Correlation between Clinical Outcome and Computed Tomography Findings in Coronavirus Disease 2019
-
摘要: 目的:分析奥密克戎(Omicron)变异株BF.7感染中型新型冠状病毒感染(COVID-19)不同临床转归胸部CT表现差异,提高对近期COVID-19的影像认识。方法:回顾性分析126例内蒙古自治区人民医院感染奥密克戎BF.7毒株不同临床转归中型COVID-19患者的胸部CT特点,根据是否转为重症(重型/危重型)分为A组(未转为重症)、B组(转为重症),A组103例,男65例,女38例,平均年龄(73.98±11.53)岁,B组23例,B组23例,男16例,女7例,平均年龄(73.43±12.53)岁;比较两组病例年龄、性别及胸部CT病灶分布、密度,累及肺叶情况的差异。结果:126例COVID-19患者均有流行病学史,年龄、性别在两组中差异无统计学意义,B组病灶在左肺上叶、下叶、右肺上叶、中叶、下叶及双肺中体积占比均高于A组。病灶均以磨玻璃阴影、实变为主,范围较A组大。结论:中型COVID-19转为重症患者的胸部CT表现有别于未转为重症者,分析其影像特点,可为临床诊治及预后评估提供参考依据。Abstract: Objective: To analyze the differences in chest computed tomography (CT) findings in patients infected with Omicron strain BF.7 of coronavirus disease 2019 (COVID-19) with different clinical outcomes, and to improve the understanding of COVID-19 imaging. Methods: The features of chest CT images from 126 patients infected with Omicron BF.7 strain at the People's Hospital of Inner Mongolia Autonomous Region were retrospectively analyzed, and divided into ‘group A’ (not serious) and ‘group B’ (serious) according to whether they progressed to critically ill patients. There were 103 cases in group A, including 65 males and 38 females, with an average age of (73.98±11.53) years. There were 23 patients in group B, including 16 males and 7 females, with an average age of (73.43±12.53) years old. The differences in age, gender, and chest CT lesion distribution, density, and lung lobe involvement were compared between the two groups. Results: All 126 COVID-19 patients had an epidemiological history, and there was no statistical significance in age and sexes between the two groups. The volume proportion of lesions in the upper and lower lobes of the left lung, the upper, middle, and lower lobes of the right lung, and both lungs in group B was higher than that in group A. The lesions were primarily ground glass shadow and consolidation, and the range was larger than group A. Conclusion: The age and chest CT findings of patients who developed severe COVID-19 are different from those who do not. The analysis of imaging characteristics can provide reference for clinical diagnosis, treatment, and prognostic assessment.
-
Keywords:
- tomography /
- X-ray computed /
- coronavirus disease 2019
-
新型冠状病毒感染(coronavirus disease 2019,COVID-19)自2019年底开始持续流行,SARS-CoV-2经过了多次的突变和变异,从原始株、德尔塔株,再到目前流行的奥密克戎(Omicron)株,已出现了多种变异毒株谱系[1-2]。
COVID-19病毒为β属的新型冠状病毒[3],其传播能力强,3年来已在全球多国蔓延。胸部CT检查在COVID-19的早期筛查、临床诊治以及病程观察中起着非常重要的作用[4-5]。按照新型冠状病毒感染诊疗方案(试行第十版)[6]进行COVID-19临床分型,轻型胸部CT表现无异常,本研究未纳入。既往COVID-19死亡病例多为重症(重型、危重型)患者,因此对于中型患者临床转归的研究就显得尤为重要。
本研究回顾性分析126例内蒙古自治区人民医院就诊的感染奥密克戎BF.7毒株的不同临床转归的中型COVID-19患者胸部CT,为临床诊治、预后评估提供参考。
1. 资料与方法
1.1 病例资料
回顾性分析2022年12月1日至2023年1月31日在内蒙古自治区人民医院确诊的126例Omicron变异株BF.7感染临床分型为中型的成年COVID-19病例,均有流行病学史。根据《新型冠状病毒感染诊疗方案(试行第十版)》临床诊断是否转为重症(重型/危重型)分为A组(未转为重症)、B组(转为重症)。A组103例,男65例,女38例,平均年龄(73.98±11.53)岁;B组23例,B组23例,男16例,女7例,平均年龄(73.43±12.53)岁。
纳入标准:符合新型冠状病毒感染诊疗方案(试行第十版)的临床诊断标准,具有完整CT检查资料且图像无伪影;排除标准:轻型及首诊即为重症患者;未成年(18岁以下)病例;患有肺部肿瘤、肺结核及其他肺部感染性疾病的病例;患有基础疾病如肺气肿,肺间质纤维化等影响病灶准确判断的病例;图像质量差、呼吸伪影严重等影像观察的病例。
1.2 影像检查方法
使用64排及以上螺旋CT,患者采用仰卧位,扫描范围从胸廓入口至包全肺底。扫描参数:管电压120 kV,自动管电流,层厚5 mm,重建1~1.25 mm,矩阵512×512。
1.3 资料分析
胸部CT薄层图像由两名高年资影像诊断医师进行阅片,统计病灶的分布特点及CT影像征象特征,当诊断结果出现争议时,再由第3名工作10年以上经验丰富的影像医学科胸组医生裁定。
1.4 统计学方法
A组(未转为重症)与B组(转为重症)两组患者性别构成、病灶分布及特征采用例数(构成比)描述,患者平均年龄采用(均数±标准差)描述,采用t检验比较,患者感染病灶占比采用中位数(四分位间距)描述,组间比较采用非参数U检验。以P≤0.05为差异具有统计学意义。
2. 结果
本研究126例患者,根据不同临床转归分为A组和B组,两组病例性别、平均年龄差异无统计学意义;病灶在左肺上叶、下叶、右肺上叶、中叶、下叶及双肺中分布体积占比高于A组(表1)。
表 1 126例中型COVID-19患者分组情况Table 1. Grouping of 60 patients with COVID-19分组 组别 统计检验 A组(n=103) B组(n=23) 统计量 P 病灶分布体积占比(%) 左肺上叶 11.0(16.6) 36.7(26.7) 4.623 <0.001 左肺下叶 32.7(29.3) 56.3(30.4) 3.278 0.001 右肺上叶 12.6(28.6) 36.4(29.5) 4.282 <0.001 右肺中叶 15.5(29.4) 34.7(32.7) 3.246 0.001 右肺下叶 30.9(30.9) 58.0(29.8) 4.067 <0.001 双肺 19.0(19.7) 40.5(12.0) 5.444 <0.001 年龄 平均年龄/岁 73.98±11.53 73.43±12.53 0.202 0.192 ${M}({Q_2}~{Q_3})$ 74.0(16.0) 75.0(19.0) 0.840 0.957 年龄范围/岁 44~95 48~89 两组病灶均以双肺分布磨玻璃阴影、实变为主。大部分呈双肺多叶分布。A组右肺上叶7例(7/103)、右肺中叶2例(2/103),左肺上叶、下叶各1例(1/103)无病灶分布;B组除1例(1/23)左肺下叶无病灶分布外其余22例(22/23)均为双肺5个肺叶分布。两组均可见大小不等磨玻璃斑片影、磨玻璃结节影,部分较淡薄,或部分实变影,索条、实变、铺路石征、小叶间隔增厚及病灶内增粗血管影,沿支气管血管束分布或肺叶外周带及胸膜下分布多见(图1和图2)。B组呈双肺胸膜下及肺叶外周带为主磨玻璃斑片影及实变,部分实变范围扩大,表现为双肺大片状磨玻璃影、实变,沿支气管血管束分布,可见多发条索及空气支气管征;B组病灶吸收较普通型A组慢。B组复查可见1例胸腔积液(图3),均未见纵隔、肺门淋巴结肿大。
3. 讨论
随着SARS-CoV-2的不断变异,越来越多的不同变异株相继出现且倍受关注[7]。普通X线检查由于密度分辨率较差,肺部病灶特别是早期病灶漏诊率高,主要用于部分危重症患者的床旁摄影。胸部CT检查在COVID-19的早期筛查、快速检出微小病灶、临床病情评估以及病程观察中起着非常重要的作用[8]。本研究希望通过对比不同临床转归Omicron BF.7感染患者胸部CT特征的差异,为临床诊治、评估预后提供参考。
本研究中型COVID-19胸部CT多呈双肺多发形态不规则病灶,呈多样性,多为斑片状、楔形、类圆形,病灶多呈淡薄磨玻璃影,密度不均,可夹杂实变病灶,也可呈边缘模糊、伴有晕征的小叶中心结节,部分可见小血管增粗及空气支气管征;多以胸膜下肺外周分布为主,更容易出现沿支气管血管束分布,与之前研究报道结果基本一致[9],可能由于Omicron变异株在支气管中的复制优于在肺实质内[10]。病灶以肺外周带、下肺背侧胸膜下区及肺底多见,内可见小血管增粗或网格状小叶间隔增厚,随着病变进展表现为呈双侧非对称性胸膜下实变病灶,以双肺下叶分布为主,部分沿支气管血管束分布,同之前的研究[11]。转为重症(重型/危重型)的B组平均年龄较A组差异无统计学意义,与之前的研究结果不同[12],考虑与B组样本量较小及本研究未纳入可能病情较轻未至医院就诊的病例有关,存在病例选择偏倚。
胸部CT多表现为双肺弥漫磨玻璃密度影合并实变,可见空气支气管征,病灶分布随病情进展自胸膜下向肺门方向播散,病灶累及肺叶数量高于A组患者,两组患者均未见淋巴结肿大。本研究患者胸部CT可见斑片状磨玻璃密度影,可能是由于病毒定植于肺泡和呼吸性细支气管上皮[13],而病灶右肺下叶较常见可能与病毒更容易进入粗而短的右肺下叶支气管有关,同之前研究[12]。
同种类型病毒性肺炎可有类似表现[14],单纯影像表现很难鉴别;严重急性呼吸综合征和中东呼吸综合征的胸部影像学异常常见于单侧[15],有研究报道严重急性呼吸综合征单侧病灶的发病概率为54.6%[16],但新冠感染患者更倾向于累及双肺。另外,胸腔积液较COVID-19较常见[17-18]。甲型H1N1肺炎常合并胸腔积液和纵隔、肺门淋巴结轻度肿大[19],且患者多以中青年为主,临床进展较缓慢[20]。H7 N9禽流感肺炎早期可见病变同时发生于中心及外周,以一侧肺多见[21],胸腔积液较常见[22]。隐源性机化性肺炎以复发性或游走性的斑片状磨玻璃密度灶或实变灶为特征性CT表现[23-24]。
本研究的不足与局限:①未考虑患者治疗过程对临床转归的影响,譬如是否使用小分子抗病毒药物以及使用的时间等,对研究结果有一定的影响;②转为重症的病例均直接来自于临床指标的诊断,缺少24~48 h内的胸部影像学明显进展>50% 的影像证据;③本研究的图像来源于不同品牌的 CT设备,对病灶细节的观察略有影响。
综上所述,中型COVID-19不同临床转归病例胸部CT具有一定特点,对有重症转归倾向患者及早评估有助于COVID-19重症率的控制。
-
表 1 126例中型COVID-19患者分组情况
Table 1 Grouping of 60 patients with COVID-19
分组 组别 统计检验 A组(n=103) B组(n=23) 统计量 P 病灶分布体积占比(%) 左肺上叶 11.0(16.6) 36.7(26.7) 4.623 <0.001 左肺下叶 32.7(29.3) 56.3(30.4) 3.278 0.001 右肺上叶 12.6(28.6) 36.4(29.5) 4.282 <0.001 右肺中叶 15.5(29.4) 34.7(32.7) 3.246 0.001 右肺下叶 30.9(30.9) 58.0(29.8) 4.067 <0.001 双肺 19.0(19.7) 40.5(12.0) 5.444 <0.001 年龄 平均年龄/岁 73.98±11.53 73.43±12.53 0.202 0.192 ${M}({Q_2}~{Q_3})$ 74.0(16.0) 75.0(19.0) 0.840 0.957 年龄范围/岁 44~95 48~89 -
[1] LI B, DENG A, LI K, et al. Viral infection and transmission in a large, well-traced outbreak caused by the SARS-CoV-2 Delta variant[J]. Nature Communications, 2022, 13(1): 460. DOI: 10.1038/s41467-022-28089-y.
[2] RAMAN R, PATEL K J, RANJAN K. COVID-19: Unmasking emerging SARS-CoV-2 variants, vaccines and therapeutic strategies[J]. Biomolecules, 2021, 11(7): 993. DOI: 10.3390/biom11070993.
[3] ZHU N, ZHANG D, WANG W, et al. A novel coronavirus from patients with pneumonia in China, 2019[J]. The New England Journal of Medicine, 2020, 382(8): 727−733. DOI: 10.1056/NEJMoa2001017.
[4] RUBIN G D, RYERSON C J, HARAMATI L B, et al. The role of chest imaging in patient management during the COVID-19 pandemic: A multinational consensus statement from the Fleischner Society[J]. Radiology, 2020, 296(1): 172−180. DOI: 10.1148/radiol.2020201365.
[5] BERNHEIM A, MEI X, HUANG M, et al. Chest CT findings in coronavirus disease-19 (COVID-19): Relationship to duration of infection[J]. Radiology, 2020, 295(3): 685−691. DOI: 10.1148/radiol.2020200463.
[6] 中华人民共和国国家卫生健康委员会. 新型冠状病毒感染诊疗方案(试行第十版)[EB/OL]. (2023-01-06)[2023-01-20]. http://www.nhc.gov.cn/ylyjs/pqt/202301/32de5b2ff9bf4eaa88e75bdf7223a65a.shtml. [7] HU T, ZHANG M, DENG A, et al. Comparison of Omicron and Delta variant infection COVID-19 Cases-Guangdong Province, China, 2022[J]. China CDC Weekly, 2022, 4(18): 385. DOI: 10.46234/ccdcw2022.087.
[8] 靳英辉, 蔡林, 程真顺, 等. 新型冠状病毒(2019-nCoV)感染的肺炎诊疗快速建议指南(标准版)[J]. 解放军医学杂志, 2020,45(1): 20. DOI: 10.11855/j.issn.0577-7402.2020.01.01. JIN Y H, CAI L, CHENG Z S, et al. A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia(standard version)[J]. Medical Journal of Chinese People's Liberation Army, 2020, 45(1): 20. DOI: 10.11855/j.issn.0577-7402.2020.01.01. (in Chinese).
[9] YOON S H, LEE J H, KIM B N. Chest CT findings in hospitalized patients with SARS-CoV-2: Delta versus Omicron variants[J]. Radiology, 2023, 306(1): 252−260. DOI: 10.1148/radiol.220676.
[10] HUI K P Y, HO J C W, CHEUNG M, et al. SARS-CoV-2 Omicron variant replication in human bronchus and lung ex vivo[J]. Nature, 2022, 603(7902): 715−720. doi: 10.1038/s41586-022-04479-6
[11] 赵建华, 刘瑞, 贺燕林, 等. 新型冠状病毒肺炎临床分型胸部CT表现分析[J]. 医学影像学杂志, 2020,30(10): 1817−1820. ZHAO J H, LIU R, HE Y L, et al. Analysis of chest CT imaging of corona virus disease 2019 according to clinical classification[J]. Journal of Medical Imaging, 2020, 30(10): 1817−1820. (in Chinese).
[12] 赵建华, 柴军, 张晓琴, 等. 基于深度学习的新型冠状病毒肺炎转归胸部CT评价[J]. 国际放射医学核医学杂志, 2020,44(12): 737−743. ZHAO J H, CHAI J, ZHANG X Q, et al. Chest CT evaluation of COVID-19 outcome based on deep learning[J]. International Journal of Radiation Medicine and Nuclear Medicine, 2020, 44(12): 737−743. (in Chinese).
[13] KOO H J, LIM S, CHOE J, et al. Radiographic and CT features of viral pneumonia[J]. Radiographics, 2018, 38(3): 719−739. DOI: 10.1148/rg.2018170048.
[14] KANNE J P. Chest CT findings in 2019 novel coronavirus (2019-nCoV) infections from Wuhan, China: Key points for the radiologist[J]. Radiology, 2020, 295(1): 16−17. DOI: 10.1148/radiol.2020200241.
[15] HOSSEINY M, KOORAKI S, GHOLAMREZANEZHAD A, et al. Radiology perspective of coronavirus disease 2019 (COVID-19): Lessonsfrom severe acute respiratory syndrome and middle east respiratory syndrome[J]. American Journal of Roentgenology, 2020, 215(5): 1−5. DOI: 10.2214/AJR.20.22969.
[16] CORMAN V M, LANDT O, KAISER M, et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR[J]. Eurosurveillance, 2020, 25(3): 2000045. DOI: 10.2807/1560-7917.ES.2020.25.3.2000045.
[17] LEE N, HUI D, WU A, et al. A major outbreak of severe acute respiratory syndrome in Hongkong[J]. The New England Journal of Medicine, 2003, 348(20): 1986−1994. DOI: 10.1056/NEJMoa030685.
[18] WONG K T, ANTONIO G E, HUI D S, et al. Severe acute respiratory syndrome: Radiographic appearances and pattern of progression in 138 patients[J]. Radiology, 2003, 228(2): 401−406. DOI: 10.1148/radiol.2282030593.
[19] 李蕾. 重症甲型H1N1流感肺部的影像学表现[J]. 中国临床医学影像杂志, 2011,22(2): 118−120. doi: 10.3969/j.issn.1008-1062.2011.02.014 LI L. Pulmonary imaging findings in severe influenza Alpha H1N1[J]. Journal of China Clinic Medical Imaging, 2011, 22(2): 118−120. (in Chinese). doi: 10.3969/j.issn.1008-1062.2011.02.014
[20] 王青乐, 施裕新, 张志勇, 等. 新型重组禽流感病毒(H7N9)性肺炎的影像学初步观察[J]. 中华放射学杂志, 2013,47(6): 505−508. DOI: 10.3760/cma.j.issn.1005-1201.2013.06.005. WANG Q L, SHI Y X, ZHANG Z Y, et al. Preliminary imaging findings of novel reassortant avian-origin influenza A (H7N9) pneumonia[J]. Chinese Journal of Radiology, 2013, 47(6): 505−508. DOI: 10.3760/cma.j.issn.1005-1201.2013.06.005. (in Chinese).
[21] DAI J, ZHOU X M, DONG D J, et al. Human infection with a novel avian-origin influenza a (H7N9) virus: Serial chest radiographic and CT findings[J]. Chinese Medical Journal, 2014, 127(12): 2206−2211. DOI: 10.3760/cma.j.issn.0366-6999.20132951.
[22] EVA C, ALGUERSUARI A, GALLARDO X, et al. When to suspect pulmonary vasculitis: Radiologic and clinical clues[J]. Radiographics, 2010, 30(1): 33−53. DOI: 10.1148/rg.301095103.
[23] DRAKOPANAGIOTAKIS F, PASCHALAKI K, ABU-HIJLEH M, et al. Cryptogenic and secondary organizing pneumonia: Clinical presentation, radiographic findings, treatment response, and prognosis[J]. Chest, 2011, 139(4): 893−900. DOI: 10.1378/chest.10-0883.
[24] 陈钊, 王荣福. CT在新型冠状病毒肺炎诊断与鉴别诊断中的应用价值[J]. CT理论与应用研究, 2020,29(3): 273−279. DOI: 10.15953/j.1004-4140.2020.29.03.02. CHEN Z, WANG R F. Application of CT in the diagnosis and differential diagnosis of novel coronavirus pneumonia[J]. CT Theory and Applications, 2020, 29(3): 273−279. DOI: 10.15953/j.1004-4140.2020.29.03.02. (in Chinese).