High-resolution Computed Tomography (HRCT) Characteristics of Coronavirus Disease 2019 (COVID-19) in Patients with Diabetes
-
摘要: 目的:探讨糖尿病患者肺部新型冠状病毒感染(COVID-19)HRCT特点。材料与方法:收集2022年12月14日至2023年1月10日确诊COVID-19且胸部CT表现异常的患者584例,男359例、女225例,年龄范围60~99岁,平均年龄(76±9)岁。其中合并糖尿病225例,非糖尿病359例;比较糖尿病患者COVID-19胸部HRCT与非糖尿病患者COVID-19胸部HRCT表现不同;定义发病与CT检查时间间隔<7d为急性期,363例入组患者,分析急性期糖尿病组与非糖尿病组新型冠状病毒肺炎(COVID-19)HRCT特点。结果:糖尿病患者COVID-19胸部感染与非糖尿病患者COVID-19胸部感染两组肺内病变在发病部位、分布、形态及伴随征象差异无统计学意义。两组病变在密度(细网格、病变密度不均匀)及病变边缘(病变边缘模糊)差异有统计学意义。无糖尿病组的肺部影像网格、不均匀和模糊征象显著高于有糖尿病组。其中细网格影:糖尿病组54例(24%),非糖尿病组127例(35.38%);密度不均匀:糖尿病组181例(80.44%),非糖尿病组313例(87.19%);边缘模糊:糖尿病组205例(91.11%),非糖尿病组344(95.82%)。急性期糖尿病组患者肺内网格影明显少于非糖尿病组患者,糖尿病组35例(24.65%),非糖尿病组82例(37.10%),差异有统计学意义。结论:糖尿病患者肺部新型冠状病毒感染(COVID-19)胸部HRCT病变渗出为主、密度均匀、边缘清晰,较非糖尿病组间质改变不明显。Abstract: Objective: To explore the characteristics of high-resolution computed tomography (HRCT) in diabetes complicated with coronavirus disease 2019 (COVID-19)-associated pneumonia. Materials and Methods: This study included 584 patients (359 males and 225 females), aged between 60~99 years old (mean, (76±9) years), with positive chest computed tomography (CT) findings and diagnosed with COVID-19 in our hospital from December 14, 2022, to January 10, 2023. Of these, 225 patients were diabetic and 359 were non-diabetic. The features of the chest HRCT from patients with diabetes mellitus complicated with COVID-19 and those without diabetes mellitus complicated with COVID-19 were compared. Moreover, 363 patients in the acute stage of COVID-19 (defined as the time interval between onset and CT examination <7 days) were selected for subgroup analysis, and the HRCT characteristics of COVID-19 between the diabetes group and the non-diabetic group in the acute stage. Results: The location, distribution, morphology, and concomitant signs of pulmonary lesions between the two groups of patients with COVID-19 did not differ significantly. Conversely, statistically significant differences in density (fine mesh, uneven density) and lesion margin (fuzzy lesion margin) were detected. In particular, the grid, uneven, and fuzzy signs on lung imaging were significantly higher in the non-diabetic group than that in the diabetic group. Additionally, 54 patients (24%) in the diabetic group and 127 patients (35.38%) in the non-diabetic group demonstrated fine mesh shadows. There were 181 patients (80.44%) in the diabetic group and 313 patients (87.19%) in the non-diabetic group with uneven density. Furthermore, 205 patients (91.11%) in the diabetic group and 344 patients (95.82%) in the non-diabetic group had blurred edges. There was significantly less pulmonary grid shadowing in the acute subgroup with diabetes (35, 24.65%) than in the acute subgroup without diabetes (82, 37.10%). Conclusion: The features of chest HRCT in patients with diabetes mellitus and COVID-19 are mainly exudation, uniform density, and a clear edge, while the interstitial changes are not obvious compared with patients in the non-diabetic group.
-
Keywords:
- CT /
- high resolution /
- coronavirus disease 2019 /
- diabetes mellitus
-
-
表 1 有无糖尿病两组患者的HRCT表现特征一览表
Table 1 HRCT features in patients with and without diabetes mellitus
项目 组别 统计检验 无糖尿病/例(%) 有糖尿病/例(%) $\chi^2 $ P 病变数量 多发 359(100.00) 224(99.50) 1.590 0.206 累及部位 单叶 3(0.84) 0(0.00) 1.890 0.169 单肺 7(1.95) 2(0.89) 1.026 0.311 双肺 351(97.77) 220(97.78) 0.000 0.996 病变分布 周围(胸膜下) 114(31.75) 83(36.89) 1.631 0.202 中央(血管周) 6(1.67) 6(2.67) 0.681 0.409 混合性 239(66.57) 137(60.89) 1.949 0.163 病变形态 结节(1 cm) 159(44.29) 109(48.44) 0.962 0.327 斑片状(3 cm) 275(76.60) 178(79.11) 0.501 0.479 大片状(>3 cm) 240(66.85) 149(66.22) 0.025 0.875 病变密度 GGO 314(87.47) 189(84.00) 1.390 0.238 实变 41(11.42) 37(16.44) 3.017 0.082 网格影 127(35.38) 54(24.00) 8.369 0.004** 不均匀 313(87.19) 181(80.44) 4.823 0.028** 均匀 77(21.45) 59(26.22) 1.764 0.184 病变边缘 模糊 344(95.82) 205(91.11) 5.448 0.020* 清晰 19(5.29) 18(8.00) 1.709 0.191 伴随病变 血管增粗 26(7.24) 25(11.11) 2.597 0.107 胸膜增厚 203(56.55) 130(57.78) 0.086 0.770 胸水形成 54(15.04) 27(12.00) 1.071 0.301 注:*-P<0.05,**-P<0.01。 表 2 COVID-19急性期糖尿病患者与非糖尿病患者的临床信息
Table 2 Clinical information on patients with and without diabetes in the acute phase of COVID-19
项目 组别 统计检验 无糖尿病(n=221) 有糖尿病(n=142) t P 发病时间/d 4.74±2.12 4.45±2.28 1.211 0.227 年龄 78.00±9.37 75.85±8.63 2.203 0.028* 注:急性期定义为发病时间<7 d。*-P<0.05。 表 3 COVID-19急性期糖尿病患者与非糖尿病患者的HRCT特征一览表
Table 3 HRCT characteristics in patients with and without diabetes in the acute phase of COVID-19
项目 特征 组别 统计检验 无糖尿病(n=221)
/
例(%)有糖尿病(n=142)
/
例(%)$\chi^2 $ P 病变数量 多发 221(100.00) 141(99.50) 1.590 0.206 累及部位 单肺 6(2.71) 2(1.41) 0.685 0.408 双肺 214(96.83) 138(97.18) 0.036 0.849 病变分布 周围(胸膜下) 65(29.41) 49(34.51) 1.042 0.307 中央(血管周) 5(2.26) 5(3.52) 0.511 0.475 混合性 153(69.23) 90(63.38) 1.377 0.248 病变形态 结节/树丫(1 cm) 86(38.91) 63(44.37) 1.062 0.303 斑片状(3 cm) 161(72.85) 110(77.46) 0.973 0.324 大片状(>3 cm) 157(71.04) 100(70.42) 0.016 0.899 病变密度 GGO 190(85.97) 121(85.21) 0.041 0.840 实变 30(13.57) 28(19.72) 2.431 0.119 网格影 82(37.10) 35(24.65) 6.141 0.013* 不均匀 188(85.07) 117(82.39) 0.460 0.497 均匀 49(22.17) 38(26.76) 0.999 0.318 病变边缘 模糊 212(95.93) 130(91.55) 3.041 0.081 清晰 11(4.98) 11(7.75) 1.164 0.281 伴随病变 血管增粗 17(7.69) 18(12.68) 2.465 0.116 胸膜增厚 129(58.37) 85(59.86) 0.079 0.779 胸水形成 35(15.84) 20(14.08) 0.207 0.649 注:*-P<0.05。 -
[1] ZHU N, ZHANG D Y, WANG W L, et al. A novel coronavirus from patients with pneumonia in China, 2019[J]. The New England Journal of Medicine, 2020, 382(8): 727−733. doi: 10.1056/NEJMoa2001017
[2] 国家卫生健康委办公厅, 国家中医药局综合司. 《新型冠状病毒感染诊疗方案(试行第十版)》[EB/OL].(2023-01-05)[2023-01-06]. http://www.nhc.gov.cn/ylyjs/pqt/202301/32de5b2ff9bf4eaa88e75bdf7223a65a/files/02ec13aadff048ffae227593a6363ee8.pdf. [3] WU R, GUAN W, GAO Z, et al. The arch bridge sign: A newly described CT feature of the coronavirus disease-19 (COVID-19) pneumonia[J]. Quantitative Imaging in Medicine And Surgery 2020, 10(7): 1551-1558.
[4] YOON S H, LEE J H, KIM B N. Chest CT findings in hospitalized patients with SARS-CoV-2: Delta versus Omicron variants[J]. Radiology, 2023, 306(1): 252−260. doi: 10.1148/radiol.220676
[5] 郑颖彦, 马昕, 王慧英, 等. 新型冠状病毒肺炎的薄层高分辨率计算机断层扫描征象[J]. 上海医学, 2020,43(5): 261−265. ZHENG Y Y, MA X, WANG H Y, et al. Thin high-resolution computed tomography findings of novel coronavirus pneumonia[J]. Shanghai Medical Science, 2020, 43(5): 261−265. (in Chinese).
[6] 国家卫生健康委办公厅, 国家中医药管理局办公室. 《新型冠状病毒感染的肺炎诊疗方案(试行第五版)》[EB/OL]. (2020-02-05) [2020-02-10]. http://bgs.satcm.gov.cn/zhengcewenjian/2020-02-06/12847.html. [7] LIU Y, ZHOU X, LIU X, et al. Systematic review and meta-analysis of the CT imaging characteristics of infectious pneumonia[J]. Annals of Palliative Medicine, 2021, 10(10): 10414−10424. doi: 10.21037/apm-21-2101
[8] TANG Y, LIAO H, WU Q, et al. Chest CT imaging characteristics and their evolution of 48 patients with COVID-19 in Hengyang, China[J]. American Journal of Translational Research, 2021, 13(9): 9983−9992.
[9] PAKDEMIRLI E, MANDALIA U, MONIB S. Characteristics of chest CT images in patients with COVID-19 pneumonia in London, UK[J]. Cureus, 2020, 12(9): e10289.
[10] MARCHIORI E, NOBRE L F, HOCHHEGGER B, et al. CT characteristics of COVID-19: Reversed halo sign or target sign?[J]. Diagnostic and Interventional Radiology, 2021, 27(2): 306−307. doi: 10.5152/dir.2020.20734
[11] HUANG C, WANG Y, LI X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China[J]. Lancet, 2020, 395(10223): 497−506. doi: 10.1016/S0140-6736(20)30183-5
[12] 黄益龙, 张振光, 李翔, 等. CT影像组学联合征象鉴别新型冠状病毒肺炎与其他病毒性肺炎的价值[J]. 中华放射学杂志, 2022,56(1): 36−42. doi: 10.3760/cma.j.cn112149-20201220-01318 HUANG Y L, ZHANG Z G, LI X, et al. Value of CT imaging combined signs in distinguishing novel coronavirus pneumonia from other viral pneumonia[J]. Chinese Journal of Radiology, 2022, 56(1): 36−42. (in Chinese). doi: 10.3760/cma.j.cn112149-20201220-01318
[13] 赵小二, 邓克学, 王朋. 不同阶段新型冠状病毒肺炎的CT影像演变分析[J]. 实用放射学杂志, 2021,37(8): 1254−1257. doi: 10.3969/j.issn.1002-1671.2021.08.008 ZHAO X E, DENG K X, WANG P. CT imaging evolution analysis of novel coronavirus pneumonia at different stages[J]. Journal of Practical Radiology, 2021, 37(8): 1254−1257. (in Chinese). doi: 10.3969/j.issn.1002-1671.2021.08.008
[14] 李声鸿, 曾献军, 鄢海蓝, 等. 新型冠状病毒肺炎薄层CT评价[J]. 实用放射学杂志, 37(7): 1074-1076, 1130. LI S H, ZENG X J, YAN H L, et al. Thin-slice CT evaluation of novel coronavirus pneumonia[J]. Journal of Practical Radiology, 37(7): 1074-1076, 1130. (in Chinese).
[15] 张庆, 熊浩, 彭婕, 等. 胸部CT对新型冠状病毒肺炎的诊断价值[J]. 中国医学影像学杂志, 2020, 28(12): 896-898. ZHANG Q, XIONG H, PENG J, et al. Diagnostic value of chest CT in the diagnosis of novel coronavirus pneumonia[J]. Chinese Journal of Medical Imaging, 2020, 28(12): 896-898. (in Chinese).
[16] 纪丙军, 齐庆梅, 王聪, 等. 新型冠状病毒肺炎与其他社区获得性肺炎不同病期的CT表现及动态分析[J]. 实用放射学杂志, 2021, 37(8): 1266-1270. JI B J, QI Q M, WANG C, et al. CT findings and dynamic analysis of novel coronavirus pneumonia and other community-acquired pneumonia at different stages[J]. Journal of Applied Radiology, 2021, 37(8): 1266-1270. (in Chinese).
[17] 刘茜, 王荣帅, 屈国强, 等. 新型冠状病毒肺炎死亡尸体系统解剖大体观察报告[J]. 法医学杂志, 2020,36(1): 1−3. DOI: 10.12116/j.issn.1004-5619.2020.01.00. LIU Q, WANG R S, QU G Q, et al. A report on the general observation of the systematic autopsy of the deceased from novel coronavirus pneumonia[J]. Journal of Forensic Medicine, 2020, 36(1): 1−3. DOI: 10.12116/j.issn.1004-5619.2020.01.00. (in Chinese).
[18] SHI H, HAN X, JIANG N, et al. Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: A descriptive study[J]. Lancet Infectious Diseases, 2020, 20(4): 425−434. DOI: 10.1016/S1473-3099(20)30086-4.
[19] TANG X, DU R H, WANG R, et al. Comparison of hospitalized patients with ARDS caused by COVID-19 and H1N1[J]. Chest, 2020, 158(1): 195−205. DOI: 10.1016/J.chest.2020.03.032.