Bone Mineral Density and Body Composition Characteristics of Patients with Coronavirus Disease 2019 after One-year Follow-up
-
摘要: COVID-19虽以肺部表现为主,但该病除累及呼吸系统外,还可累及多个系统,其中尤以对骨肌系统影响的研究较为缺乏。本研究纳入33例有入院、出院及1年后随访胸部CT资料的COVID-19患者,分析其骨及体质成分特征,共纳入无症状感染者、轻型、普通型、重型患者各2、8、19和4人,无危重型患者。平均住院时长为(29.5±9.6)d,平均随访时间为(423.0±53.6)d。入院、出院及1年后胸椎骨密度未见明显变化;胸12~腰1椎间隙层面腹部皮下脂肪、腹腔内脂肪及腹部总脂肪面积亦未见明显变化。无症状感染者及轻型组患者入院及1年随访胸1~胸12平均BMD高于普通型及重型组;普通型及重型组患者入院及1年后随访腹腔内脂肪面积及腹部总脂肪面积大于无症状感染者及轻型组。本研究首次探索COVID-19对骨肌系统的影响,提示感染COVID-19一年后,并未导致患者胸椎骨密度和腹部脂肪发生明显变化。Abstract: Although coronavirus disease 2019 (COVID-19) primarily affects the respiratory system, this disease can affect multiple systems, including the musculoskeletal system. However, studies regarding the effect of COVID-19 on musculoskeletal system are limited. This study analyzed the bone mineral density (BMD) and body composition of 33 patients with COVID-19 using their chest CT scans at admission, discharge, and one-year follow-up. Among the patients, 2 were asymptomatic, 8 had mild symptoms, 19 had ordinary symptoms, and 4 had severe symptoms, and no critical patients were included. The mean length of hospital stay was (29.5±9.6) days, and the mean duration to follow-up was (423.0±53.6) days. The study found no significant changes in BMD of segmental or total thoracic vertebrae at admission, discharge, and one-year follow-up. No significant changes were observed in the subcutaneous adipose tissue (SAT) area, visceral adipose tissue (VAT) area, and total adipose tissue (TAT) of the mid-slice of the T12~L1 intervertebral disc. However, the asymptomatic and mild group had a higher average BMD of the T1~T12 than that of the common and severe group at admission and one-year follow-up. The common and severe group had higher VAT and TAT area than those of the asymptomatic and mild group at admission and one-year follow-up. This study provides valuable insights into the effects of COVID-19 on the musculoskeletal system and suggests that COVID-19 does not significantly affect thoracic BMD and abdominal adipose tissue after one year of infection.
-
-
表 1 入组患者入院临床特征、住院及随访时长
Table 1 Clinical characteristics, length of hospital stay, and duration to follow-up of patients with COVID-19
项目 特征值 年龄/岁 47.1±15.0 性别/例(%) 男 22(66.7) 女 11(33.3) 身高/cm 169.0±7.9 体重/kg 72.9±13.4 BMI/(kg/m2) 25.5±3.7 临床分型/例(%) 无症状 2(6.1) 轻型 8(24.2) 普通型 19(57.6) 重型 4(12.1) 危重型 0(0.0) 住院时长/d 29.5±9.6 随访时间/d 423.0±53.6 表 2 入院、出院及1年后随访T1~T12椎体平均BMD及不同分段平均BMD
Table 2 The mean BMD of T1~T12 and mean BMD of different vertebral segments at admission, discharge, and one year follow-up of patients with COVID-19
椎体或分段 BMD/(mg/cm3) P 入院 出院 1年后随访 T1~T4(上1/3段) 179.3±33.6 178.0±33.1 177.6±33.5 0.586 T5~T8(中1/3段) 164.7±36.9 165.3±36.0 165.5±37.4 0.749 T9~T12(下1/3段) 152.8±36.7 152.5±39.4 152.4±39.0 0.903 T1~T6(上段) 176.6±33.9 175.8±33.9 175.6±34.0 0.679 T7~T12(下段) 154.6±36.7 154.7±37.8 154.7±38.4 0.993 T1~T12平均 165.6±34.6 165.3±35.2 165.2±35.4 0.865 注:BMD为骨密度。 表 3 入院、出院及1年后随访腹部脂肪面积
Table 3 The abdominal adipose tissue area of patients with COVID-19 at admission, discharge, and one year follow-up
腹部脂肪 面积/cm2 P 入院 出院 1年后随访 SAT 99.9±51.2 102.2±52.6 103.7±52.7 0.086 VAT 122.4±58.7 128.0±64.4 130.9±66.7 0.374 TAT 222.3±91.5 230.1±96.1 234.6±100.1 0.186 注:SAT为腹部皮下脂肪,VAT为腹腔内脂肪,TAT为腹部总脂肪。 表 4 无症状感染者及轻型组、普通型及重型组之间临床特征、骨密度及腹部脂肪特征比较
Table 4 The comparison of clinical features, BMD, and abdominal adipose tissue area of patients with COVID-19 between the asymptomatic and mild group and the common and severe group
项目 组别 P 无症状感染者及轻型组 普通型及重型组 病例 10 23 年龄/岁 37.0±12.8 51.4±13.9 0.009 性别 男 7 15 0.788 女 3 8 BMI/(kg/m2) 25.4±5.4 25.5±2.8 0.946 入院T1~T12平均BMD/(mg/cm3) 173.9±33.6 162.0±35.2 0.037 1年后随访T1~T12平均BMD/(mg/cm3) 173.5±34.4 161.5±36.0 0.037 入院T12~L1层面SAT面积/cm2 99.7±71.1 99.9±41.7 0.989 1年后随访T12~L1层面SAT面积/cm2 100.5±73.2 105.1±42.9 0.821 入院T12~L1层面VAT面积/cm2 102.9±71.2 130.8±51.8 0.021 1年后随访T12~L1层面VAT面积/cm2 107.5±70.1 141.1±64.0 0.018 入院T12~L1层面TAT面积/cm2 202.6±129.7 230.8±71.0 0.042 1年后随访T12~L1层面TAT面积/cm2 208.0±135.7 246.2±81.2 0.032 注:BMD为骨密度,SAT为腹部皮下脂肪,VAT为腹腔内脂肪,TAT为腹部总脂肪。 -
[1] World Health Organization (2022) Coronavirus (COVID-19) Dashboard. World Health Organization, Geneva[EB/OL]. [2023-02-10]. https://www.covid19.who.int.
[2] 中华人民共和国国家卫生健康委员会办公厅, 中华人民共和国国家中医药管理局办公室. 新型冠状病毒肺炎诊疗方案(试行第九版)[J]. 中国医药, 2022,17(4): 481−487. DOI: 10.3760/cma.j.cn331340-20220325-00065. General Office of the National Health Commission of the People's Republic of China, Office of the State Administration of Traditional Chinese Medicine of the People's Republic of China. Diagnosis and treatment protocol for novel coronavirus pneumonia (Trial version 9)[J]. China Medicine, 2022, 17(4): 481−487. DOI: 10.3760/cma.j.cn331340-20220325-00065. (in Chinese).
[3] CUI F, ZHOU H S. Diagnostic methods and potential portable biosensors for coronavirus disease 2019[J]. Biosens Bioelectron, 2020, 165: 112349. DOI: 10.1016/j.bios.2020.112349.
[4] BAI H X, HSIEH B, XIONG Z, et al. Performance of radiologists in differentiating COVID-19 from Non-COVID-19 viral pneumonia at chest CT[J]. Radiology, 2020, 296(2): E46−e54. DOI: 10.1148/radiol.2020200823.
[5] AI T, YANG Z, HOU H, et al. Correlation of chest CT and RT-PCR testing for coronavirus disease 2019 (COVID-19) in China: A report of 1014 cases[J]. Radiology, 2020, 296(2): E32−e40. DOI: 10.1148/radiol.2020200642.
[6] 魏巍, 魏璇, 颜颖, 等. 基于CT图像及临床分型探讨新型冠状病毒肺炎患者住院时长的影响因素[J]. 临床和实验医学杂志, 2022,21(9): 998−1002. DOI: 10.3969/j.issn.1671-4695.2022.09.028. WEI W, WEI X, YAN Y, et al. Application of medical imaging features for the analysis of influencing factors of hospitalization days in COVID-19[J]. Journal of Clinical and Experimental Medicine, 2022, 21(9): 998−1002. DOI: 10.3969/j.issn.1671-4695.2022.09.028. (in Chinese).
[7] 王振常, 张鹏, 吕晗, 等. 树立多要素关联诊断新理念提升医学影像学在临床诊疗中的价值[J]. 国际医学放射学杂志, 2021,44(5): 497−500. DOI: 10.19300/J.2021.S19394. WANG Z C, ZHANG P, LV H, et al. Establish a new concept of multi-factor associated diagnosis to enhance the value of medical imaging in clinical diagnosis and treatment[J]. International Journal of Medical Radiology, 2021, 44(5): 497−500. DOI: 10.19300/J.2021.S19394. (in Chinese).
[8] BALCOM E F, NATH A, POWER C. Acute and chronic neurological disorders in COVID-19: Potential mechanisms of disease[J]. Brain, 2021, 144(12): 3576−3588. DOI: 10.1093/brain/awab302.
[9] CHUNG M K, ZIDAR D A, BRISTOW M R, et al. COVID-19 and cardiovascular disease: From bench to bedside[J]. Circulation Research, 2021, 128(8): 1214−1236. DOI: 10.1161/circresaha.121.317997.
[10] SCHULTZE J L, ASCHENBRENNER A C. COVID-19 and the human innate immune system[J]. Cell, 2021, 184(7): 1671−1692. DOI: 10.1016/j.cell.2021.02.029.
[11] CHENG Y, YANG H, LIU Z, et al. Will the bone mineral density in postmenopausal women get worse during the COVID-19 pandemic?[J]. Medical Hypotheses, 2022, 162: 110803. DOI: 10.1016/j.mehy.2022.110803.
[12] ZEIGLER Z. COVID-19 self-quarantine and weight gain risk factors in adults[J]. Current Obesity Reports, 2021, 10(3): 423−433. DOI: 10.1007/s13679-021-00449-7.
[13] CHENG X, ZHANG Y, WANG C, et al. The optimal anatomic site for a single slice to estimate the total volume of visceral adipose tissue by using the quantitative computed tomography (QCT) in Chinese population[J]. European Journal of Clinical Nutrition, 2018, 72(11): 1567−1575. DOI: 10.1038/s41430-018-0122-1.
[14] BERKTAŞ B M, GÖKÇEK A, HOCA N T, et al. COVID-19 illness and treatment decrease bone mineral density of surviving hospitalized patients[J]. European Review for Medical and Pharmacological Sciences, 2022, 26(8): 3046−3056. DOI: 10.26355/eurrev_202204_28636.
[15] CUI J, SHIBATA Y, ZHU T, et al. Osteocytes in bone aging: Advances, challenges, and future perspectives[J]. Ageing Research Reviews, 2022, 77: 101608. DOI: 10.1016/j.arr.2022.101608.
[16] BUEHRING B, VISWANATHAN R, BINKLEY N, et al. Glucocorticoid-induced osteoporosis: An update on effects and management[J]. The Journal of Allergy and Clinical Immunology, 2013, 132(5): 1019−1030. DOI: 10.1016/j.jaci.2013.08.040.
[17] ABRAHAM T M, PEDLEY A, MASSARO J M, et al. Association between visceral and subcutaneous adipose depots and incident cardiovascular disease risk factors[J]. Circulation, 2015, 132(17): 1639−1647. DOI: 10.1161/circulationaha.114.015000.
[18] IBRAHIM M M. Subcutaneous and visceral adipose tissue: Structural and functional differences[J]. Obesity Reviews, 2010, 11(1): 11−18. DOI: 10.1111/j.1467-789X.2009.00623.x.
[19] SHUSTER A, PATLAS M, PINTHUS J H, et al. The clinical importance of visceral adiposity: A critical review of methods for visceral adipose tissue analysis[J]. The British Journal of Radiology, 2012, 85(1009): 1−10. DOI: 10.1259/bjr/38447238.
[20] FARON A, LUETKENS J A, SCHMEEL F C, et al. Quantification of fat and skeletal muscle tissue at abdominal computed tomography: Associations between single-slice measurements and total compartment volumes[J]. Abdom Radiology (NY), 2019, 44(5): 1907−1916. DOI: 10.1007/s00261-019-01912-9.
[21] CHANDARANA H, DANE B, MIKHEEV A, et al. Visceral adipose tissue in patients with COVID-19: Risk stratification for severity[J]. Abdom Radiology (NY), 2021, 46(2): 818−825. DOI: 10.1007/s00261-020-02693-2.
[22] PETERSEN A, BRESSEM K, ALBRECHT J, et al. The role of visceral adiposity in the severity of COVID-19: Highlights from a unicenter cross-sectional pilot study in Germany[J]. Metabolism, 2020, 110: 154317. DOI: 10.1016/j.metabol.2020.154317.
计量
- 文章访问数: 180
- HTML全文浏览量: 112
- PDF下载量: 11