Review of Research on Filtering-based Methods for Seismic Scattered Wave Separation
-
摘要:
在地震勘探中,由于地下结构错综复杂,多尺度非均匀的地质体常会形成包含反射波、散射波等在内的复杂的地震波场。传统的成像方法一般只考虑反射波场,忽略了散射波场,这使得细小结构无法准确成像,从而影响对复杂构造的识别。为了对小尺度构造进行准确的地震成像,要将散射波从地震波场中分离出来。在众多波场分离算法中,基于滤波的波场分离方法可以准确提取散射波,提高成像分辨率。本文调研和归纳多种基于滤波处理的地震散射波分离方法,围绕国内外学者在滤波处理波场分离方面的研究成果,总结各种方法的研究进展,并对比和分析各方法的分离效果,最后结合人工智能深度学习的研究趋势,对未来滤波处理散射波分离的发展方向进行展望。
Abstract:In seismic exploration, complex seismic wave fields comprising reflected waves, scattered waves, and other phenomena are formed due to the intricate nature of underground structures. Traditional imaging methods typically focus solely on the reflected wave field, disregarding the scattered wave field. This limitation hampers accurate imaging of small-scale structures and impedes the identification of complex structures. To address this challenge and achieve precise imaging of small-scale structures, it is crucial to separate from the scattered waves from the seismic wave field. Among the various wave field separation algorithms, filtering-based methods have shown promising results in accurately extracting scattered waves and enhancing imaging resolution. This study explores and summarizes different methods for seismic scattered wave separation based on filtering techniques. By reviewing the research findings of both domestic and international scholars in the field of filtering-based scattered wave separation, the study provides an overview of the progress made and compares and analyzes the separation effects of each method. Additionally, considering the advancements in deep learning within the realm of artificial intelligence, the future development direction of filtering-based scattered wave separation is also envisioned.
-
Keywords:
- seismic imaging /
- wave field separation /
- scattered wave /
- filtering /
- high resolution
-
随着年龄的增长,腰椎退行性变及椎间盘病变日趋增多,CT检查能及时发现诊断腰椎病变并能随访治疗效果,但CT检查辐射问题一直为人们所关注,随着患者受辐射剂量的增加,癌症的发生概率会增大,腰椎CT扫描范围包括性腺,而人体性腺对辐射最敏感,所以开展低剂量腰椎CT检查非常必要。
以往研究均是通过降低管电压或者降低管电流来降低辐射剂量,因腰椎体层较厚,降低管电压或管电流会导致图像噪声增加。本文为解决腰椎CT高辐射剂量及图像噪声偏高的问题,采用最新的能谱纯化技术结合高级模拟迭代重建(ADMIRE)技术,探讨如何更好的优化腰椎CT检查的图像质量和降低辐射剂量。
1. 材料与方法
1.1 一般资料
选取2021年8月至2022年5月因腰痛来我院行腰椎CT检查的患者,在检查前计算患者的体质量指数(bodymassindex,BMI),BMI=体重(kg)/身高(m)2。纳入年龄在25~65岁,BMI在18.5~25 kg/m2的患者,排除有腰椎手术史和腰椎畸形及有椎体金属植入物的患者,共收集88例。对照组(A组)、试验组(B组)每组44例。
A组与B组平均年龄分别为(45.9±12.1)岁和(47.2±13.8)岁。两组间年龄差异无统计学意义,A组与B组平均BMI分别为(20.1±2.89)kg/m2和(21.40±3.50)kg/m2。
1.2 扫描方法
采用德国SOMATOM Force第3代双源CT,扫描范围从胸12椎体至骶1椎体。扫描参数:对照组(A组)管电压120 kV,参考管电流350 mAs;试验组(B组)管电压Sn 150 kV,参考管电流350 mAs,其他扫描参数均一致。
重建采用高级模拟迭代重建算法(ADMIRE),重建等级3级,重建薄层图像,层厚1 mm,层间距0.60 mm,软组织窗采用软组织算法,卷积核Br40,骨窗采用骨算法,卷积核Br64,重建图像窗宽,窗位分别为350 HU和50 HU(软组织窗)、2500 HU和800 HU(骨窗)。所有图像重建完成后自动发至西门子Syngovia VB20A后处理工作站。
1.3 图像质量评价
1.3.1 客观评价
由1名主管技师从工作站中取L3椎体正中层面,在软组织窗上测量腰大肌与竖脊肌的CT值和噪声,腰大肌的噪声为SD1,竖脊肌的噪声为SD2,噪声值用对应所测的标准差表示,并计算信噪比(SNR):
$$ {\rm{SNR}}=腰大肌\;{\rm{CT}}\;值/{\rm{SD}}1。$$ (1) 1.3.2 主观评价
由3名副主任及以上诊断医师双盲法进行评分。评价L3/4层面椎间盘、椎间孔、黄韧带、硬膜囊及小关节图像质量。评价标准[1]:2分(软组织结构清晰,其边缘清楚,无伪影,且诊断明确);1分(软组织结构清晰,边缘欠清,有轻度伪影,但尚可诊断);0分(软组织结构不清,边缘模糊,伪影较重,不能进行诊断)。
1.4 辐射剂量
统计设备记录的容积CT剂量指数(CT dose index volumes,CTDIvol)及剂量长度乘积(dose length product,DLP),并计算有效辐射剂量(effective dose,ED)[2],计算公式:
$$ {\rm{ED}}={\rm{DLP}}\times k(k=0.011\;{\rm{mSv}}\cdot{\rm{mGy}}\cdot{\rm{cm}})。$$ (2) 1.5 统计学分析
1.5.1 客观评价和辐射剂量统计分析
采用SPSS 26.0软件对数据进行统计学分析。连续性数据非正态分布数据两组间比较采用Mann-Whitney U检验,用中位数及四分位数(M(Q25,Q75))表示。双侧检验,以P<0.05为差异有统计学意义。
1.5.2 主观评价
采用组内相关系数(intraclass correlation coefficient,ICC)对3位诊断医师的评分结果一致性进行分析。ICC介于0和1之间,ICC大于0.75表示一致性较好。
2. 结果
2.1 客观评价结果
两组图像腰大肌的CT值、竖脊肌的CT值和噪声(SD2)、SNR均存在统计学差异,而腰大肌的噪声(SD1)不具有统计学差异(表1);图1为120 kV轴位上噪声和CT值测量及矢状位重组图,图2为Sn 150 kV下的轴位上噪声和CT值测量测量及矢状位重组图。
表 1 A组和B组图像质量客观评价表Table 1. Objective evaluation of image quality in groups A and B项目 组别 统计检验 A组 B组 Z P 腰大肌/HU 53.00(48.70~56.00) 47.90(43.70~51.00) 2.741 0.016 SD1 5.73(4.83~6.83) 5.09(4.69~5.24) 1.904 0.057 竖脊肌/HU 52.00(46.2~55.00) 43.50(38.20~51) 3.511 <0.001 SD2 5.41(5.27~5.98) 4.56(3.62~5.63) 3.964 <0.001 SNR 9.12(7.88~10.51) 9.86(7.95~10.02) -0.693 0.488 2.2 主观评价
3位医师对椎间盘、椎间孔、黄韧带、硬膜囊及小关节及整体图像质量评价均无统计学差异(表2),说明两组图像质量医师主观评价无差异,且均能符合医师诊断要求。
表 2 3位诊断医师的主观评分统计分析表Table 2. Statistical analysis of the subjective scores from the three doctors interpreting the computed tomography images指标 组别 P A组 B组 椎间盘 2.00±0.00 2.00±0.00 >0.999 椎间孔 1.98±0.15 1.98±0.15 0.156 黄韧带 1.95±0.21 2.00±0.00 0.562 硬膜囊 1.98±0.15 1.95±0.21 >0.999 小关节图像 2.00±0.00 2.00±0.00 0.320 整体图像质量 2.00±0.00 2.00±0.00 >0.999 2.3 辐射剂量
两组辐射剂量DLP、ED有统计学差异,两组辐射剂量差异明显,B组DLP值比A组降低了32.27%,B组ED值比A组降低了30.31%(表3)。
表 3 A组和B组辐射剂量统计表Table 3. Radiation dose in groups A and B项目 组别 统计检验 A组 B组 Z P mAs 333.00(300.00~362.00) 237.50(222.00~261.00) 7.885 <0.001 CTDIvol 14.75(13.65~16.00) 6.57(5.20~7.23) 8.015 <0.001 DLP 413.60(351.00~425.50) 280.13(230.89~327.20) 6.946 <0.001 ED 4.55(3.86~4.68) 3.08(2.54~3.60) 6.946 <0.001 3. 讨论
腰椎因体层相对较厚,需要高管电压来增加X线的穿透力,高管电流来降低图像的噪声,造成腰椎CT辐射剂量往往较高,以往研究都是通过降低管电流来降低辐射剂量。随着设备和技术的进步,众多新的降低辐射剂量的技术出现,如:低管电压[3-4]、自动管电流[5-6]、高级迭代重建算法[7]、能谱纯化[8]等,这些技术为我们开展低剂量CT提供了条件。
本研究B组管电压是用能谱纯化Sn 150 kV,而A组管电压是用120 kV,统计结果显示B组的辐射剂量低于A组30.31%。因为A组120 kV的X线球管是用铜和铝滤过,Sn 150 kV的X线球管是用能谱纯化技术的锡滤过,锡的原子序数比铜和铝高,锡滤过板能过滤掉X线球管的低能级射线,提高射线能量,而对人体产生辐射的主要是低能级软射线,低能级软射线以光电效应为主,大部分被人体吸收产生辐射。能谱纯化技术只保留了对人体成像有用的高能级射线,高能级射线会穿过人体相对辐射较少,所以B组辐射剂量低于A组,多学者也证实了这一说法[9-13]。
客观评价中A组肌肉的噪声要高于B组,腰大肌的噪声两组之间无统计学差异,而竖脊肌的噪声两组之间有统计学差异,此结果说明射线能量和图像噪声成正相关,也证实了Sn 150 kV的穿透力较120 kV的好。因竖脊肌处于腰大肌的下层,射线先穿过腰大肌再到竖脊肌,射线能量会因组织的阻挡发生衰减,A组射线的能量到达竖脊肌时比B组衰减更多,因衰减后的能量差异造成了噪声值的差异,故造成了两组不同肌肉之间统计学结果的差异。
沈梓璇等[14]论述了120 kVp管电压所获得的腰椎图像质量评分以及信噪比皆较高,但辐射剂量也较大的观点。本文为了解决这一问题,首次采用Sn 150 kV用于腰椎CT检查,主观评价结果显示,3位观察者的ICC为0.829,表示为两组图像主观评价一致性较好,说明两组图像质量均满足诊断要求,主客观评价结果均证实了Sn 150 kV用于腰椎CT检查是可行的。王帅等[15]也证实Sn 150 kV能用于全腹部CT检查,且辐射剂量较低,与本文研究结果一致。
高级模拟迭代重建,是将原始图像中的原始数据噪声投射到图像中,得到的图像是多次迭代重建后的组合,再将原始数据进行准确的图像校正,对原始数据域进行去噪及去除伪影,最后进行图像域的校正,反复迭代来降低噪声,图像空间分辨率不受影响。客观评价表中A组和B组图像的噪声均值都处于10以下,证实了高级模拟迭代重建的降噪能力。顾海峰等[16]和Schlunk等[17]也证明了迭代重建能降低噪声保证图像质量满足诊断需求。
综上所述,采用能谱纯化Sn 150 kV结合ADMIRE,不但能有效减低辐射剂量,还可保证优质的图像质量,值得在成人腰椎CT中推广使用。
-
表 1 各种滤波分离方法对比
Table 1 Comparison of different filtering-based methods for wave separation.
方法名称 适用条件 处理域 优缺点 基于平面波解构滤波的散
射波分离方法适用于在倾角域形态或曲线特征上具有显著差异的各种波之间的分离。 叠前处理、叠后处理 优点是能够很好地压制反射波,实现散射波分离;缺点是计算成本较高。 基于扩散滤波的散射波分
离方法适用于在能量大小和分布具有显著差异的各种波之间的分离。 叠后处理 优点是可以不断调整扩散系数和迭代次数,有效提高散射波分离精度,提高了偏移剖面的信噪比;缺点是计算量较大。 基于倾角滤波的散射波分
离方法适用于在不同道集域(共中心点道集、共炮点道集、共偏移距道集)具有特征差异的各种波之间的分离。 叠前处理 优点是能够较完整地分离散射波;缺点是低倾角的散射波信息易失真或丢失。 基于偏移滤波的散射波分
离方法适用于在传播时差和传播路径具有特征差异的各种波之间的分离。 叠前处理 优点是在各个变换域的分辨率都得到提高;缺点是计算量较大,不能很好地处理混叠的波场。 基于F-K滤波的散射波分
离方法适用于在频率波数域和频率偏移距域具有特征差异的各种波之间的分离。 叠前处理 优点是去噪能力强、振幅保真性好,能够消除反射波,增强散射波;缺点是反射波消除不彻底,易破坏反射信息的波形特征和振幅特征。 -
[1] DECKER L, KLOKOV A. Diffraction extraction by plane-wave destruction of partial images[C]//2014 SEG Annual Meeting, 1949. DOI: 10.1190/segam2014-1458.1.
[2] DECKER L, MERZLIKIN D, FOMEL S. Diffraction imaging and time-migration velocity analysis using oriented velocity continuation[J]. Geophysics, 2017, 82(2): U25−U35. doi: 10.1190/geo2016-0141.1
[3] GELIUS L J. Limited-view diffraction tomography in a nonuniform background[J]. Geophysics, 1995, 60(2): 580−588. doi: 10.1190/1.1443796
[4] GELIUS L J, TYGEL M, TAKAHATA A K, et al. High-resolution imaging of diffractions: A window-steered MUSIC approach[J]. Geophysics, 2013, 78(6): S255−S264. doi: 10.1190/geo2013-0047.1
[5] LANDA E, KEYDAR S. Seismic monitoring of diffraction images for detection of local heterogeneities[J]. Geophysics, 1998, 63(3): 1093−1100. doi: 10.1190/1.1444387
[6] BANSAL R, IMHOF M G. Diffraction enhancement in prestack seismic data[J]. Geophysics, 2005, 70(3): V73−V79. doi: 10.1190/1.1926577
[7] FOMEL S. Applications of plane-wave destruction filters[J]. Geophysics, 2002, 67(6): 1946−1960. doi: 10.1190/1.1527095
[8] FOMEL S, LANDA E, TANER M T. Poststack velocity analysis by separation and imaging of seismic diffractions[J]. Geophysics, 2007, 72(6): U89−U94. doi: 10.1190/1.2781533
[9] NEMETH T, SUN H, SCHUSTER G T. Separation of signal and coherent noise by migration filtering[J]. Geophysics, 2000, 65(2): 574−583. doi: 10.1190/1.1444753
[10] 陈可洋, 吴沛熹, 杨微. 扩散滤波方法在地震资料处理中的应用研究[J]. 岩性油气藏, 2014,26(1): 117−122. doi: 10.3969/j.issn.1673-8926.2014.01.020 CHEN K Y, WU P X, YANG W. Research on the application of diffusion filtering method in seismic data processing[J]. Lithologic Oil and Gas Reservoir, 2014, 26(1): 117−122. (in Chinese). doi: 10.3969/j.issn.1673-8926.2014.01.020
[11] 陈可洋, 杨微, 吴清岭, 等. 地震反射波与散射波波场分离方法初探[J]. 岩性油气藏, 2013,25(2): 76−81. CHEN K Y, YANG W, WU Q L, et al. Preliminary study on the separation method of seismic reflection wave and scattered wave field[J]. Lithologic Oil and Gas Reservoir, 2013, 25(2): 76−81. (in Chinese).
[12] LI C, ZHANG J. Wavefield separation using irreversible-migration filtering[J]. Geophysics, 2022, 87(3): A43−A48. doi: 10.1190/geo2021-0607.1
[13] BAKER B B, COPSON E T. The mathematical theory of Hyugens' principle[J]. Oxford: Clarendon Press, 1939.
[14] KHAIDUKOV V, LANDA E, MOSER T J. Diffraction imaging by focusing-defocusing: An outlook on seismic super resolution[J]. Geophysics, 2004, 69(6): 1478−1490. doi: 10.1190/1.1836821
[15] 吴如山. 地震波散射: 理论与应用[J]. 地球物理学进展, 1989,(4): 1−23. WU R S. Seismic wave scattering: Theory and applications[J]. Progress in Geophysics, 1989, (4): 1−23. (in Chinese).
[16] HARLAN W S, CLAERBOUT J F, ROCCA F. Signal/noise separation and velocity estimation[J]. Geophysics, 1984, 49(11): 1869−1880. doi: 10.1190/1.1441600
[17] CLAERBOUT J F, Abma R. Earth soundings analysis: Processing versus inversion[M]. London: Blackwell Scientific Publications, 1992.
[18] HAO H M, ZHANG J, KONG X, et al. Diffracting objective imaging based on plane wave record[C]//Society of Exploration Geophysicists. Nonrecurring Meetings 2011: International Geophysical Conference, Shenzhen, China, 2011. https://doi.org/10.1190/1.4705051.
[19] TANER M T, FOMEL S. Separation and imaging of seismic diffractions using plane-wave decomposition[C]//2006 SEG Annual Meeting. OnePetro, 2006.
[20] 刘玉金, 李振春, 黄建平, 等. 绕射波叠前时间偏移速度分析及成像[J]. 地球物理学进展, 2013,28(6): 3022−3029. LIU Y J, LI Z C, HUANG J P, et al. Diffraction wave prestack time migration velocity analysis and imaging[J]. Progress in Geophysics, 2013, 28(6): 3022−3029. (in Chinese).
[21] 孔雪, 李振春, 黄建平, 等. 基于平面波记录的绕射目标成像方法研究[J]. 石油地球物理勘探, 2012,47(4): 674−682, 518. DOI: 10.13810/j.cnki.issn.1000-7210.2012.04.014. KONG X, LI Z C, HUANG J P, et al. Research on diffraction target imaging method based on plane wave recording[J]. Petroleum Geophysical Exploration, 2012, 47(4): 674−682, 518. DOI: 10.13810/j.cnki.issn.1000-7210.2012.04.014. (in Chinese).
[22] KONG X, WANG D Y, LI Z C, et al. Diffraction separation by plane-wave prediction filtering[J]. Applied Geophysics, 2017, 14(3): 399−405. doi: 10.1007/s11770-017-0634-9
[23] KONG X, WANG D Y, LI Z C, et al. Study on the separation and imaging of diffracted waves in dip domain based on slope analysis[J]. Applied Geophysics, 2020, 17(1): 103-110, 169.
[24] 黄建平, 李振春, 孔雪, 等. 基于PWD的绕射波波场分离成像方法综述[J]. 地球物理学进展, 2012,27(6): 2499−2510. HUANG J P, LI Z C, KONG X, et al. Overview of PWD based diffraction wave field separation imaging methods[J]. Progress in Geophysics, 2012, 27(6): 2499−2510. (in Chinese).
[25] LIU L, VINCENT E, JI X, et al. Imaging diffractors using wave-equation migration[J]. Geophysics, 2016, 81(6): S459−S468. doi: 10.1190/geo2016-0029.1
[26] MERZLIKIN D, FOMEL S, SEN M K. Least-squares path-summation diffraction imaging using sparsity constraints[J]. Geophysics, 2019, 84(3): S187−S200. doi: 10.1190/geo2018-0609.1
[27] PERONA P, MALIK J. Scale-space and edge detection using anisotropic diffusion[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(7): 629−639. doi: 10.1109/34.56205
[28] FEHMERS G C, HÖCKER C F W. Fast structural interpretation with structure-oriented filtering[J]. Geophysics, 2003, 68(4): 1286−1293. doi: 10.1190/1.1598121
[29] 孙夕平, 杜世通, 汤磊. 相干增强各向异性扩散滤波技术[J]. 石油地球物理勘探, 2004,39(6): 651−655, 665. doi: 10.3321/j.issn:1000-7210.2004.06.006 SUN X P, DU S T, TANG L. Coherent enhanced anisotropic diffusion filtering technology[J]. Petroleum Geophysical Exploration, 2004, 39(6): 651−655, 665. (in Chinese). doi: 10.3321/j.issn:1000-7210.2004.06.006
[30] 王绪松, 杨长春. 对地震图像进行保边滤波的非线性各向异性扩散算法[J]. 地球物理学进展, 2006,(2): 452−457. doi: 10.3969/j.issn.1004-2903.2006.02.017 WANG X S, YANG C C. A nonlinear anisotropic diffusion algorithm for edge preserving filtering of seismic images[J]. Progress in Geophysics, 2006, (2): 452−457. (in Chinese). doi: 10.3969/j.issn.1004-2903.2006.02.017
[31] LAVIALLE O, POP S, GERMAIN C, et al. Seismic fault preserving diffusion[J]. Journal of Applied Geophysics, 2007, 61(2): 132−141. doi: 10.1016/j.jappgeo.2006.06.002
[32] KADLEC B J, DORN G A, TUFO H M. Confidence and curvature-guided level sets for channel segmentation[M]//Society of Exploration Geophysicists. SEG Technical Program Expanded Abstracts 2008, 2008: 879-883.
[33] 张尔华, 王伟, 高静怀, 等. 非线性各向异性扩散滤波器用于三维地震资料噪声衰减与结构特征增强[J]. 地球物理学进展, 2010,25(3): 866−870. doi: 10.3969/j.issn.1004-2903.2010.03.019 ZHANG E H, WANG W, GAO J H, et al. Application of nonlinear anisotropic diffusion filter to noise attenuation and structural feature enhancement of 3D seismic data[J]. Progress in Geophysics, 2010, 25(3): 866−870. (in Chinese). doi: 10.3969/j.issn.1004-2903.2010.03.019
[34] 朱生旺, 李佩, 宁俊瑞. 局部倾角滤波和预测反演联合分离绕射波[J]. 地球物理学报, 2013,56(1): 280−288. doi: 10.6038/cjg20130129 ZHU S W, LI P, NING J R. Separation of diffracted waves by local dip filtering and prediction inversion[J]. Chinese Journal of Geophysics, 2013, 56(1): 280−288. (in Chinese). doi: 10.6038/cjg20130129
[35] KENT G M, KIM I I, HARDING A J, et al. Suppression of sea-floor-scattered energy using a dip-moveout approach−Application to the mid-ocean ridge environment[J]. Geophysics, 1996, 61(3): 821−834. doi: 10.1190/1.1444007
[36] 闫艳琴, 马学军. 基于优化反演的绕射波提取成像技术及其应用[J]. 石油物探, 2021,60(4): 574−583. doi: 10.3969/j.issn.1000-1441.2021.04.006 YAN Y Q, MA X J. Diffraction wave extraction imaging technology based on optimized inversion and its application[J]. Petroleum Geophysical Prospecting, 2021, 60(4): 574−583. (in Chinese). doi: 10.3969/j.issn.1000-1441.2021.04.006
[37] ZHANG R. Fresnel aperture and diffraction prestack depth migration[J]. CDSST Annual Report, 2004: 1-11.
[38] ZHU X, WU R S. Imaging diffraction points using the local image matrix in prestack migration[C]//2008 SEG Annual Meeting. OnePetro, 2008.
[39] KOREN Z, RAVVE I. Specular/diffraction imaging by full azimuth subsurface angle domain decomposition[M]//Society of Exploration Geophysicists. SEG Technical Program Expanded Abstracts 2010, 2010: 3268-3272.
[40] De FIGUEIREDO J J S, OLIVEIRA F, ESMI E, et al. Diffraction Imaging Based on the Diffraction Operator[C]//European Association of Geoscientists & Engineers. 73th EAGE Conference and Exhibition incorporating SPE EUROPEC 2011, 2011: cp-238-00049.
[41] ZHANG J, ZHANG J. Diffraction imaging using shot and opening-angle gathers: A prestack time migration approach[J]. Geophysics, 2014, 79(2): S23−S33. doi: 10.1190/geo2013-0016.1
[42] ZHAO J, WANG Y, YU C. Diffraction imaging by uniform asymptotic theory and double exponential fitting[J]. Geophysical Prospecting, 2015, 63(2): 338−353. doi: 10.1111/1365-2478.12199
[43] 李晓峰, 黄建平, 李振春, 等. 基于反稳相滤波的边缘绕射成像方法研究[J]. 地球物理学进展, 2015,30(3): 1205−1213. doi: 10.6038/pg20150328 LI X F, HUANG J P, LI Z C, et al. Research on edge diffraction imaging method based on anti stable phase filtering[J]. Progress in Geophysics, 2015, 30(3): 1205−1213. (in Chinese). doi: 10.6038/pg20150328
[44] 刘培君, 黄建平, 李振春, 等. 一种基于反稳相的深度域绕射波分离成像方法[J]. 石油地球物理勘探, 2017,52(5): 967−973, 879. DOI: 10.13810/j.cnki.issn.1000-7210.2017.05.009. LIU P J, HUANG J P, LI Z C, et al. A depth domain diffracted wave separation imaging method based on anti stable phase[J]. Petroleum Geophysical Exploration, 2017, 52(5): 967−973, 879. DOI: 10.13810/j.cnki.issn.1000-7210.2017.05.009. (in Chinese).
[45] MOON W, CARSWELL A, TANG R, et al. Radon transform wave field separation for vertical seismic profiling data[J]. Geophysics, 1986, 51(4): 940−947. doi: 10.1190/1.1442151
[46] ROWBOTHAM P S, GOULTY N R. Wavefield separation by 3-D filtering in cross hole seismic reflection processing[J]. Geophysics, 1994, 59(7): 1065−1071. doi: 10.1190/1.1443662
[47] BOULFOUL M, WATTS D R. Separation and enhancement of split S-waves on multicomponent shot records from the BIRPS WISPA experiment[J]. Geophysics, 1994, 59(1): 131−139. doi: 10.1190/1.1443524
[48] MacBETH C, LI X Y, ZENG X, et al. Processing of a nine-component near-offset VSP for seismic anisotropy[J]. Geophysics, 1997, 62(2): 676−689. doi: 10.1190/1.1444176
[49] ZHOU H, SATO M. Application of vertical radar profiling technique to Sendai Castle[J]. Geophysics, 2000, 65(2): 533−539. doi: 10.1190/1.1444748
[50] 李彩芹, 张华. 小波变换与F-K联合滤波在面波分离中的应用[J]. 中国煤田地质, 2007,(4): 60−61, 84. LI C Q, ZHANG H. Application of wavelet transform and F-K joint filtering in surface wave separation[J]. China Coal Field Geology, 2007, (4): 60−61, 84. (in Chinese).
[51] 赵娟娟, 李德春, 匡伟, 等. F-K滤波方法分离地震绕射波和反射波[J]. 能源技术与管理, 2010,(3): 16−17. doi: 10.3969/j.issn.1672-9943.2010.03.007 ZHAO J J, LI D C, KUANG W, et al. Separation of seismic diffracted and reflected waves by F-K filtering method[J]. Energy Technology and Management, 2010, (3): 16−17. (in Chinese). doi: 10.3969/j.issn.1672-9943.2010.03.007
[52] LOU M, CAMPBELL M, CHENG D, et al. An improved parametric inversion methodology to separate P and SV wavefields from VSP data[C]//2013 SEG Annual Meeting. OnePetro, 2013.
[53] 万光南. f-k滤波在压制面波噪声中的应用[J]. 中州煤炭, 2014,(2): 99−101. WAN G N. Application of f-k filtering in suppressing surface wave noise[J]. Zhongzhou Coal, 2014, (2): 99−101. (in Chinese).
[54] LI H, YANG G, WANG J, et al. Ground-roll suppression by EMD algorithm based on average value constraint[C]//2016 SEG International Exposition and Annual Meeting. OnePetro, 2016.
[55] SUN J, ZHENG J, GUO J, et al. An f-k filtering technology based on structural constraint to suppress the interference of small-scale geologic bodies in fault identification[M]//Society of Exploration Geophysicists. SEG Technical Program Expanded Abstracts 2017, 2017: 2315-2319.
[56] SUN Y, FEI T W. Wavefield separation at an arbitrary propagation direction via f-k filtering[C]//SEG Technical Program Expanded Abstracts 2018. Society of Exploration Geophysicists, 2018: 4171-4175.
[57] 吕佳静, 程广利, 袁骏, 等. 波数域滤波法提取海底地震波场中的表面波[C]//中国声学学会水声学分会2019年学术会议论文集, 2019: 43-45. [58] 吴海波, 张平松, 胡雄武, 等. f-k滤波在探地雷达数据去噪中的应用[J]. 安徽理工大学学报(自然科学版), 2020,40(1): 33−37. WU H B, ZHANG P S, HU X W, et al. Application of f-k filtering in ground penetrating radar data denoising[J]. Journal of Anhui University of Science and Technology (Natural Science Edition), 2020, 40(1): 33−37. (in Chinese).
[59] 李志娜, 李振春, 王鹏, 等. 地震资料F-K滤波去除相干噪声综合性实验[J]. 实验技术与管理, 2022,39(1): 66−71. DOI: 10.16791/j.cnki.sjg.2022.01.014. LI Z N, LI Z C, WANG P, et al. Comprehensive experiment on F-K filtering of seismic data to remove coherent noise[J]. Experiment Technology and Management, 2022, 39(1): 66−71. DOI: 10.16791/j.cnki.sjg.2022.01.014. (in Chinese).
[60] 马铭, 包乾宗. 利用Encoder-Decoder框架的深度学习网络实现绕射波分离及成像[J]. 石油地球物理勘探, 2023,58(1): 56−64. DOI: 10.13810/j.cnki.issn.1000-7210.2023.01.005. MA M, BAO Q Z. Deep learning network using Encoder-Decoder framework for bypass wave separation and imaging[J]. Petroleum Geophysical Exploration, 2023, 58(1): 56−64. DOI: 10.13810/j.cnki.issn.1000-7210.2023.01.005. (in Chinese).
[61] 盛同杰, 赵惊涛, 彭苏萍. 地震绕射波弱信号U-net网络提取方法[J]. 地球物理学报, 2023,66(3): 1192−1204. doi: 10.6038/cjg2022Q0073 SHENG T J, ZHAO J T, PENG S P. Extraction method of seismic bypass wave weak signal U-net network[J]. Chinese Journal of Geophysics, 2023, 66(3): 1192−1204. (in Chinese). doi: 10.6038/cjg2022Q0073
-
期刊类型引用(2)
1. 涂立冬,李雅萍. 岩土勘查技术在盐矿绿色矿山建设中的应用初探. 盐科学与化工. 2025(04): 9-12 . 百度学术
2. 杨兆林,潘懿,白旭晨,刘禄平. 露天铁矿采空区隐蔽致灾普查与防治措施应用研究. 矿业研究与开发. 2024(09): 74-81 . 百度学术
其他类型引用(2)