。胸部HRCT是COVID-19诊断和评估的重要且常用影像检查方法,其影像表现多样并具特征性。本文旨在探讨COVID-19感染者不同NLR的胸部高分辨率断层成像(high resolutino CT,HRCT)的表现特点。

    收集2022年12月1日至2023年2月1日就诊于首都医科大学附属北京世纪坛医院,经抗原或咽拭子聚合酶链式反应(polymerase chain reaction,PCR)确诊COVID-19患者,且于1日内同时完成血常规检查及胸部HRCT。排除标准:①图像质量不佳难以评估;②有肺间质纤维化病史。最终共纳入患者132例,男性71例(53.8%),女性61例(46.2%),平均年龄(69.35±14.29)岁,临床症状包括发热、咳嗽、咳痰、流涕、咽痛、肌肉酸痛等。NLR由血常规结果计算获得,方法:中性粒细胞计数除以淋巴细胞计数,保留小数点后1位。

    费明明等[4]研究显示,NLR是新冠肺炎患者病情严重程度的预测标志物,当截断值为3.0时,其敏感度、特异度及曲线下面积最优,因此本研究以NLR截断值3.0将患者分为低NLR组(64例)及高NLR组(68例)。

    CT扫描仪:32排北京赛诺威盛Insitum-CT338;扫描参数:探测器宽度16 cm,螺距1.0,管电压120 kV,管电流150 mAs;重建层厚1.5 mm,肺窗1.5 mm,纵隔窗5.0 mm;矩阵512×512;FOV 380~450。肺窗窗宽及窗位分别为1600和 -600,纵隔窗窗宽及窗位分别为400和40。重建:冠状位及矢状位肺窗(1×5 mm)、纵隔窗(5×5 mm)。

    由两名10年以上胸部CT诊断经验的中级医生分别独立完成,意见有分歧时与另一位20年以上经验高级医生协商达成一致。记录以下影像参数:

    ①病灶数目:≤5个,5~10个,>10个;②病灶大小:长径≤10 mm,10~30 mm,>30 mm;③病灶占肺叶体积百分比:≤10%,11%~30%,31%~50%,>51%;④分布:上肺为主,下肺为主,中央支气管血管束周围,外周胸膜下;⑤影像特征:磨玻璃影(ground-glass opacities,GGO),实变影,混合密度,铺路石征(crazy-paving pattern,CPP),胸膜下黑带,马赛克征,晕征,反晕征,拱廊征;⑥影像表现模式[5]:非特异性间质性肺炎(nonspecific interstitial pneumonia,NSIP)样改变,机化性肺炎(organising pneumonia,OP)样改变,弥漫性肺泡损伤(diffuse alveolar damage,DAD)样改变。

    采用SPSS 26.0软件,将患者分为低NLR组(NLR≤3)、高NLR组(NLR>3),比较两组患者影像征象的差异。通过Shapiro-Wilk检验计量资料的正态性,对于正态分布的计量资料以$(\bar x\pm s)$表示,组间比较采用连续变量的t检验;对于非正态分布的数据以中位数、四分位数表示,通过Mann-Whitney U检验进行比较。对于计数资料通过频率表示,并采用卡方检验或Fisher精确检验进行组间比较。P<0.05表示差异有统计学意义。

    低NLR组与高NLR组间在淋巴细胞百分比、中性粒细胞百分比、淋巴细胞、中性粒细胞、NLR存在明显统计学差异,年龄、性别及临床症状无明显统计学差异(表1)。

    表  1  低NLR组与高NLR组临床指标统计
    Table  1.  Statistics of clinical indexes of the low and high NLR groups
    临床指标低NLR组高NLR组$Z/{\rm{\chi}}^2$P
      年龄/(岁,$M(Q_1,Q_3)$)69(59,76) 74(63,82) -1.8880.059
      性别/(男,例(%))31(48.4) 40(58.8) 1.4310.232
      临床症状/(例(%))
        发热64(100.0) 68(100.0)
        咳嗽60(93.8) 62(91.2) 0.3120.577
        咳痰36(56.3) 33(48.5) 0.7880.375
        咽痛20(31.3) 29(42.6) 1.8350.176
        流涕17(26.6%) 24(35.3%) 1.1740.279
      实验室指标/(指标值$M(Q_1,Q_3)$)
        淋巴细胞百分比/% 32.0(27.3,35.2) 15.7(10.3,19.1)-9.5710.000
        中性粒细胞百分比/% 60.3(55.6,64.3) 76.0(73.0,83.3)-9.4570.000
        淋巴细胞/×109/L1.8(1.5,2.3)1.01(0.7,1.4) -7.0210.000
        中性粒细胞/×109/L3.6(2.8,4.4)5.7(4.0,8.1)-5.7800.000
    注:$M(Q_1,Q_3)$为中位数(第1四分位数,第3四分位数);NLR为中性粒细胞于淋巴细胞比。
    下载: 导出CSV 
    | 显示表格

    低NLR组与高NLR组间在多种影像表现上存在明显统计学差异。低NLR组比高NLR组有更多的≤5个病灶及病灶占比≤10%,高NLR组比低NLR组有更多的病灶数目>10个及病灶占比>50%;高NLR组比低NLR组更易出现混合密度、CPP、马赛克征、反晕征、胸膜下黑带、拱廊征;高NLR组比低NLR组更易出现NSIP样、OP样DAD样改变(表2图1图2)。

    表  2  低NLR组与高NLR组HRCT表现统计
    Table  2.  HRCT statistics of the low and high NLR groups
    影像指标组别统计检验
    低NLR组高NLR组$\chi^2 $P
        病灶数目/例(%)
          ≤5个13(20.3)5(7.4)4.7020.030
          5~10个13(20.3) 8(11.8)1.8010.180
          10个38(59.4)54(79.4)6.2670.012
        病灶占比/例(%)
          ≤10%40(62.5)25(36.8)8.7360.003
          10%~30%13(20.3)12(17.6)0.1530.696
          30%~50% 8(12.5)14(20.6)1.5530.213
          >50%2(3.1)14(20.6)9.4390.002
        病变大小/例(%)
          ≤10 mm53(82.8)55(80.9)0.0830.774
          ≤30 mm53(82.8)59(86.8)0.4010.527
          >30 mm33(51.6)52(76.5)8.9210.003
        病变分布/例(%)
          中央支气管束周围51(79.7)56(82.4)0.825
          外周胸膜下63(98.4)65(95.6)0.620
          上肺为主 7(10.9)6(8.8)0.1660.684
          下肺为主35(54.7)29(42.6)1.9140.167
        病变特征/例(%)
          GGO57(89.1)66(97.1)0.089
          实变36(56.3)27(39.7)3.6170.057
          混合密度53(82.8)64(94.1)4.1830.041
          CPP32(50.0)46(67.6)4.2470.039
          马赛克征21(32.8)41(60.3)9.9970.002
          晕征49(76.6)46(67.6)1.2990.254
          反晕征16(25.0)40(58.8)15.442 0.000
          胸膜下黑带28(43.8)47(69.1)8.6470.003
          拱廊征16(25.0)36(52.9)10.781 0.001
        影像表现模式/例(%)
          NSIP样18(28.1)41(60.3)13.803 0.000
          OP样28(43.8)47(69.1)8.6470.003
          DAD样2(3.1)14(20.6)9.4390.002
    下载: 导出CSV 
    | 显示表格
    图  1  高NLR组HRCT表现
    Figure  1.  HRCT statistics of the high NLR group
    图  2  低NLR组HRCT
    Figure  2.  HRCT statistics of the low NLR group HRCT

    NLR作为一种炎性标志物将白细胞分类信息整合到一个变量中,被认为是免疫系统稳态的标志,也是近年来的研究热点。NLR升高与内皮功能障碍、细胞因子风暴和凝血功能障碍有关,如感染、心梗、脑出血、自身免疫疾病、肿瘤、术后等,并且是全因死亡、老年人群、心血管疾病及COVID-19死亡的独立风险因素[1,3,6-7]。多项研究表明NLR在COVID-19感染时升高,且与严重程度正相关,能够预测COVID-19感染者发展为重症的风险并及早干预,从而降低死亡率,可把其纳入到COVID-19患者危重程度评价分级、出入院评估、治疗决策、预测预后的一部分[1,8-9]

    Fest等[7]观察到普通人群的平均NLR为1.76,男性平均NLR显著高于女性,大于85岁的老年人显著高于45~54岁人群。NLR在COVID-19感染中可以用以区分疾病的严重程度,其截断值在不同国家的研究中略有差异[3],费明明等[4]在针对中国人群的研究中发现与普通型 COVID-19相比,重型/危重型患者NLR明显升高,ROC曲线分析显示,NLR诊断COVID-19分型的曲线下面积为0.888,95% 可信区间为0.814~0.963,当NLR为3.00时,敏感度及特异度均较高,为最佳截断值,所以本次研究选取NLR为3.0作为分组标准。

    COVID-19通过与血管紧张素转换酶Ⅱ受体结合,优先感染Ⅱ型肺泡上皮细胞,在病毒毒性和免疫反应共同作用下单核细胞释放一系列细胞因子增加毛细血管通透性,继而间质和肺泡间隙中的中性粒细胞聚集,诱发一系列炎症级联反应[10],最终导致上皮及内皮损伤。中性粒细胞、淋巴细胞参与了这一重要过程,表现为白细胞升高、淋巴细胞减少,最终导致NLR升高。胸部HRCT的表现与上述病理过程密切相关,在早期诊断、鉴别诊断、发现并发症和评估严重程度及预测预后方面起着至关重要的作用[11-12]

    本此研究中我们发现COVID-19肺炎的表现多样,常表现为双肺多叶、段受累,外周胸膜下分布为主的间质性肺炎,具多种影像征象,以多发GGO为主,其次为混合样斑片影、多发结节样影,CPP、晕征、反晕征、拱廊征、胸膜下黑带、束带征常见,这些发现与已有报道相符[13-16]。HRCT表现体现了COVID-19的病理生理损伤过程,病变早期,肺泡肿胀、肺泡腔渗出,表现为非特异性肺炎或组织性肺炎,在HRCT上对应于GGO以及支气管血管束周围的小面积实变;进展期肺泡毛细血管基底膜破坏,导致DAD和急性纤维蛋白组织性肺炎、纤维化,肺泡腔及间隔炎性、纤维蛋白性渗出增多、水肿、出血进一步加剧[16],在HRCT上对应于范围更大的GGO、混合性及实变影、CPP、反晕征等,反晕征是OP的常见征象[17];血管紧张素转换酶Ⅱ受体广泛在于气道,随着病程进展,气道广泛受累,可见支气管的牵拉扩张,小气道损伤可导致胸膜下空气潴留[18],在HRCT上可表现为胸膜下黑带、拱廊征,这是NSIP的常见征象。

    除上皮损伤外,内皮损伤是COVID-19的重要特征,也是患者进展为急性呼吸窘迫综合征(acute respiratory distress syndrome,ARDS)转为重症的关键因素,可致肺动脉血栓形成、血管充血、外周血管减少和灌注异常[17,19-20],叠加上皮损伤对应于HRCT上的广泛的马赛克征、DAD样改变。

    上述病理变化与影像的对应关系解释了我们此次研究的结果,高NLR组与低NLR组在诸多影像表现上存在统计学差异,在高NLR组中病变数量更多、范围更大、混合密度影、CPP、拱廊征、胸膜下黑带更多见,更多的表现为NSIP样、OP样、DAD样改变。Durhan等[21]研究发现CPP在重症患者更常见,且对重症COVID-19表现出高特异性(97.2%);Bernheim等[22]发现CPP及反晕征与疾病进程有关,更多见于进展期患者;另有多个研究表明胸部CT的受累范围与COVID-19的严重程度高度相关[23-25]。上述研究均与我们本次研究相符,并进一步验证NLR与HRCT的相关性以及对COVID-19严重程度预测、评估的一致性。

    本研究存在一定局限性:未纳入其他实验室指标如C反应蛋白、铁蛋白、白介素-6、D-二聚体等,未对NLR及HRCT进行动态评价。

    本研究结果表明,COVID-19胸部HRCT表现多样,部分征象与NLR有一定相关性,低NLR组与高NLR组间在多种影像征象及表现模式上存在统计学差异,提示了不同的严重程度,及时识别不同HRCT表现对COVID-19严重程度分层、识别重症风险、及早干预治疗、预测预后具有重要价值[26];NLR易得且廉价,并且是COVID-19严重程度和死亡率有力的预后标志物,二者结合可为疾病分级、预警、患者管理提供重重要信息,具有良好的临床实用性,应引起重视并纳入到COVID-19的诊疗程序。

  • 图  1   高NLR组HRCT表现

    Figure  1.   HRCT statistics of the high NLR group

    图  2   低NLR组HRCT

    Figure  2.   HRCT statistics of the low NLR group HRCT

    表  1   低NLR组与高NLR组临床指标统计

    Table  1   Statistics of clinical indexes of the low and high NLR groups

    临床指标低NLR组高NLR组$Z/{\rm{\chi}}^2$P
      年龄/(岁,$M(Q_1,Q_3)$)69(59,76) 74(63,82) -1.8880.059
      性别/(男,例(%))31(48.4) 40(58.8) 1.4310.232
      临床症状/(例(%))
        发热64(100.0) 68(100.0)
        咳嗽60(93.8) 62(91.2) 0.3120.577
        咳痰36(56.3) 33(48.5) 0.7880.375
        咽痛20(31.3) 29(42.6) 1.8350.176
        流涕17(26.6%) 24(35.3%) 1.1740.279
      实验室指标/(指标值$M(Q_1,Q_3)$)
        淋巴细胞百分比/% 32.0(27.3,35.2) 15.7(10.3,19.1)-9.5710.000
        中性粒细胞百分比/% 60.3(55.6,64.3) 76.0(73.0,83.3)-9.4570.000
        淋巴细胞/×109/L1.8(1.5,2.3)1.01(0.7,1.4) -7.0210.000
        中性粒细胞/×109/L3.6(2.8,4.4)5.7(4.0,8.1)-5.7800.000
    注:$M(Q_1,Q_3)$为中位数(第1四分位数,第3四分位数);NLR为中性粒细胞于淋巴细胞比。
    下载: 导出CSV

    表  2   低NLR组与高NLR组HRCT表现统计

    Table  2   HRCT statistics of the low and high NLR groups

    影像指标组别统计检验
    低NLR组高NLR组$\chi^2 $P
        病灶数目/例(%)
          ≤5个13(20.3)5(7.4)4.7020.030
          5~10个13(20.3) 8(11.8)1.8010.180
          10个38(59.4)54(79.4)6.2670.012
        病灶占比/例(%)
          ≤10%40(62.5)25(36.8)8.7360.003
          10%~30%13(20.3)12(17.6)0.1530.696
          30%~50% 8(12.5)14(20.6)1.5530.213
          >50%2(3.1)14(20.6)9.4390.002
        病变大小/例(%)
          ≤10 mm53(82.8)55(80.9)0.0830.774
          ≤30 mm53(82.8)59(86.8)0.4010.527
          >30 mm33(51.6)52(76.5)8.9210.003
        病变分布/例(%)
          中央支气管束周围51(79.7)56(82.4)0.825
          外周胸膜下63(98.4)65(95.6)0.620
          上肺为主 7(10.9)6(8.8)0.1660.684
          下肺为主35(54.7)29(42.6)1.9140.167
        病变特征/例(%)
          GGO57(89.1)66(97.1)0.089
          实变36(56.3)27(39.7)3.6170.057
          混合密度53(82.8)64(94.1)4.1830.041
          CPP32(50.0)46(67.6)4.2470.039
          马赛克征21(32.8)41(60.3)9.9970.002
          晕征49(76.6)46(67.6)1.2990.254
          反晕征16(25.0)40(58.8)15.442 0.000
          胸膜下黑带28(43.8)47(69.1)8.6470.003
          拱廊征16(25.0)36(52.9)10.781 0.001
        影像表现模式/例(%)
          NSIP样18(28.1)41(60.3)13.803 0.000
          OP样28(43.8)47(69.1)8.6470.003
          DAD样2(3.1)14(20.6)9.4390.002
    下载: 导出CSV
  • [1]

    LIU Y, DU X, CHEN J, et al. Neutrophil-to-lymphocyte ratio as an independent risk factor for mortality in hospitalized patients with COVID-19[J]. Journal of Infection, 2020, 81(1): e6−e12. doi: 10.1016/j.jinf.2020.04.002

    [2]

    YANG A P, LIU J P, TAO W Q, et al. The diagnostic and predictive role of NLR, d-NLR and PLR in COVID-19 patients[J]. International Immunopharmacology, 2020, 84: 106504. doi: 10.1016/j.intimp.2020.106504

    [3]

    LI X, LIU C, MAO Z, et al. Predictive values of neutrophil-to-lymphocyte ratio on disease severity and mortality in COVID-19 patients: Systematic review and meta-analysis[J]. Critical Care, 2020, 24(1): 647. doi: 10.1186/s13054-020-03374-8

    [4] 费明明, 童飞, 陶小根, 等. 中性粒细胞/淋巴细胞比值对新型冠状病毒肺炎患者疾病分型的诊断价值[J]. 中华危重病急救医学, 2020,32(5): 554−558. doi: 10.3760/cma.j.cn121430-20200413-00506

    FEI M M, TONG F, TAO X G, et al. Value of neutrophil-to-lymphocyte ratio in the classification diagnosis of coronavirus disease 2019[J]. Chinese Critical Care Medicine, 2020, 32(5): 554−558. (in Chinese). doi: 10.3760/cma.j.cn121430-20200413-00506

    [5] 李文平, 张鹏举, 许金环, 等. 免疫检查点抑制剂相关肺炎的临床及CT表现分析[J]. 中华放射学杂志, 2022,56(12): 1352−1358. doi: 10.3760/cma.j.cn112149-20220217-00126

    LI W P, ZHANG P J, XU J H, et al. Clinical and CT imaging features of immune checkpoint inhibitor-associated pneumonia[J]. Chinese Journal of Radiology, 2022, 56(12): 1352−1358. (in Chinese). doi: 10.3760/cma.j.cn112149-20220217-00126

    [6]

    BUONACERA A, STANCANERLLI B, COLACI M, et al. Neutrophil to lymphocyte ratio: An emerging marker of the relationships between the immune system and diseases[J]. International Journal of Molecular Sciences, 2022, 23(7): 3636.

    [7]

    FEST J, RUITER T R, GROOT KOERKAMP B, et al. The neutrophil-to-lymphocyte ratio is associated with mortality in the general population: The rotterdam study[J]. European Journal of Epidemiology, 2019, 34(5): 463-470.

    [8]

    SIMADIBRATA D M, CALVIN J, WIJAYA A D, et al. Neutrophil-to-lymphocyte ratio on admission to predict the severity and mortality of COV9 patients: A meta-analysis[J]. American Journal of Emergency Medicine, 2021, 42: 60−69. doi: 10.1016/j.ajem.2021.01.006

    [9]

    CAI J, LI H, ZHANG C, et al. The neutrophil-to-lymphocyte ratio determines clinical efficacy of corticosteroid therapy in patients with COVID-19[J]. Cell Metabolism, 2021, 33(2): 258−269. e3. doi: 10.1016/j.cmet.2021.01.002

    [10]

    BATAH S S, ABRO A T. Pulmonary pathology of ARDS in COVID-19: A pathological review for clinicians[J]. Respiratory Medicine, 2021, 176: 106239. doi: 10.1016/j.rmed.2020.106239

    [11]

    RUBIN G D, YERSON C J, HARAMATI L B, et al. The role of chest imaging in patient management during the COVID-19 pandemic: A multinational consensus statement from the Fleischner Society[J]. Radiology, 2020, 296(1): 172-180.

    [12]

    KWEE T C, KWEE R M. Chest CT in COVID-19: What the radiologist needs to know[J]. Radiographics, 2020, 40(7): 1848−1865. doi: 10.1148/rg.2020200159

    [13]

    SIMPSON S, KAY F U, ABBARA S, et al. Radiological Society of North America expert consensus document on reporting chest CT findings related to COVID-19: Endorsed by the Society of Thoracic Radiology, the American College of Radiology, and RSNA[J]. Radiology Cardiothoracic Imaging, 2020, 2(2): e200152. doi: 10.1148/ryct.2020200152

    [14]

    CHO J L, VILLACRESES R, NAGPAL P, et al. Quantitative chest CT assessment of small airways disease in post-acute SARS-CoV-2 infection[J]. Radiology, 2022, 304(1): 185−192. doi: 10.1148/radiol.212170

    [15]

    TOUSSIE D, VOUTSINAS N, FINKELSTEIN M, et al. Clinical and chest radiography features determine patient outcomes in young and middle-aged adults with COVID-19[J]. Radiology, 2020, 297(1): E197−E206. doi: 10.1148/radiol.2020201754

    [16] 孙莹, 李玲, 刘晓燕, 等. 早期新型冠状病毒肺炎的胸部薄层平扫CT表现特征[J]. CT理论与应用研究, 2023,32(1): 131−138. DOI: 10.15953/j.ctta.2023.006.

    SUN Y, LI L, LIU X Y, et al. Characteristics of chest thin-slice non-contrast CT in early novel coronavirus pneumonia[J]. CT Theory and Applications, 2023, 32(1): 131−138. DOI: 10.15953/j.ctta.2023.006. (in Chinese).

    [17]

    LEE J H, KOH J, JEON Y K, et al. An integrated radiologic-pathologic understanding of COVID-19 pneumonia[J]. Radiology, 2023, 306(2): e222600. doi: 10.1148/radiol.222600

    [18]

    KLIGERMAN S J, TNKSJ F R, GALVIN J R. From the radiologic pathology archives: Organization and fibrosis as a response to lung injury in diffuse alveolar damage, organizing pneumonia, and acute fibrinous and organizing pneumonia[J]. Radiographics, 2013, 33(7): 1951−75. doi: 10.1148/rg.337130057

    [19]

    LARICI A R, CICCHETTI G, MARANO R, et al. Multimodality imaging of COVID-19 pneumonia from diagnosis to follow-up: A comprehensive review[J]. European Journal of Radiology, 2020, 131: 109217. doi: 10.1016/j.ejrad.2020.109217

    [20]

    GRASSELLI G, TONETTI T, PROTTI A, et al. Pathophysiology of COVID-19-associated acute respiratory distress syndrome: A multicentre prospective observational study[J]. The Lancet Respiratory Medicine, 2020, 8(12): 1201−1208. doi: 10.1016/S2213-2600(20)30370-2

    [21]

    DURHAN G, DÜZGÜN S A, DEMIRKAZIK F B, et al. Visual and software-based quantitative chest CT assessment of COVID-19: Correlation with clinical findings[J]. Diagnostic Interventional Radiology, 2020, 26(6): 557−564. doi: 10.5152/dir.2020.20407

    [22]

    BERNHEIM A, MEI X, HUANG M, et al. Chest CT findings in coronavirus disease-19 (COVID-19): Relationship to duration of infection[J]. Radiology, 2020, 295(3): 200463. doi: 10.1148/radiol.2020200463

    [23]

    INOUE A, TAKAHASHI H, IBE T, et al. Comparison of semiquantitative chest CT scoring systems to estimate severity in coronavirus disease 2019 (COVID-19) pneumonia[J]. European Radiology, 2022, 32(5): 3513−3524. doi: 10.1007/s00330-021-08435-2

    [24]

    LI K, FANG Y, LI W, et al. CT image visual quantitative evaluation and clinical classification of coronavirus disease (COVID-19)[J]. European Radiology, 2020, 30(8): 4407−4416. doi: 10.1007/s00330-020-06817-6

    [25] 杜丹, 谢元亮, 李惠, 等. 人工智能定量测量对新型冠状病毒肺炎患者胸部CT炎性病灶动态变化的评估价值[J]. 中华放射学杂志, 2021,55(3): 250−256.

    DU D, XIE Y L, LI H, et al. The value of quantitative artificial intelligence measurement in evaluation of CT dynamic changes for COVID-19[J]. Chinese Journal of Radiology, 2021, 55(3): 250−256. (in Chinese).

    [26]

    NAIK B R, SAKALECHA A K, SUNIL B N, et al. Computed tomography severity scoring on high-resolution computed tomography thorax and inflammatory markers with COVID-19 related mortality in a designated COVID hospital[J]. Cureus, 2022, 14(4): e24190.

图(2)  /  表(2)
计量
  • 文章访问数:  240
  • HTML全文浏览量:  91
  • PDF下载量:  294
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-23
  • 修回日期:  2023-03-22
  • 录用日期:  2023-03-26
  • 网络出版日期:  2023-04-19
  • 发布日期:  2023-05-30

目录

/

返回文章
返回
x 关闭 永久关闭