ISSN 1004-4140
CN 11-3017/P

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

颅内动脉瘤栓塞术后能谱CTA联合MAR的临床研究

颜钦文 王宇翔 张俊 贺兰 胡岗 熊敏超 秦君翔 袁学刚

颜钦文, 王宇翔, 张俊, 等. 颅内动脉瘤栓塞术后能谱CTA联合MAR的临床研究[J]. CT理论与应用研究, xxxx, x(x): 1-7. DOI: 10.15953/j.ctta.2023.035
引用本文: 颜钦文, 王宇翔, 张俊, 等. 颅内动脉瘤栓塞术后能谱CTA联合MAR的临床研究[J]. CT理论与应用研究, xxxx, x(x): 1-7. DOI: 10.15953/j.ctta.2023.035
YAN Q W, WANG Y X, ZHANG J, et al. Clinical Value of Spectral Imaging Combined with MAR for CTA after Embolization of Intracranial Aneurysms[J]. CT Theory and Applications, xxxx, x(x): 1-7. DOI: 10.15953/j.ctta.2023.035. (in Chinese)
Citation: YAN Q W, WANG Y X, ZHANG J, et al. Clinical Value of Spectral Imaging Combined with MAR for CTA after Embolization of Intracranial Aneurysms[J]. CT Theory and Applications, xxxx, x(x): 1-7. DOI: 10.15953/j.ctta.2023.035. (in Chinese)

颅内动脉瘤栓塞术后能谱CTA联合MAR的临床研究

doi: 10.15953/j.ctta.2023.035
详细信息
    作者简介:

    颜钦文:男,鄂州市中心医院医学影像科,副主任医师,主要从事CT技术及影像诊断研究,E-mail:2156250173@qq.com

    通讯作者:

    男,苏州大学影像医学与核医学专业硕士研究生,鄂州市中心医院医学影像科,主任医师,湖北中医药大学兼职教授,主要从事CT、MR影像诊断及比较影像学研究,E-mail:xmc3380@126.com

Clinical Value of Spectral Imaging Combined with MAR for CTA after Embolization of Intracranial Aneurysms

  • 摘要: 目的:评价颅内动脉瘤栓塞术后能谱CTA联合去金属伪影技术(MAR)的应用价值。方法:收集37例颅内动脉瘤栓塞术后需行能谱头颈CTA检查患者的CT原始数据。分别重建出70~140 keV单能级图像、120 kVp-like混合能量图像及70~140 keV MAR处理图像和120kVp-like MAR图像。感兴趣区(ROI)放置在伪影最严重层面的线圈附近,测量CT值及标准差(SD),计算伪影指数(AI)及信噪比(SNR)。在主观分析方面,由2名诊断医生采用Likert 5分量表法对所有图像的伪影程度和血管显示能力进行评估。比较MAR组和非MAR组图像的主观评分和客观参数。采用Wilcoxon秩和检验、配对样本t检验及独立样本t检验比较各组图像之间的差异。结果:8组单能量图像上,MAR图像的AI明显低于非MAR图像。在80~110 keV条件下,MAR图像SNR高于非MAR组,差异具有统计学意义。相同keV下,与非MAR组相比,MAR组图像的伪影评分及周围血管显示主观评分得分均更高。对于非MAR处理图像,AI值与周围血管显示评分在植入不同直径弹簧圈的患者图像上没有统计学差异。对于MAR图像,较大直径弹簧圈组(>8.79 mm)患者图像的AI值明显高于常规直径组,而周围血管显示主观评分明显低于常规直径组。结论:能谱CTA成像联合MAR可有效减少颅内动脉瘤栓塞植入物伪影,改善周围血管显示,对于小直径的弹簧圈MAR减少伪影效果最为显著。

     

  • 图  1  典型病例图。女,49岁,左侧颈内动脉瘤术后

    (a)(b)为120 kVp-like非MAR图像(血管窗),显示弹簧圈周围伪影较重,无法准确判定弹簧圈与邻近血管的关系;(c)(d)为120 kVp-like MAR图像(血管窗),弹簧圈周围伪影明显减轻,可清晰显示弹簧圈及周围血管。(e)为120 kVp-like联合MAR血管曲面重组图像,清晰显示后交通动脉起始部的弹簧圈,邻近血管未见明显狭窄及瘤样扩张。

    Figure  1.  Scheme diagram of a representative case. Female, 49 years old, after surgery for left internal carotid aneurysm

    表  1  MAR图像与非MAR图像的伪影指数与信噪比比较

    Table  1.   Comparison of artifact index and signal to noise ratio between MAR and non-MAR images

    电压AIPSNRP
    MAR组非MAR组MAR组非MAR组
      70 keV49.67±67.19112.04±53.18 0.014−2.74±2.27−4.20±3.130.164
      80 keV45.91±67.05100.32±52.39 0.012−2.91±2.64−4.82±3.900.009
      90 keV41.91±61.1796.48±47.020.009−3.08±2.85−4.57±2.930.011
      100 keV36.97±51.7793.45±44.130.014−3.21±3.04−4.70±3.100.034
      110 keV36.45±52.8594.59±47.650.016−3.26±3.16−4.56±3.060.044
      120 keV36.22±53.7493.46±48.670.017−3.24±3.20−4.61±3.250.050
      130 keV36.01±54.5192.14±49.390.017−3.26±3.27−4.69±3.440.050
      140 keV35.96±55.1791.30±50.160.018−3.25±3.28−4.76±3.630.055
      120 kVp-like47.20±70.50110.1±55.9 0.015−3.19±2.40−4.51±3.630.059
    注:MAR为去金属伪影;AI为伪影指数;SNR为信噪比。
    下载: 导出CSV

    表  2  植入不同直径弹簧圈的患者CT图像质量比较

    Table  2.   Image quality comparison among CT images of patients implanted with coils of different diameters

    参数常规直径组(<8.79 mm)直径较大组(>8.79 mm)P
       AI(MAR)22.72±16.02 79.91±108.180.011
       AI(非MAR)108.88±43.15 111.84±81.17 0.195
       SNR(MAR)-2.00±2.32 -4.79±1.57 0.124
       SNR(非MAR)-2.62±1.25 -7.04±4.54 0.068
       伪影评分(MAR)4.40±0.233.70±0.530.093
       伪影评分(非MAR)3.28±0.103.10±0.100.830
       周围血管显示(MAR)4.55±0.173.43±0.580.032
       周围血管显示(非MAR)3.25±0.373.10±0.100.131
    注:MAR为去金属伪影;AI为伪影指数;SNR为信噪比。
    下载: 导出CSV

    表  3  MAR图像与非MAR图像的主观图像质量评分比较

    Table  3.   Comparison of subjective image quality scores between MAR and non-MAR images

    伪影评分P周围血管显示评分P
    MAR组非MAR组MAR组非MAR组
      70 keV3.76±0.533.01±0.340.0093.87±0.643.03±0.760.009
      80 keV3.90±0.533.13±0.100.0053.93±0.603.11±0.220.007
      90 keV4.07±0.483.24±0.150.0014.04±0.673.19±0.280.009
      100 keV4.20±0.513.32±0.180.0014.10±0.713.24±0.310.011
      110 keV4.33±0.463.43±0.15<0.001 4.06±0.663.23±0.310.010
      120 keV4.43±0.463.50±0.16<0.001 3.97±0.623.19±0.240.014
      130 keV4.47±0.413.61±0.16<0.001 3.88±0.563.17±0.210.010
      140 keV4.54±0.423.67±0.14<0.001 3.77±0.513.10±0.150.008
      120 kVp-like4.10±0.513.20±0.130.0014.10±0.703.19±0.280.011
    注:MAR为去金属伪影。
    下载: 导出CSV
  • [1] GOERTZ L, LIEBIG T, PENNIG L, et al. Propensity score-adjusted analysis on stent-assisted coiling versus coiling alone for ruptured intracranial aneurysms[J]. Scientific Reports, 2021, 11(1): 21742. doi: 10.1038/s41598-021-01156-y
    [2] YU A Y, ZERNA C, ASSIS Z, et al. Multiphase CT angiography increases detection of anterior circulation intracranial occlusion[J]. Neurology, 2016, 87(6): 609−616.
    [3] 李杰, 袁源, 陈永明, 等. MAR技术去除脊柱金属物伪影的临床应用研究[J]. 临床放射学杂志, 2020,39(6): 1180−1184.

    LI J, YUAN Y, CHEN Y, et al. Clinical Application of MAR Technique in Removing Metal Artifacts in the Spine[J]. Journal of Clinical Radiology, 2020, 39(6): 1180−1184. (in Chinese).
    [4] YU L, PRIMAK A N, LIU X, et al. Image quality optimization and evaluation of linearly mixed images in dual-source, dual-energy CT[J]. Medical Physics, 2009, 36(3): 1019−1024. doi: 10.1118/1.3077921
    [5] de MAN B, NUYTS J, DUPONT P, et al. Metal streak artifacts in X-ray computed tomography: A simulation study[J]. IEEE Transactions on Nuclear Science, 1999, 46(3): 691−696. doi: 10.1109/23.775600
    [6] MAMOURIAN A C, PLUTA D J, ESKEY C J, et al. Optimizing computed tomography to reduce artifacts from titanium aneurysm clips: An in vitro study.[J]. Journal of neurosurgery, 2007, 107(6): 1238−1243. doi: 10.3171/JNS-07/12/1238
    [7] HOSOI R, YASAKA K, MIZUKI M, et al. Deep learning reconstruction with single-energy metal artifact reduction in pelvic computed tomography for patients with metal hip prostheses[J]. Japanese Journal of Radiology, 2023, 41: 863−871.
    [8] YAZDI M, GINGRAS L, BEAULIEU L. An adaptive approach to metal artifact reduction in helical computed tomography for radiation therapy treatment planning: Experimental and clinical studies[J]. International Journal of Radiation Oncology Biology Physics, 2005, 62(4): 1224−1231. doi: 10.1016/j.ijrobp.2005.02.052
    [9] ANDERSSON K M, NOWIK P, PERSLIDEN J, et al. Metal artefact reduction in CT imaging of hip prostheses-an evaluation of commercial techniques provided by four vendors[J]. British Journal of Radiology, 2015, 88(1052): 20140473. doi: 10.1259/bjr.20140473
    [10] MELLANDER H, FRANSSON V, YDSTROM K, et al. Metal artifact reduction by virtual monoenergetic reconstructions from spectral brain CT[J]. European Journal of Radiology Open, 2023, 10: 100479. doi: 10.1016/j.ejro.2023.100479
    [11] ZOPFS D, LENNARTZ S, PENNIG L, et al. Virtual monoenergetic images and post-processing algorithms effectively reduce CT artifacts from intracranial aneurysm treatment[J]. Scientific Reports, 2020, 10(1): 1−10. doi: 10.1038/s41598-019-56847-4
    [12] WINKLHOFER S, HINZPETER R, STOCKER D, et al. Combining monoenergetic extrapolations from dual-energy CT with iterative reconstructions: Reduction of coil and clip artifacts from intracranial aneurysm therapy[J]. Neuroradiology, 2018, 60(3): 281−291. doi: 10.1007/s00234-018-1981-9
    [13] 李杰, 袁源, 王春杰, et al. 能谱CT去金属伪影(MAR)技术用于减低单髋关节置换物伪影[J]. 中国医学影像技术, 2021,37(1): 131−135.

    LI J, YUAN Y, WANG C, et al. Energy Spectrum CT Metal Artifacts Reduction (MAR) for Reducing Artifacts of Unilateral Hip Arthroplasty[J]. Chinese Medical Imaging Technology, 2021, 37(1): 131−135. (in Chinese).
    [14] 付雨菲, 王弘, 邱晓明, 等. 双能量CT单能谱成像技术在颅内动脉瘤夹闭术后的应用[J]. 临床放射学杂志, 2015,5(34): 813−817.

    FU Y, WANG H, QIU X, et al. Application of Dual Energy Monoenergetic CT Technique in the Evaluation of Clipped Intracranial Aneurysms[J]. Journal of Clinical Radiology, 2015, 5(34): 813−817. (in Chinese).
    [15] PESSIS E, CAMPAGNA R, SVERZUT J M, et al. Virtual monochromatic spectral imaging with fast kilovoltage switching: Reduction of metal artifacts at CT[J]. Radiographics, 2013, 33(2): 573−583. doi: 10.1148/rg.332125124
    [16] FERNANDEZ D M, ARMENTIA E S, FIORE A B, et al. The utility of dual-energy CT for metal artifact reduction from intracranial clipping and coiling[J]. Radiologia, 2018, 60(4): 312−319. doi: 10.1016/j.rx.2018.02.009
    [17] 赵艳娥, 宁辉, 郑玲, 等. 双能量CT虚拟单能谱成像技术在脑动脉瘤夹闭术后评估中的应用[J]. 放射学实践, 2014,(9): 988−992.

    ZHAO Y, NING H, ZHENG L, et al. The application of monoenergetic imaging in postoperative evaluation of the patients with intracranial aneurysm clipping using dual energy CT angiography[J]. Radiology Practice, 2014, (9): 988−992. (in Chinese).
    [18] 潘雪琳, 李真林, 程巍, 等. 双源CT单能谱成像技术减低颅内动脉瘤夹伪影的研究[J]. 放射学实践, 2013,28(12): 1212−1215.

    PAN X, LI Z, CHENG W, et al. Optimal monoenergetic imaging for reducing titanium clip metal artifacts in dual-energy computed tomography angiography[J]. Radiology Practice, 2013, 28(12): 1212−1215. (in Chinese).
    [19] 宁志光, 马国峰, 于远, 等. 宽体探测器CT多物质伪影降低技术对CT扫描图像质量的影响[J]. 中华放射学杂志, 2017, 51(10): 790-793.

    NING Z, MA G, YU Y, et al. The effect of a multi-material artifact reduction algorithm in a wide-detector CT system to reduce the beam hardening artifacts in CT imaging [J], Chinese Journal of Radiology, 2017, 51(10): 790-793.
    [20] DEBASHISH P, SHUQIN D, KAREN P, et al. Smart metal artifact reduction[J]. White paper, GE Healthcare, 2016.
    [21] ZHENG H, YANG M, JIA Y, et al. A novel subtraction method to reduce metal artifacts of cerebral aneurysm embolism coils. Clinical Neuroradiology, 2022, 32 (3): 687-694.
    [22] ZHANG X, WANG J, XING L. Metal artifact reduction in X-ray computed tomography (CT) by constrained optimizatio[J]. Medical Physics, 2011, 38(2): 701−711. doi: 10.1118/1.3533711
    [23] BAL M, SPIES L. Metal artifact reduction in CT using tissue-class modeling and adaptive prefiltering[J]. Medical Physics, 2006, 33(8): 2852−2859. doi: 10.1118/1.2218062
    [24] WELLENBERG R, HAKVOORT E, SLUMP C, et al. Metal artifact reduction techniques in musculoskeletal CT-imaging[J]. European Journal of Radiology, 2018, 107: 60−69. doi: 10.1016/j.ejrad.2018.08.010
  • 加载中
图(1) / 表(3)
计量
  • 文章访问数:  21
  • HTML全文浏览量:  10
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-03
  • 修回日期:  2023-04-06
  • 录用日期:  2023-05-22
  • 网络出版日期:  2023-09-12

目录

    /

    返回文章
    返回