Analysis of Chest Computed Tomography Manifestations of Coronavirus Disease 2019 in Different Age Groups
-
摘要: 目的:分析不同年龄人群新型冠状病毒感染(COVID-19)胸部CT影像特征,提高对不同年龄人群COVID-19影像表现的认识。方法:回顾性分析476例COVID-19的胸部CT资料,男275例,女201例,按照不同年龄段分为A组(0~45岁)33人、B组(45~60岁)72人、C组(60~75岁)203人、D组(75岁以上)168人,共4组,比较4组病例胸部CT病灶累及肺叶侧别、数目、密度和病灶分布等CT基本征象及基于深度学习的病灶体积、体积占比和密度等的差异。结果:476例COVID-19患者均有流行病学史,性别在各组间差异无统计学意义。4组病例双肺下叶病灶最为多见,A组病灶多位于单侧肺,C组和D组病灶以双肺分布多见。各组病灶体积、体积占比随年龄增大呈递增趋势,且分布均以双肺下叶为主,其中A、C和D组均以右肺下叶最为常见且体积及体积占比最大,B组以左肺下叶病灶体积及占比较大;与A组比较,C组各项指标增大,差异均有统计学意义,且右肺下叶病灶体积与B组比较差异有统计学意义;D组左肺上叶病灶体积与A组比较明显增大,占比较A组和B组明显增大,余D组全肺及右肺上叶、中叶、下叶及左肺下叶病灶体积及体积占比较A、B和C组均明显增大,且差异有统计学意义。病灶均以磨玻璃密度影及实变为主,A组以纯磨玻璃密度最多见,混合磨玻璃密度次之,实变密度少见;D组病灶以实变密度较多见,大多呈混合磨玻璃密度;B和C组纯磨玻璃、混合磨玻璃、实变密度病灶出现情况介于A组和D组之间;各组病灶密度均以磨玻璃密度为主,CT值区间以 -570 ~-470 HU及 -470 ~ -370 HU为主,D组各CT值区间病灶体积均较A、B和C组高,体积占比均较A组高且差异有统计学意义。结论:本组研究COVID-19患者均有流行病学史,熟悉不同年龄人群胸部CT特征可使临床诊疗工作更具针对性,可为COVID-19病情监测以及个体化防治措施提供参考。Abstract: Objective: This study aimed to analyze the chest computed tomography (CT) imaging features of coronavirus disease 2019 (COVID-19) in people of different ages and improve the understanding of the imaging manifestations of COVID-19. Methods: Chest CT data of 476 cases with COVID-19 were retrospectively analyzed, including 275 males and 201 females. The patients were divided into four groups according to different age groups: groups A (0~45 years old) 33, B (45~60 years old) 72, C (60~75 years old) 203, and D (over 75 years old) 168. A comparison was made between the four groups of patients with chest CT lesions involving lobe side, number and density, distribution, and other basic CT signs, as well as differences in lesion volume, volume proportion, and density based on deep learning. Results: All the 476 patients with COVID-19 had an epidemiological history, and there was no statistically significant difference in sex between the groups. The lesions in the lower lobes of both lungs were the most common in the four groups. The lesions in group A were mostly located in the unilateral lung, while those in groups C and D were mostly distributed in both lungs. The volume and proportion of lesions increased with age in each group, and the distribution was mainly in the lower lobe of both lungs. In groups A, C, and D, the right lower lobe was the most common and had the largest volume and proportion, while in group B, the left lower lobe had the largest volume and proportion. Compared with group A, all indexes of group C increased, and the difference was statistically significant; the lesion volume of the right inferior lobe of the lung was statistically significant compared with group B. The volume of lesions in the left upper lobe of the lung in group D was significantly increased compared with that in groups A and B, and the volume and proportion of lesions in the whole lung, upper, middle, and lower lobes of the right lung, and the lower lobe of the left lung in group D were significantly increased compared with that in groups A, B and C, and the difference was statistically significant. In group A, the density of pure ground glass was the most common, followed by the density of mixed ground glass, and the density of solid change was rare. The solid density of lesions in group D was more common, most of which showed mixed ground glass density. The incidence of pure ground glass, mixed ground glass, and solid density lesions was higher in groups B and C than that in groups A and D. The lesion density in each group was mainly ground glass density, and the CT value ranged from −570 to −470 HU and −470 to −370 HU. The lesion volume in each CT value range of group D was higher than that in groups A, B, and C, and the volume proportion was higher than that in group A, and the difference was statistically significant. Conclusion: All patients with COVID-19 in this group have an epidemiological history. Being familiar with chest CT features of people of different ages can make clinical diagnosis and treatment more targeted and provide a reference for COVID-19 disease monitoring and individualized prevention and treatment measures.
-
Keywords:
- tomography /
- X -ray computed /
- coronavirus disease 2019
-
新型冠状病毒感染(coronavirus disease 2019,COVID-19)严重威胁人类健康,目前流行的奥密克戎变异株致病力较原始株明显降低、传染性增强,2022年10月内蒙古呼和浩特暴发了由免疫逃逸能力和传播力更强的奥密克戎BF.7引起的COVID-19疫情。2022年12月我国疫情防控政策做出科学调整,疫情防控“关口前移”,进入常态化防控期;一段时期内医疗机构感染人数突增,重症患者明显增多,分类救治、防治重症成为医务人员的工作重点。对COVID-19患者及时甄别、发现重症高危患者、提高重症识别能力是降低死亡率的重要保障。
胸部CT检查快捷、高效,是抗击COVID-19的重要手段之一,在COVID-19诊断、严重程度及预后评估方面广泛应用[1-2]。不同年龄人群COVID-19胸部CT有一定特点及变化规律[1,3],明确不同年龄人群COVID-19发病早期的胸部CT表现,可针对性对其采取有效的分类防治措施。本研究通过分析476例不同年龄感染奥密克戎BF.7毒株病例的早期胸部影像特征,从而使临床诊疗工作更具针对性,为COVID-19病情监测以及差异化防治提供参考。
1. 资料与方法
1.1 病例资料
收集2022年12月1日至12月31日经核酸检测确诊的COVID-19患者476例,均为奥密克戎变异株BF.7感染;男性275例(57.8%),女性201例(42.2%),均有流行病学史。根据世界卫生组织对年龄段划分标准的规定,本研究分为A组(0~45岁)33人、B组(45~60岁)72人、C组(60~75岁)203人、D组(75岁以上)168人,共4组。
1.2 影像检查方法
使用GE LightSpeed VCT 64排CT、联影uCT860等64排以上螺旋CT。扫描参数:管电压120 kV,管电流自动毫安输出,层厚5.00 mm,重建层厚1.25 mm,层间距1 mm,矩阵512×512。所有患者均采取仰卧位,深吸气后屏气状态下由肺尖扫描至肺底。
1.3 资料分析
COVID-19临床分型依据《新型冠状病毒感染诊疗方案(试行第十版)》。胸部CT病灶分布、组成、形态、胸腔积液及纵隔淋巴结情况由影像医学科胸组两位副主任医师分析,将CT扫描原始数据以“DICOM”格式导入北京推想科技有限公司AI肺炎辅助诊断系统(Inferead CT Pneumonia),通过深度学习分割模型自动将全肺划分肺叶,并对肺炎区域进行勾画、分割和密度、体积的测量,通过计数像素个数和像素点体积计算肺炎的体积及占肺叶及整肺体积百分比。最终结果由两人协商一致,协商不一致时由第3名高年资主任医师判读。
1.4 统计学方法
经正态性检验,数据不服从正态分布,采用中位数(四分位间距描述);4组之间比较采用非参数Kruskal-Wallis H检验,两两组间比较采用Nemenyi法检验;检验水准α=0.05,以P≤0.05为差异具有统计学意义。所有统计分析采用SPSS 22.0软件。
2. 结果
本研究476例患者根据不同年龄段分为A、B、C和D组,性别在各组间差异无统计学意义;C组及D组患者人数多于A组和B组。
2.1 各组病灶部位、体积、范围
表 1 各年龄段全肺及各肺叶感染体积、体积占比比较Table 1. Comparison of the infected volume and the proportion of infected volume in the whole lung and each lung lobe at different ages指标 年龄段 统计检验 <45岁
(n=33)45~60岁
(n=72)60~75岁
(n=203)≥75岁
(n=168)H P 全肺病灶体积占比/% 0.63 1.24 2.14a 6.21abc 50.675 <0.001 全肺病灶体积 24.74 49.58 71.40a 189.09abc 49.238 <0.001 右肺上叶病灶体积占比/% 0.00 0.10 0.53a 1.79abc 33.428 <0.001 右肺上叶病灶体积 0.00 0.89 4.90a 14.73abc 35.840 <0.001 右肺中叶病灶体积占比/% 0.00 0.29 0.58a 1.97abc 27.296 <0.001 右肺中叶病灶体积 0.00 1.28 1.925a 5.90abc 25.960 <0.001 右肺下叶病灶体积占比/% 0.42 1.15 3.15a 9.16abc 57.565 <0.001 右肺下叶病灶体积 4.02 8.16 26.39ab 67.02abc 58.197 <0.001 左肺上叶病灶体积占比/% 0.00 0.23 0.23a 0.86ac 21.036 <0.001 左肺上叶病灶体积 0.00 2.20 2.26a 7.33a 20.602 <0.001 左肺下叶病灶体积占比/% 0.21 1.58 2.25a 7.13abc 31.768 <0.001 左肺下叶病灶体积 1.38 11.89 15.51a 45.76abc 27.555 <0.001 注:a与<45岁组比较P<0.05;b与45~60岁组比较P<0.05;c与60~75岁组比较P<0.05。 部位:4组病例双肺下叶病灶最为多见,其中A、C和D组均以右肺下叶最为常见,A组病灶多位于单侧肺,C组和D组病灶双肺分布多见。
体积:各组病灶体积、体积占比随年龄增大呈递增趋势,其中A、C和D组均以右肺下叶体积及体积占比最大,B组以左肺下叶病灶体积及占比较大;C组各项指标与A组比较均增大,差异有统计学意义,且右肺下叶病灶体积与B组比较差异有统计学意义;D组左肺上叶病灶体积与A组比较明显增大,占比较A组和B组明显增大,余D组全肺及右肺上叶、中叶、下叶及左肺下叶病灶体积及体积占比较A、B和C组均明显增大,且差异有统计学意义;D组各CT值区间病灶体积均较A、B和C组高,体积占比均较A组高且差异有统计学意义。
范围:A组和B组病灶范围多局限在1~2个肺叶(图3~图5),C组和D组2个及以上肺叶较多见(图6~图8),D组累及肺叶较多,多为双肺分布(图8)。
2.2 病灶密度、数量、形态、边缘及肺外征象
密度:各组病灶密度均以CT值区间 -570~ -470 HU及 -470~ -370 HU的磨玻璃密度为主(表2和图2);A组磨玻璃密度最多见(图3),病灶一般吸收较快。B组和C组病灶磨玻璃密度影、混合磨玻璃密度多见(图4~图7),D组仍以磨玻璃密度影为主,实变密度影较其他组多见(图8),除D组外其余各组大片状实变影相对少见。
表 2 各组病灶密度及各密度病灶占比比较Table 2. Comparison of lesion density and cases in each group指标 组别 统计检验 A(<45岁) B(45~60岁) C(60~75岁) D(≥75岁) H P (-570~-470)体积 2.62 6.09 9.37a 27.46abc 49.529 <0.001 (-570~-470)体积占比/% 13.22 13.44 14.04a 13.77a 2.211 <0.001 (-470~-370)体积 1.97 5.08 8.97a 21.38abc 50.983 <0.001 (-470~-370)体积占比/% 8.64 11.23 a 10.97a 11.57a 9.192 0.027 (-370~-270)体积 1.46 4.46 a 6.74 16.22abc 50.336 <0.001 (-370~-270)体积占比/% 6.39 8.73 a 8.76a 8.88a 14.231 0.003 (-270~-170)体积 0.83 3.65 a 4.84a 11.60abc 48.063 <0.001 (-270~-170)体积占比/% 4.40 6.87 a 6.53a 6.50a 13.823 0.003 (-170~-70)体积 0.53 2.45 a 3.77a 8.13 abc 44.968 <0.001 (-170~-70)体积占比/% 3.28 5.32 5.22 4.91a 8.044 0.045 (-70~30)体积 0.25 1.37 2.68a 6.58abc 43.384 <0.001 (-70~30)体积占比/% 2.15 2.86 3.52a 3.40a 10.103 0.018 (30~70)体积 0.02 0.31 a 0.47a 1.39abc 41.819 <0.001 (30~70)体积占比/% 0.19 0.55 a 0.67a 0.74a 12.169 0.007 其他 12.34 17.99 31.49 88.00abc 46.874 <0.001 其他占比/% 56.94 41.72 a 47.58a 47.11a 16.631 0.001 注:a与<45岁组比较P<0.05;b与45~60岁组比较P<0.05;c与60~75岁组比较P<0.05。 数量:A组多发病灶少见,单发较为多见,B组和C组多为散在多发病灶,D组病灶数量较多。
形态:4个年龄组病灶形态均以结节、斑片状磨玻璃密度多见;A组和B组形态以结节状最多见,斑片状较常见(图3~图5),C组病灶形态以斑片状、条带状、片状多见(图6和图7),结节状较A组少见,D组病灶部分融合成大片状(图8)。
边缘:4个年龄组多数病灶边缘较为清晰。
肺外征象:所有病例均未见纵隔、肺门淋巴结肿大。
3. 讨论
新型冠状病毒(SARS-CoV-2)人群普遍易感,呼吸道飞沫传播及接触传播为主要感染途径[4-5]。奥密克戎变异株2021年11月在人群中出现,其传播力和免疫逃逸能力相比Delta等其他变异株明显增强,并于2022年初成为全球绝对优势流行株。2022年10月以来免疫逃逸能力和传播力更强的BF.7、BQ.1和BQ.1.1等亚分支及重组变异株(XBB)在部分国家和地区成为优势流行株,虽然病死率逐渐降低,但传染性明显增强。
目前的流行病学调查[6]结果显示,COVID-19潜伏期多为2~4 d。如今,奥密克戎毒株已经成为感染的主流,在全球多国蔓延。核酸检测是COVID-19诊断的金标准但其假阴性往往难以避免[7]。普通X线检查肺部病灶漏诊率高,主要用于部分危重症患者的床旁摄影。胸部CT快捷、高效,其可靠性得到广泛认可,特别是胸部高分辨率CT是COVID-19筛查和诊断首选检查方式之一[8-9]。
COVID-19临床上成年人或老年人多见,性别无差异[10-12];胸部CT主要表现为双肺外带分布为主多发小斑片磨玻璃密度影,原因是肺外周带ACE2表达的Ⅱ型肺泡上皮细胞分布最多,该细胞易受经呼吸道进入人体的新型冠状病毒通过刺突蛋白侵入,病情严重者可出现肺实变。既往有研究发现CT有肺炎病灶的成年组比例显著高于未成年组,且症状较未成年组更重[13]。高龄是重症肺炎的主要影响因素,重症肺炎是老年患者死亡的重要原因[14]。
本研究显示不同年龄人群COVID-19早期影像特征存在差异,A组肺炎比例低于其他组,D组肺炎较重,可能由于D组为老年人,常合并基础疾病,且呼吸功能储备能力较中青年低,免疫屏障、器官、细胞衰退,对内外致病因素的抵抗力下降,相对于A、B组中青年更易发生较重肺炎。
COVID-19肺部病变与临床严重程度相关[15]。COVID-19病灶形态不规则、密度不均、混杂,后期病变机化和纤维化的特征性表现是网线状纤维化、实性机化灶、病灶皱缩改变,病理改变是大量炎性趋化因子和严重血管反应以及弥漫性多样化肺泡损伤引起纤维母细胞增生、胶原化肉芽组织和间质纤维化等[16]。本研究4个年龄组病例病灶多呈双肺多发磨玻璃密度影为主、伴或不伴实变病灶,形态多为斑片状、楔形,也可呈类圆形或边缘模糊、伴有晕征的小叶中心结节,单发病灶较少,累及2个肺叶较多见,以肺段分布为主,病灶部位多位于双肺下叶,特别是右肺下叶更为多见,部分病例可见小血管增粗及空气支气管征。各组肺内病灶部位及范围不同,A组和B组多为双肺下叶胸膜下常见的局限性病灶,C组和D组病灶多为散在、多发的磨玻璃密度夹杂实变密度,可能与不同年龄人群免疫状态存在差异有关。4组病例大多数病灶边缘较为清晰,与病毒导致支气管和血管边缘增厚、间质性病变等有关。均未见纵隔、肺门淋巴结肿大。本研究各组病例中无“白肺”病例可能是本次未纳入危重型患者有关。
A组病例中病灶多为局限性磨玻璃密度影多见,与肺泡损伤肺泡壁透明膜形成有关[17],混合磨玻璃密度次之,实变密度少见,可能与肺泡内渗出和水肿不明显相关;部位以右肺下叶为主,类圆形、不规则形结节、斑片磨玻璃影多见,密度不均,多淡薄,内可见增粗小血管或局部增厚的小叶间隔;部分病例病灶密度在肺泡内渗出液增多时可实变,以双肺下叶分布为主,部分沿支气管血管束分布。B组病灶密度、体积及体积占比较A组表现出一定的上升趋势,病灶数量增多,病灶分布区域更为广泛;混合磨玻璃密度较A组多见,可出现实变;小叶内间隔增厚较A组多见、程度加重。C组多为双肺混合磨玻璃密度影,部分以实变影为主,病灶密度混杂,部分病变范围融合扩大,可见多发索条及空气支气管征。可能由于新型冠状病毒感染导致患者呼吸道上皮黏膜损伤[17],年龄较大者免疫状态较中青年变差,致使病情较重,病灶密度实变增多。D组较前3组肺部病灶累及肺叶数量高于A组和B组患者,多为磨玻璃密度伴实变密度,实变区域更大,密度更高,分布呈先沿胸膜下,再向肺门方向播散进行性增多的趋势。部分病例吸收期肺泡内容物被液化吸收或咳出,肺泡上皮及终末细支气管上皮增生,早期纤维化和肺泡腔机化[18],复查CT表现为病灶缩小,密度减低,磨玻璃阴影完全吸收或演变为纤维化索条。
各种病毒性肺炎的CT表现具有相似性,尽管国内外学者提出了许多可供从影像上鉴别COVID-19的征象,如磨玻璃影、实变、光晕征、气泡征、小叶间隔增厚、支气管充气征、胸膜下线、条索、小血管增粗、胸腔积液等[19],但COVID-19的胸部CT表现不具备独立于其他病毒性肺炎的特异性[20]。主要需与具有相似表现的同种类型病毒性肺炎鉴别,如严重急性呼吸综合征,有研究报道其单侧病灶的发病概率为54.6%[21],病灶内空洞、淋巴结肿大及胸腔积液较常见[20-22]。中东呼吸综合征部分病例也可有少量胸腔积液[23],且两者的胸部影像学异常常见于单侧[24],与COVID-19更倾向于累及双肺有别。甲型H1 N1肺炎常合并胸腔积液和纵隔、肺门淋巴结轻度肿大[25],且患者多以中青年为主,临床进展较缓慢[26]。在社区获得性肺炎中,腺病毒引起的呼吸道感染较为常见;腺病毒肺炎CT表现以边缘模糊,密度较高的斑片状或大片状实变为主要特征。另外需与支原体肺炎相鉴别,较COVID-19支原体肺炎“树芽征”、肺门及纵隔淋巴结肿大更多见[27]。急性过敏性肺炎CT表现为以中下肺较多见的双肺多发磨玻璃影,具有游走性,可见马赛克征,呼气扫描有肺小叶空气储留。肺泡蛋白沉积症CT表现为地图样分布的弥漫性斑片状实变影或磨玻璃样影,与正常肺组织分界清楚,以中央型蝶翼状或边缘分布为主,可见铺路石征及空气支气管征[27]。
本文的不足与局限性:①本研究基于患者年龄进行分析,虽然排除了患有肺结核、肺肿瘤等常见影响肺部CT表现疾病患者的图像,但未能明确病例中是否有合并免疫系统疾病的中、青年患者(如尿毒症肾透析的患者、应用激素治疗的患者、肾移植的患者等),应用激素治疗的老年患者,以及患有基础病及其他能影响COVID-19影像表现疾病的患者,可能会对结果有一定影响;②本研究A组和B组样本量较小,考虑与选取时间段内该年龄段人群来医院就诊病例相对较少有关,可能导致结果存在偏移;③本研究仅针对各年龄段 COVID-19病例的CT表现进行分析,尚未对临床表现、转归进行深入分析,有待下一步研究。
总之,本组研究提示高龄是COVID-19病情严重程度的影响因素,随着年龄的增长,CT表现的严重程度有增加趋势,应针对这些影像特征及时进行不同的治疗,以防止病情进展。各年龄段人群COVID-19胸部CT表现既有相同点,在病灶分布、体积及密度等方面又有一定差异及特征性,分析其CT表现有助于针对性开展COVID-19诊疗工作及预后评估,为临床进行个体化治疗提供依据。
-
表 1 各年龄段全肺及各肺叶感染体积、体积占比比较
Table 1 Comparison of the infected volume and the proportion of infected volume in the whole lung and each lung lobe at different ages
指标 年龄段 统计检验 <45岁
(n=33)45~60岁
(n=72)60~75岁
(n=203)≥75岁
(n=168)H P 全肺病灶体积占比/% 0.63 1.24 2.14a 6.21abc 50.675 <0.001 全肺病灶体积 24.74 49.58 71.40a 189.09abc 49.238 <0.001 右肺上叶病灶体积占比/% 0.00 0.10 0.53a 1.79abc 33.428 <0.001 右肺上叶病灶体积 0.00 0.89 4.90a 14.73abc 35.840 <0.001 右肺中叶病灶体积占比/% 0.00 0.29 0.58a 1.97abc 27.296 <0.001 右肺中叶病灶体积 0.00 1.28 1.925a 5.90abc 25.960 <0.001 右肺下叶病灶体积占比/% 0.42 1.15 3.15a 9.16abc 57.565 <0.001 右肺下叶病灶体积 4.02 8.16 26.39ab 67.02abc 58.197 <0.001 左肺上叶病灶体积占比/% 0.00 0.23 0.23a 0.86ac 21.036 <0.001 左肺上叶病灶体积 0.00 2.20 2.26a 7.33a 20.602 <0.001 左肺下叶病灶体积占比/% 0.21 1.58 2.25a 7.13abc 31.768 <0.001 左肺下叶病灶体积 1.38 11.89 15.51a 45.76abc 27.555 <0.001 注:a与<45岁组比较P<0.05;b与45~60岁组比较P<0.05;c与60~75岁组比较P<0.05。 表 2 各组病灶密度及各密度病灶占比比较
Table 2 Comparison of lesion density and cases in each group
指标 组别 统计检验 A(<45岁) B(45~60岁) C(60~75岁) D(≥75岁) H P (-570~-470)体积 2.62 6.09 9.37a 27.46abc 49.529 <0.001 (-570~-470)体积占比/% 13.22 13.44 14.04a 13.77a 2.211 <0.001 (-470~-370)体积 1.97 5.08 8.97a 21.38abc 50.983 <0.001 (-470~-370)体积占比/% 8.64 11.23 a 10.97a 11.57a 9.192 0.027 (-370~-270)体积 1.46 4.46 a 6.74 16.22abc 50.336 <0.001 (-370~-270)体积占比/% 6.39 8.73 a 8.76a 8.88a 14.231 0.003 (-270~-170)体积 0.83 3.65 a 4.84a 11.60abc 48.063 <0.001 (-270~-170)体积占比/% 4.40 6.87 a 6.53a 6.50a 13.823 0.003 (-170~-70)体积 0.53 2.45 a 3.77a 8.13 abc 44.968 <0.001 (-170~-70)体积占比/% 3.28 5.32 5.22 4.91a 8.044 0.045 (-70~30)体积 0.25 1.37 2.68a 6.58abc 43.384 <0.001 (-70~30)体积占比/% 2.15 2.86 3.52a 3.40a 10.103 0.018 (30~70)体积 0.02 0.31 a 0.47a 1.39abc 41.819 <0.001 (30~70)体积占比/% 0.19 0.55 a 0.67a 0.74a 12.169 0.007 其他 12.34 17.99 31.49 88.00abc 46.874 <0.001 其他占比/% 56.94 41.72 a 47.58a 47.11a 16.631 0.001 注:a与<45岁组比较P<0.05;b与45~60岁组比较P<0.05;c与60~75岁组比较P<0.05。 -
[1] 中华医学会放射学分会. 新型冠状病毒肺炎的放射学诊断: 中华医学会放射学分会专家推荐意见(第一版)[J]. 中华放射学杂志, 2020,54(4): 279−285. DOI: 10.3760/cma.j.cn112149-20200205-00094. Chinese Society of Radiology. Radiological diagnosis of new coronavirus infected pneumonitis: Expert recommendation from the Chinese Society of Radiology (First edition)[J]. Chinese Journal of Radiology, 2020, 54(4): 279−285. DOI: 10.3760/cma.j.cn112149-20200205-00094. (in Chinese).
[2] CHUNG M, BERNHEIM A, MEI X Y, et al. CT imaging features of 2019 novel coronavirus (2019-nCoV)[J]. Radiology, 2020, 295(1): 202−207. DOI: 10.1148/radiol.2020200230.
[3] AI T, YANG Z L, ZHAN H Y, et al. Correlation of chest CT and RT-PCR testing in coronavirus disease 2019 (COVID-19) in China: A report of 1014 cases[J]. Radiology, 2020, 296(2): E32−E40. DOI: 10.1148/radiol.2020200642.
[4] LI Q, GUAN X, WU P, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus infected pneumonia[J]. The New England Journal of Medicine, 2020, 382(13): 1199−1207. DOI: 10.1056/NEJMoa2001316.
[5] MUNSTER V J, KOOPMANS M, VAN D N, et al. A novel coronavirus emerging in china-key questions for impact assessment[J]. The New England Journal of Medicine, 2020, 382(8): 692−694. DOI: 10.1056/NEJMp2000929.
[6] 中华人民共和国国家卫生健康委员会. 新型冠状病毒感染诊疗方案(试行第十版)[EB/OL]. (2023-01-06) [2023-01-20]. http://www.nhc.gov.cn/ylyjs/pqt/202301/32de5b2ff9bf4eaa88e75bdf7223a65a.shtml. [7] CHEN D D, JIANG X Q, HONG Y, et al. Can chest CT features distinguish patients with negative from those with positive initial RT-PCR results for coronavirus disease (COVID-19)?[J]. American Journal of Roentgenology, 2021, 216(1): 66−70. DOI: 10.2214/AJR.20.23012.
[8] 靳英辉, 蔡林, 程真顺, 等. 新型冠状病毒(2019-nCoV)感染的肺炎诊疗快速建议指南(标准版)[J]. 解放军医学杂志, 2020,45(1): 1−20. DOI: 10.11855/j.issn.0577-7402.2020.01.01. JIN Y H, CAI L, CHENG Z S, et al. A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (Standard version)[J]. Medical Journal of Chinese People's Liberation Army, 2020, 45(1): 1−20. DOI: 10.11855/j.issn.0577-7402.2020.01.01. (in Chinese).
[9] 赵建华, 张晓琴, 柴军, 等. 无症状感染转确诊新型冠状病毒肺炎胸部CT分析[J]. 生物医学工程与临床, 2020,24(6): 672−677. DOI: 10.13339/j.cnki.sglc.20201023.021. ZHAO J H, ZHANG X Q, CHAI J, et al. Analysis of COVID-19 chest CT in asymptomatic infection transferred to diagnosis patients[J]. Biomedical Engineering and Clinical Medicine, 2020, 24(6): 672−677. DOI: 10.13339/j.cnki.sglc.20201023.021. (in Chinese).
[10] 吴杰, 肖安岭, 顾金凤. 多层螺旋CT对新型冠状病毒肺炎的临床诊断价值[J]. 实用放射学杂志, 2021,37(5): 746−748. doi: 10.3969/j.issn.1002-1671.2021.05.013 WU J, XIA0 A L, GU J F. Clinical value of MSCT in the diagnosis of COVID-19[J]. Journal of Practical Radiology, 2021, 37(5): 746−748. (in Chinese). doi: 10.3969/j.issn.1002-1671.2021.05.013
[11] 余成成, 杨彦鸿, 胡天丽, 等. 新型冠状病毒B.1.617.2变异株感染者高分辨率CT与临床特点[J]. 中华放射学杂志, 2021,55(10): 1054−1058. DOI: 10.3760/cma.j.cn112149-20210618-00574. YU C C, YANG Y H, HU T L, et al. High resolution CT findings and clinical features of the novel corona-virus B.1.617.2 variant[J]. Journal of Practical Radiology, 2021, 55(10): 1054−1058. DOI: 10.3760/cma.j.cn112149-20210618-00574. (in Chinese).
[12] 李声鸿, 曾献军, 鄢海蓝, 等. 新型冠状病毒肺炎薄层CT评价[J]. 实用放射学杂志, 2021,37(7): 1074−1076, 1130. DOI: 10.3969/j.issn.1002-1671.2021.07.007. LI S H, ZENG X J, YAN H L, et al. Evaluation of COVID-19 with thin-sclice CT[J]. Journal of Practical Radiology, 2021, 37(7): 1074−1076, 1130. DOI: 10.3969/j.issn.1002-1671.2021.07.007. (in Chinese).
[13] LIGUORO I, PILOTTO C, BONANNI M, et al. SARS-CoV-2 infection in children and newborns: A systematic review[J]. European Journal of Pediatrics, 2020, 179(7): 1029−1046. DOI: 10.1007/s00431-020-03684-7.
[14] 耿梦杰, 任翔, 余建兴, 等. 不同年龄组新型冠状病毒肺炎患者临床特征分析[J]. 疾病监测, 2021,36(6): 573−580. DOI: 10.3784/jbjc.202101220035. GENG M J, REN X, YU J X, et al. Clinical characteristics of coronavirus disease 2019 cases in different age groups[J]. Disease Surveillance, 2021, 36(6): 573−580. DOI: 10.3784/jbjc.202101220035. (in Chinese).
[15] HENRY B M, LIPPI G, PLEBANI M. Laboratory abnormalities in children with novel coronavirus disease 2019[J]. Clinical Chemistry and Laboratory Medicine, 2020, 58(7): 1135−1138. DOI: 10.1515/cclm-2020-0272.
[16] 孙莹, 李玲, 刘晓燕, 等. 早期新型冠状病毒肺炎的胸部薄层平扫CT表现特征[J]. CT理论与应用研究, 2023,32(1): 131−138. DOI: 10.15953/j.ctta.2023.006. SUN Y, LI L, LIU X Y, et al. Imaging features of early COVID-19 on chest thin-slice non-enhanced CT[J]. CT Theory and Applications, 2023, 32(1): 131−138. DOI: 10.15953/j.ctta.2023.006. (in Chinese).
[17] 吴宝亮, 李婷, 侯勤明, 等. 不同年龄组新型冠状病毒肺炎患者首次胸部CT表现[J]. 医学影像学杂志, 2020,30(11): 2034−2037. WU B L, LI T, HOU Q M, et al. Chest CT manifestation of patients with corona virus disease 2019 in different age groups[J]. Journal of Medical Imaging, 2020, 30(11): 2034−2037. (in Chinese).
[18] 李勃, 孙钢. 基础医学视角的新型冠状病毒肺炎CT表现及鉴别诊断[J]. 中国医学影像学杂志, 2020,28(10): 738−740. DOI: 10.3969/j.issn.1005-5185.2020.10.005. LI B, SUN G. CT findings and differential diagnosis of novel coronavirus pneumonia from the perspective of basic medicine[J]. Chinese Journal of Medical Imaging, 2020, 28(10): 738−740. DOI: 10.3969/j.issn.1005-5185.2020.10.005. (in Chinese).
[19] 田斌, 余晖, 任基刚, 等. 基于机器学习的多种分类模型在新型冠状病毒肺炎与社区获得性肺炎鉴别诊断中的效能[J]. 放射学实践, 2021,36(5): 590−595. DOI: 10.13609/j.cnki.1000-0313.2021.05.004. TIAN B, YU H, REN J G, et al. Effectiveness of multiple classification models based on machine learning in the differential diagnosis of COVID-19 and community-acquired pneumonia[J]. Radiologic Practice, 2021, 36(5): 590−595. DOI: 10.13609/j.cnki.1000-0313.2021.05.004. (in Chinese).
[20] 侯阳, 郭启勇. 从SARS、MERS到COVID-19: 以史为鉴−浅谈影像学在冠状病毒肺炎中的应用价值[J]. 中国临床医学影像杂志, 2020,31(2): 77−82. DOI: 10.12117/jccmi.2020.02.001. HOU Y, GUO Q Y. From SARS, MERS to COVID-19: Learning from history: A brief introduction to imaging of coronavirus pneumonia[J]. Journal of China Clinic Medical Imaging, 2020, 31(2): 77−82. DOI: 10.12117/jccmi.2020.02.001. (in Chinese).
[21] CORMAN V M, LANDT O, KAISER M, et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR[J]. Eurosurveillance, 2020, 25(3): 2000045. DOI: 10.2807/1560-7917.ES.2020.25.3.2000045.
[22] LEE N, HUI D, WU A, et al. A major outbreak of severe acute respiratory syndrome in Hongkong[J]. The New England Journal of Medicine, 2003, 348(20): 1986−1994. DOI: 10.1056/NEJMoa030685.
[23] WONG K T, ANTONIO G E, HUI D S, et al. Severe acute respiratory syndrome: Radiographic appearances and pattern of progression in 138 patients[J]. Radiology, 2003, 228(2): 401−406. DOI: 10.1148/radiol.2282030593.
[24] HOSSEINY M, KOORAKI S, GHOLAMREZANEZHAD A, et al. Radiology perspective of coronavirus disease 2019 (COVID-19): Lessonsfrom severe acute respiratory syndrome and middle east respiratory syndrome[J]. American Journal of Roentgenology, 2020, 215(5): 1−5. DOI: 10.2214/AJR.20.22969.
[25] 李蕾. 重症甲型H1N1流感肺部的影像学表现[J]. 中国临床医学影像杂志, 2011,22(2): 118−120. LI L. Pulmonary imaging findings in severe influenza Alpha H1N1[J]. Journal of China Clinic Medical Imaging, 2011, 22(2): 118−120. (in Chinese).
[26] 王青乐, 施裕新, 张志勇, 等. 新型重组禽流感病毒(H7N9)性肺炎的影像学初步观察[J]. 中华放射学杂志, 2013,47(6): 505−508. DOI: 10.3760/cma.j.issn.1005-1201.2013.06.005. WANG Q L, SHI Y X, ZHANG Z Y, et al. Preliminary imaging findings of novel reassortant avian-origin influenza A(H7N9) pneumonia[J]. Chinese Journal of Radiology, 2013, 47(6): 505−508. DOI: 10.3760/cma.j.issn.1005-1201.2013.06.005. (in Chinese).
[27] 陈钊, 王荣福. CT在新型冠状病毒肺炎诊断与鉴别诊断中的应用价值[J]. CT理论与应用研究, 2020,29(3): 273−279. DOI: 10.15953/j.1004-4140.2020.29.03.02. CHEN Z, WANG R F. Application of CT in the diagnosis and differential diagnosis of novel coronavirus pneumonia[J]. CT Theory and Applications, 2020, 29(3): 273−279. DOI: 10.15953/j.1004-4140.2020.29.03.02. (in Chinese).