ISSN 1004-4140
CN 11-3017/P

基于滤波处理的地震散射波分离方法研究综述

叶峻林, 李桂花, 丁仁伟, 赵俐红, 赵硕, 孙世民

叶峻林, 李桂花, 丁仁伟, 等. 基于滤波处理的地震散射波分离方法研究综述[J]. CT理论与应用研究(中英文), 2024, 33(1): 105-117. DOI: 10.15953/j.ctta.2023.085.
引用本文: 叶峻林, 李桂花, 丁仁伟, 等. 基于滤波处理的地震散射波分离方法研究综述[J]. CT理论与应用研究(中英文), 2024, 33(1): 105-117. DOI: 10.15953/j.ctta.2023.085.
YE J L, LI G H, DING R W, et al. Review of Research on Filtering-based Methods for Seismic Scattered Wave Separation[J]. CT Theory and Applications, 2024, 33(1): 105-117. DOI: 10.15953/j.ctta.2023.085. (in Chinese).
Citation: YE J L, LI G H, DING R W, et al. Review of Research on Filtering-based Methods for Seismic Scattered Wave Separation[J]. CT Theory and Applications, 2024, 33(1): 105-117. DOI: 10.15953/j.ctta.2023.085. (in Chinese).

基于滤波处理的地震散射波分离方法研究综述

基金项目: 国家自然科学基金(北冰洋美亚海盆岩石圈的挠曲形变特征(41676039));山东省自然科学基金(基于混合模型深度神经网络的多波地震油气藏特征提取与识别(ZR202103050722));西太平洋地球系统多圈层相互作用重大研究计划(马里亚纳南段输入板块的俯冲过程与归宿及其对浅部变形的约束(92058213))。
详细信息
    作者简介:

    叶峻林: 男,山东科技大学地球科学与工程学院硕士研究生,主要从事人工智能、深度学习、地震数据智能处理与解释研究,E-mail:sdust yejunlin@163.com

    通讯作者:

    李桂花: 女,山东科技大学地球科学与工程学院副教授、硕士生导师,主要从事地震勘探相关理论的应用教学与研究工作,E-mail:liguihua@sdust.edu.cn

  • 中图分类号: P  315

Review of Research on Filtering-based Methods for Seismic Scattered Wave Separation

  • 摘要:

    在地震勘探中,由于地下结构错综复杂,多尺度非均匀的地质体常会形成包含反射波、散射波等在内的复杂的地震波场。传统的成像方法一般只考虑反射波场,忽略了散射波场,这使得细小结构无法准确成像,从而影响对复杂构造的识别。为了对小尺度构造进行准确的地震成像,要将散射波从地震波场中分离出来。在众多波场分离算法中,基于滤波的波场分离方法可以准确提取散射波,提高成像分辨率。本文调研和归纳多种基于滤波处理的地震散射波分离方法,围绕国内外学者在滤波处理波场分离方面的研究成果,总结各种方法的研究进展,并对比和分析各方法的分离效果,最后结合人工智能深度学习的研究趋势,对未来滤波处理散射波分离的发展方向进行展望。

    Abstract:

    In seismic exploration, complex seismic wave fields comprising reflected waves, scattered waves, and other phenomena are formed due to the intricate nature of underground structures. Traditional imaging methods typically focus solely on the reflected wave field, disregarding the scattered wave field. This limitation hampers accurate imaging of small-scale structures and impedes the identification of complex structures. To address this challenge and achieve precise imaging of small-scale structures, it is crucial to separate from the scattered waves from the seismic wave field. Among the various wave field separation algorithms, filtering-based methods have shown promising results in accurately extracting scattered waves and enhancing imaging resolution. This study explores and summarizes different methods for seismic scattered wave separation based on filtering techniques. By reviewing the research findings of both domestic and international scholars in the field of filtering-based scattered wave separation, the study provides an overview of the progress made and compares and analyzes the separation effects of each method. Additionally, considering the advancements in deep learning within the realm of artificial intelligence, the future development direction of filtering-based scattered wave separation is also envisioned.

  • 近年来,随着地震台站不断加密,地震台网监测到的地震数量呈爆发式增长,各省、市地震局、监测中心集中式处理地震数据能力日益捉襟见肘。随着大数据、云计算、人工智能、“互联网+”及5G技术的快速发展,集中式地震处理尽管已经在很大程度上实现了自动化,提升了整个数据中心的处理和快速响应能力,但仍然需要耗费大量人力、物力来提高网络覆盖率和传输速度,而且还需要进行高性能服务器升级以及研发高效率自动化地震波形处理系统等。如何将深度学习等强大的人工智能技术高效地部署在资源受限的终端设备,从而使人工智能更加贴近用户端与传感器端,解决人工智能落地的“最后一公里”这一问题,已经引起了学术界与工业界的高度关注。

    针对密集台阵的海量地震数据近实时处理的需求,中国地震局地球物理研究所科研团队基于千万量级高质量标注数据集训练出了P、S震相检测,P波初动极性检测、单台定位、震级预测等深度学习网络模型,将这些预训练的高泛化力深度学习模型轻量化,并将其部署在边缘计算设备。

    边缘计算设备与人工智能彼此赋能,催生“边缘智能”的崭新范式,给地震实时监测和预警等领域带来了深刻革命。

    图  1  “谛听”智慧盒子

    北京白家疃地球科学国家野外科学观测研究站以大数据技术方法为驱动,依托野外站丰富的数据优势资源,提供地震行业大数据算法和相关模型效果评估与检验的云资源环境。通过设计科研专项基金等形式,遴选和孵化具有发展潜力的地震大数据分析算法和相关模型的行业应用。“谛听”智慧盒子的研发就是野外站提供技术孵化环境,促成科技成果转化的布局与尝试。通过多年的努力,研发了“谛听”智慧盒子这一边缘计算设备。

    经过近两年的技术更新和产品迭代,“谛听”智慧盒子集成了地震业务低代码开发平台环境DatistEQ Lite(DEQL),与中国地震局地震会商开发平台同源,打造出适用于中心站、无人值守台站等业务体量较少的软硬件一体化会商服务平台;此外,盒子内也部署了中国地震局地球物理研究所自主开发的地球物理开源软件,涵盖重力数据处理、位场正反演、地震目录分析、连续时间序列处理等多个领域,可以解决地球物理数据处理与解释领域的相关科研和生产问题;最后,盒子内置了基于地震科普大模型QuakeGPT的地震科普数字人“小Q”,在科普知识、震例分析、资料查询等方面,“小Q”展现出了相较主流通用大模型更加精准和专业的能力,为公众提供地震相关问题的解答,提供精准的学习与防灾建议,增强公众的参与度和学习效果,提高他们在日常和紧急情况下的应对能力。

    谛听智慧盒子功能还将不断迭代升级,助力地震监测由数字化向智能化的方向转变。

    中国地震局地球物理研究所

    张博 陈石 赵明 吴德孟

    附:“谛听”人工智能地震学训练数据集详情介绍见附件

    https://www.cttacn.org.cn/article/shaid/0a96b23f5113e1ff2c9df764e646de07f0ff44abdebaddc880175279fc62fe66

  • 图  1   散射波传播态式及各种近似解析方法的适用范围[15]

    Figure  1.   Scattered wave propagation states and the applicability range of different approximate analytical methods[15]

    图  2   基于平面波解构滤波的散射波分离效果[21]

    Figure  2.   Scattered wave separation using plane wave deconstruction filtering[21]

    图  3   基于扩散滤波的散射波分离效果[10]

    Figure  3.   Scattered wave separation using diffusion filtering[10]

    图  4   基于倾角滤波的散射波分离效果[34]

    Figure  4.   Scattered wave separation using inclination filtering[34]

    图  5   基于偏移滤波的散射波分离效果[4]

    Figure  5.   Scattered wave separation using offset filtering[4]

    图  6   基于F-K滤波的散射波分离效果[59]

    Figure  6.   Scattered wave separation using F-K filtering[59]

    表  1   各种滤波分离方法对比

    Table  1   Comparison of different filtering-based methods for wave separation.

    方法名称适用条件处理域优缺点
     基于平面波解构滤波的散
     射波分离方法
    适用于在倾角域形态或曲线特征上具有显著差异的各种波之间的分离。叠前处理、叠后处理优点是能够很好地压制反射波,实现散射波分离;缺点是计算成本较高。
     基于扩散滤波的散射波分
     离方法
    适用于在能量大小和分布具有显著差异的各种波之间的分离。叠后处理优点是可以不断调整扩散系数和迭代次数,有效提高散射波分离精度,提高了偏移剖面的信噪比;缺点是计算量较大。
     基于倾角滤波的散射波分
     离方法
    适用于在不同道集域(共中心点道集、共炮点道集、共偏移距道集)具有特征差异的各种波之间的分离。叠前处理优点是能够较完整地分离散射波;缺点是低倾角的散射波信息易失真或丢失。
     基于偏移滤波的散射波分
     离方法
    适用于在传播时差和传播路径具有特征差异的各种波之间的分离。叠前处理优点是在各个变换域的分辨率都得到提高;缺点是计算量较大,不能很好地处理混叠的波场。
     基于F-K滤波的散射波分
     离方法
    适用于在频率波数域和频率偏移距域具有特征差异的各种波之间的分离。叠前处理优点是去噪能力强、振幅保真性好,能够消除反射波,增强散射波;缺点是反射波消除不彻底,易破坏反射信息的波形特征和振幅特征。
    下载: 导出CSV
  • [1]

    DECKER L, KLOKOV A. Diffraction extraction by plane-wave destruction of partial images[C]//2014 SEG Annual Meeting, 1949. DOI: 10.1190/segam2014-1458.1.

    [2]

    DECKER L, MERZLIKIN D, FOMEL S. Diffraction imaging and time-migration velocity analysis using oriented velocity continuation[J]. Geophysics, 2017, 82(2): U25−U35. doi: 10.1190/geo2016-0141.1

    [3]

    GELIUS L J. Limited-view diffraction tomography in a nonuniform background[J]. Geophysics, 1995, 60(2): 580−588. doi: 10.1190/1.1443796

    [4]

    GELIUS L J, TYGEL M, TAKAHATA A K, et al. High-resolution imaging of diffractions: A window-steered MUSIC approach[J]. Geophysics, 2013, 78(6): S255−S264. doi: 10.1190/geo2013-0047.1

    [5]

    LANDA E, KEYDAR S. Seismic monitoring of diffraction images for detection of local heterogeneities[J]. Geophysics, 1998, 63(3): 1093−1100. doi: 10.1190/1.1444387

    [6]

    BANSAL R, IMHOF M G. Diffraction enhancement in prestack seismic data[J]. Geophysics, 2005, 70(3): V73−V79. doi: 10.1190/1.1926577

    [7]

    FOMEL S. Applications of plane-wave destruction filters[J]. Geophysics, 2002, 67(6): 1946−1960. doi: 10.1190/1.1527095

    [8]

    FOMEL S, LANDA E, TANER M T. Poststack velocity analysis by separation and imaging of seismic diffractions[J]. Geophysics, 2007, 72(6): U89−U94. doi: 10.1190/1.2781533

    [9]

    NEMETH T, SUN H, SCHUSTER G T. Separation of signal and coherent noise by migration filtering[J]. Geophysics, 2000, 65(2): 574−583. doi: 10.1190/1.1444753

    [10] 陈可洋, 吴沛熹, 杨微. 扩散滤波方法在地震资料处理中的应用研究[J]. 岩性油气藏, 2014,26(1): 117−122. doi: 10.3969/j.issn.1673-8926.2014.01.020

    CHEN K Y, WU P X, YANG W. Research on the application of diffusion filtering method in seismic data processing[J]. Lithologic Oil and Gas Reservoir, 2014, 26(1): 117−122. (in Chinese). doi: 10.3969/j.issn.1673-8926.2014.01.020

    [11] 陈可洋, 杨微, 吴清岭, 等. 地震反射波与散射波波场分离方法初探[J]. 岩性油气藏, 2013,25(2): 76−81.

    CHEN K Y, YANG W, WU Q L, et al. Preliminary study on the separation method of seismic reflection wave and scattered wave field[J]. Lithologic Oil and Gas Reservoir, 2013, 25(2): 76−81. (in Chinese).

    [12]

    LI C, ZHANG J. Wavefield separation using irreversible-migration filtering[J]. Geophysics, 2022, 87(3): A43−A48. doi: 10.1190/geo2021-0607.1

    [13]

    BAKER B B, COPSON E T. The mathematical theory of Hyugens' principle[J]. Oxford: Clarendon Press, 1939.

    [14]

    KHAIDUKOV V, LANDA E, MOSER T J. Diffraction imaging by focusing-defocusing: An outlook on seismic super resolution[J]. Geophysics, 2004, 69(6): 1478−1490. doi: 10.1190/1.1836821

    [15] 吴如山. 地震波散射: 理论与应用[J]. 地球物理学进展, 1989,(4): 1−23.

    WU R S. Seismic wave scattering: Theory and applications[J]. Progress in Geophysics, 1989, (4): 1−23. (in Chinese).

    [16]

    HARLAN W S, CLAERBOUT J F, ROCCA F. Signal/noise separation and velocity estimation[J]. Geophysics, 1984, 49(11): 1869−1880. doi: 10.1190/1.1441600

    [17]

    CLAERBOUT J F, Abma R. Earth soundings analysis: Processing versus inversion[M]. London: Blackwell Scientific Publications, 1992.

    [18]

    HAO H M, ZHANG J, KONG X, et al. Diffracting objective imaging based on plane wave record[C]//Society of Exploration Geophysicists. Nonrecurring Meetings 2011: International Geophysical Conference, Shenzhen, China, 2011. https://doi.org/10.1190/1.4705051.

    [19]

    TANER M T, FOMEL S. Separation and imaging of seismic diffractions using plane-wave decomposition[C]//2006 SEG Annual Meeting. OnePetro, 2006.

    [20] 刘玉金, 李振春, 黄建平, 等. 绕射波叠前时间偏移速度分析及成像[J]. 地球物理学进展, 2013,28(6): 3022−3029.

    LIU Y J, LI Z C, HUANG J P, et al. Diffraction wave prestack time migration velocity analysis and imaging[J]. Progress in Geophysics, 2013, 28(6): 3022−3029. (in Chinese).

    [21] 孔雪, 李振春, 黄建平, 等. 基于平面波记录的绕射目标成像方法研究[J]. 石油地球物理勘探, 2012,47(4): 674−682, 518. DOI: 10.13810/j.cnki.issn.1000-7210.2012.04.014.

    KONG X, LI Z C, HUANG J P, et al. Research on diffraction target imaging method based on plane wave recording[J]. Petroleum Geophysical Exploration, 2012, 47(4): 674−682, 518. DOI: 10.13810/j.cnki.issn.1000-7210.2012.04.014. (in Chinese).

    [22]

    KONG X, WANG D Y, LI Z C, et al. Diffraction separation by plane-wave prediction filtering[J]. Applied Geophysics, 2017, 14(3): 399−405. doi: 10.1007/s11770-017-0634-9

    [23]

    KONG X, WANG D Y, LI Z C, et al. Study on the separation and imaging of diffracted waves in dip domain based on slope analysis[J]. Applied Geophysics, 2020, 17(1): 103-110, 169.

    [24] 黄建平, 李振春, 孔雪, 等. 基于PWD的绕射波波场分离成像方法综述[J]. 地球物理学进展, 2012,27(6): 2499−2510.

    HUANG J P, LI Z C, KONG X, et al. Overview of PWD based diffraction wave field separation imaging methods[J]. Progress in Geophysics, 2012, 27(6): 2499−2510. (in Chinese).

    [25]

    LIU L, VINCENT E, JI X, et al. Imaging diffractors using wave-equation migration[J]. Geophysics, 2016, 81(6): S459−S468. doi: 10.1190/geo2016-0029.1

    [26]

    MERZLIKIN D, FOMEL S, SEN M K. Least-squares path-summation diffraction imaging using sparsity constraints[J]. Geophysics, 2019, 84(3): S187−S200. doi: 10.1190/geo2018-0609.1

    [27]

    PERONA P, MALIK J. Scale-space and edge detection using anisotropic diffusion[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(7): 629−639. doi: 10.1109/34.56205

    [28]

    FEHMERS G C, HÖCKER C F W. Fast structural interpretation with structure-oriented filtering[J]. Geophysics, 2003, 68(4): 1286−1293. doi: 10.1190/1.1598121

    [29] 孙夕平, 杜世通, 汤磊. 相干增强各向异性扩散滤波技术[J]. 石油地球物理勘探, 2004,39(6): 651−655, 665. doi: 10.3321/j.issn:1000-7210.2004.06.006

    SUN X P, DU S T, TANG L. Coherent enhanced anisotropic diffusion filtering technology[J]. Petroleum Geophysical Exploration, 2004, 39(6): 651−655, 665. (in Chinese). doi: 10.3321/j.issn:1000-7210.2004.06.006

    [30] 王绪松, 杨长春. 对地震图像进行保边滤波的非线性各向异性扩散算法[J]. 地球物理学进展, 2006,(2): 452−457. doi: 10.3969/j.issn.1004-2903.2006.02.017

    WANG X S, YANG C C. A nonlinear anisotropic diffusion algorithm for edge preserving filtering of seismic images[J]. Progress in Geophysics, 2006, (2): 452−457. (in Chinese). doi: 10.3969/j.issn.1004-2903.2006.02.017

    [31]

    LAVIALLE O, POP S, GERMAIN C, et al. Seismic fault preserving diffusion[J]. Journal of Applied Geophysics, 2007, 61(2): 132−141. doi: 10.1016/j.jappgeo.2006.06.002

    [32]

    KADLEC B J, DORN G A, TUFO H M. Confidence and curvature-guided level sets for channel segmentation[M]//Society of Exploration Geophysicists. SEG Technical Program Expanded Abstracts 2008, 2008: 879-883.

    [33] 张尔华, 王伟, 高静怀, 等. 非线性各向异性扩散滤波器用于三维地震资料噪声衰减与结构特征增强[J]. 地球物理学进展, 2010,25(3): 866−870. doi: 10.3969/j.issn.1004-2903.2010.03.019

    ZHANG E H, WANG W, GAO J H, et al. Application of nonlinear anisotropic diffusion filter to noise attenuation and structural feature enhancement of 3D seismic data[J]. Progress in Geophysics, 2010, 25(3): 866−870. (in Chinese). doi: 10.3969/j.issn.1004-2903.2010.03.019

    [34] 朱生旺, 李佩, 宁俊瑞. 局部倾角滤波和预测反演联合分离绕射波[J]. 地球物理学报, 2013,56(1): 280−288. doi: 10.6038/cjg20130129

    ZHU S W, LI P, NING J R. Separation of diffracted waves by local dip filtering and prediction inversion[J]. Chinese Journal of Geophysics, 2013, 56(1): 280−288. (in Chinese). doi: 10.6038/cjg20130129

    [35]

    KENT G M, KIM I I, HARDING A J, et al. Suppression of sea-floor-scattered energy using a dip-moveout approach−Application to the mid-ocean ridge environment[J]. Geophysics, 1996, 61(3): 821−834. doi: 10.1190/1.1444007

    [36] 闫艳琴, 马学军. 基于优化反演的绕射波提取成像技术及其应用[J]. 石油物探, 2021,60(4): 574−583. doi: 10.3969/j.issn.1000-1441.2021.04.006

    YAN Y Q, MA X J. Diffraction wave extraction imaging technology based on optimized inversion and its application[J]. Petroleum Geophysical Prospecting, 2021, 60(4): 574−583. (in Chinese). doi: 10.3969/j.issn.1000-1441.2021.04.006

    [37]

    ZHANG R. Fresnel aperture and diffraction prestack depth migration[J]. CDSST Annual Report, 2004: 1-11.

    [38]

    ZHU X, WU R S. Imaging diffraction points using the local image matrix in prestack migration[C]//2008 SEG Annual Meeting. OnePetro, 2008.

    [39]

    KOREN Z, RAVVE I. Specular/diffraction imaging by full azimuth subsurface angle domain decomposition[M]//Society of Exploration Geophysicists. SEG Technical Program Expanded Abstracts 2010, 2010: 3268-3272.

    [40]

    De FIGUEIREDO J J S, OLIVEIRA F, ESMI E, et al. Diffraction Imaging Based on the Diffraction Operator[C]//European Association of Geoscientists & Engineers. 73th EAGE Conference and Exhibition incorporating SPE EUROPEC 2011, 2011: cp-238-00049.

    [41]

    ZHANG J, ZHANG J. Diffraction imaging using shot and opening-angle gathers: A prestack time migration approach[J]. Geophysics, 2014, 79(2): S23−S33. doi: 10.1190/geo2013-0016.1

    [42]

    ZHAO J, WANG Y, YU C. Diffraction imaging by uniform asymptotic theory and double exponential fitting[J]. Geophysical Prospecting, 2015, 63(2): 338−353. doi: 10.1111/1365-2478.12199

    [43] 李晓峰, 黄建平, 李振春, 等. 基于反稳相滤波的边缘绕射成像方法研究[J]. 地球物理学进展, 2015,30(3): 1205−1213. doi: 10.6038/pg20150328

    LI X F, HUANG J P, LI Z C, et al. Research on edge diffraction imaging method based on anti stable phase filtering[J]. Progress in Geophysics, 2015, 30(3): 1205−1213. (in Chinese). doi: 10.6038/pg20150328

    [44] 刘培君, 黄建平, 李振春, 等. 一种基于反稳相的深度域绕射波分离成像方法[J]. 石油地球物理勘探, 2017,52(5): 967−973, 879. DOI: 10.13810/j.cnki.issn.1000-7210.2017.05.009.

    LIU P J, HUANG J P, LI Z C, et al. A depth domain diffracted wave separation imaging method based on anti stable phase[J]. Petroleum Geophysical Exploration, 2017, 52(5): 967−973, 879. DOI: 10.13810/j.cnki.issn.1000-7210.2017.05.009. (in Chinese).

    [45]

    MOON W, CARSWELL A, TANG R, et al. Radon transform wave field separation for vertical seismic profiling data[J]. Geophysics, 1986, 51(4): 940−947. doi: 10.1190/1.1442151

    [46]

    ROWBOTHAM P S, GOULTY N R. Wavefield separation by 3-D filtering in cross hole seismic reflection processing[J]. Geophysics, 1994, 59(7): 1065−1071. doi: 10.1190/1.1443662

    [47]

    BOULFOUL M, WATTS D R. Separation and enhancement of split S-waves on multicomponent shot records from the BIRPS WISPA experiment[J]. Geophysics, 1994, 59(1): 131−139. doi: 10.1190/1.1443524

    [48]

    MacBETH C, LI X Y, ZENG X, et al. Processing of a nine-component near-offset VSP for seismic anisotropy[J]. Geophysics, 1997, 62(2): 676−689. doi: 10.1190/1.1444176

    [49]

    ZHOU H, SATO M. Application of vertical radar profiling technique to Sendai Castle[J]. Geophysics, 2000, 65(2): 533−539. doi: 10.1190/1.1444748

    [50] 李彩芹, 张华. 小波变换与F-K联合滤波在面波分离中的应用[J]. 中国煤田地质, 2007,(4): 60−61, 84.

    LI C Q, ZHANG H. Application of wavelet transform and F-K joint filtering in surface wave separation[J]. China Coal Field Geology, 2007, (4): 60−61, 84. (in Chinese).

    [51] 赵娟娟, 李德春, 匡伟, 等. F-K滤波方法分离地震绕射波和反射波[J]. 能源技术与管理, 2010,(3): 16−17. doi: 10.3969/j.issn.1672-9943.2010.03.007

    ZHAO J J, LI D C, KUANG W, et al. Separation of seismic diffracted and reflected waves by F-K filtering method[J]. Energy Technology and Management, 2010, (3): 16−17. (in Chinese). doi: 10.3969/j.issn.1672-9943.2010.03.007

    [52]

    LOU M, CAMPBELL M, CHENG D, et al. An improved parametric inversion methodology to separate P and SV wavefields from VSP data[C]//2013 SEG Annual Meeting. OnePetro, 2013.

    [53] 万光南. f-k滤波在压制面波噪声中的应用[J]. 中州煤炭, 2014,(2): 99−101.

    WAN G N. Application of f-k filtering in suppressing surface wave noise[J]. Zhongzhou Coal, 2014, (2): 99−101. (in Chinese).

    [54]

    LI H, YANG G, WANG J, et al. Ground-roll suppression by EMD algorithm based on average value constraint[C]//2016 SEG International Exposition and Annual Meeting. OnePetro, 2016.

    [55]

    SUN J, ZHENG J, GUO J, et al. An f-k filtering technology based on structural constraint to suppress the interference of small-scale geologic bodies in fault identification[M]//Society of Exploration Geophysicists. SEG Technical Program Expanded Abstracts 2017, 2017: 2315-2319.

    [56]

    SUN Y, FEI T W. Wavefield separation at an arbitrary propagation direction via f-k filtering[C]//SEG Technical Program Expanded Abstracts 2018. Society of Exploration Geophysicists, 2018: 4171-4175.

    [57] 吕佳静, 程广利, 袁骏, 等. 波数域滤波法提取海底地震波场中的表面波[C]//中国声学学会水声学分会2019年学术会议论文集, 2019: 43-45.
    [58] 吴海波, 张平松, 胡雄武, 等. f-k滤波在探地雷达数据去噪中的应用[J]. 安徽理工大学学报(自然科学版), 2020,40(1): 33−37.

    WU H B, ZHANG P S, HU X W, et al. Application of f-k filtering in ground penetrating radar data denoising[J]. Journal of Anhui University of Science and Technology (Natural Science Edition), 2020, 40(1): 33−37. (in Chinese).

    [59] 李志娜, 李振春, 王鹏, 等. 地震资料F-K滤波去除相干噪声综合性实验[J]. 实验技术与管理, 2022,39(1): 66−71. DOI: 10.16791/j.cnki.sjg.2022.01.014.

    LI Z N, LI Z C, WANG P, et al. Comprehensive experiment on F-K filtering of seismic data to remove coherent noise[J]. Experiment Technology and Management, 2022, 39(1): 66−71. DOI: 10.16791/j.cnki.sjg.2022.01.014. (in Chinese).

    [60] 马铭, 包乾宗. 利用Encoder-Decoder框架的深度学习网络实现绕射波分离及成像[J]. 石油地球物理勘探, 2023,58(1): 56−64. DOI: 10.13810/j.cnki.issn.1000-7210.2023.01.005.

    MA M, BAO Q Z. Deep learning network using Encoder-Decoder framework for bypass wave separation and imaging[J]. Petroleum Geophysical Exploration, 2023, 58(1): 56−64. DOI: 10.13810/j.cnki.issn.1000-7210.2023.01.005. (in Chinese).

    [61] 盛同杰, 赵惊涛, 彭苏萍. 地震绕射波弱信号U-net网络提取方法[J]. 地球物理学报, 2023,66(3): 1192−1204. doi: 10.6038/cjg2022Q0073

    SHENG T J, ZHAO J T, PENG S P. Extraction method of seismic bypass wave weak signal U-net network[J]. Chinese Journal of Geophysics, 2023, 66(3): 1192−1204. (in Chinese). doi: 10.6038/cjg2022Q0073

图(6)  /  表(1)
计量
  • 文章访问数:  262
  • HTML全文浏览量:  145
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-11
  • 修回日期:  2023-05-28
  • 录用日期:  2023-05-30
  • 网络出版日期:  2023-07-04
  • 刊出日期:  2024-01-09

目录

    /

    返回文章
    返回
    x 关闭 永久关闭