Applications of Industrial Computed Tomography Technology in the Geosciences
-
摘要:
工业CT作为计算机断层成像(CT)发展至今的一个重要分支,得益于其分辨率高、可重复、探测范围广等优势,在航空航天、军事工业、地质分析等多个领域得到了广泛应用。本文在深入调研国内外工业CT技术研究现状的基础上,综述了在地球科学领域中的3种典型工业CT技术(地震波CT、电阻率CT、电磁波CT)以及多种物探方法组合而成的综合物探方法,重点介绍工业CT在孔隙研究、天然气水合物研究、构建数字岩心和二氧化碳地质利用与封存方面的最新应用。同时,总结工业CT在地球科学领域中的发展趋势。
-
关键词:
- 工业CT /
- 地球科学 /
- 孔隙 /
- 天然气水合物 /
- CO2地质利用与封存
Abstract:As an important branch of computed tomography (CT), industrial CT is used widely in many fields, such as aerospace, military industry, and geological analysis fields, because of its advantages of high resolution, repeatability, and wide detection range. On the basis of thorough investigation and study, this paper summarizes three typical industrial CT technologies (i.e., seismic wave CT, resistivity CT, and electromagnetic wave CT) as well as the comprehensive geophysical exploration methods used in the geosciences. The current applications of industrial CT in pore structure studies, gas hydrate studies, digital core construction, and geological utilization and storage of carbon dioxide are introduced. The development trend of industrial CT in the geosciences is also discussed.
-
骨质疏松症(osteoporosis,OP)是一种以骨量低下、骨组织微结构损坏,导致骨脆性增加,易发生骨折为特征的全身性骨病[1]。OP按病因可分为原发性和继发性两大类,常见于绝经后女性和老年男性。我国是全球老年人口最多的国家,目前我国骨质疏松症患者数约为9千万,其中女性约7千万[2]。骨质疏松症的严重后果是容易引发骨质疏松性骨折(或称脆性骨折),严重影响生活质量。骨密度(bone mineral density,BMD)可通过骨密度测量技术客观、如实的反映骨量在程度上的变化,对OP的临床诊断、疗效评估及防治具有重要作用。
本研究通过应用定量CT(quantitative CT,QCT)对佛山市健康成年居民椎体BMD进行检测,分析骨量变化与性别和年龄的关系,探讨佛山地区成年居民骨密度数据参考值范围。
1. 资料与方法
1.1 一般资料
2021年10月至2023年3月期间在佛山市中医院健康管理中心进行胸部CT/低剂量胸部CT平扫行肺结节筛查联合QCT骨密度测量检查者共3819例,根据健康管理中心数据库录入资料,所选符合条件的健康成年人1065例。纳入标准:①20周岁以上的健康体检者;②佛山市常住人口,居住时间至少10年以上(含10年)。排除标准:①患有系统性代谢性疾病,椎体骨肿瘤或陈旧性骨折的病患;②上腹部扫描范围内有金属植入物的病患。其中男性648例,女性417例,年龄20~89岁。
按性别、年龄分组,每10岁为1个年龄段:20~29岁62例(男41例,女21例);30~39岁157例(男93例,女64例);40~49岁265例(男168例,女97例);50~59岁338例(男211例,女127例);60~69岁146例(男79例,女67例);70~79岁65例(男40例,女25例);80~89岁32例(男16例,女16例)。
1.2 检测方法
(1)质量控制:在数据采集前和项目进行中采用校准体模(Model 4)对CT机进行质控分析校准。体模扫描范围包括体模上端1 cm处至下端1 cm处;图像重建的参数是120 kV,1 mm层厚;标准重建算法,50 cm SFOV。
(2)QCT扫描规范:按常规/低剂量胸部CT扫描摆位,严格执行辐射防护要求做好体检者辐射防护。扫描范围包含肺尖至第1腰椎下缘,患者仰面躺卧,双手交叉上举,于吸气末单次屏气扫描。
(3)QCT结果分析与测量:图像上传QCT工作站,通过Mindways QCT Pro 6.1v软件行椎体骨密度测量,测量时选择第12胸椎和第1腰椎椎体的正中层面的骨松质区域,注意避开骨皮质、骨岛和椎体后静脉区(图1),测量结果保存在工作站数据库。如果发现第12胸椎或第1腰椎椎体有明显骨折或其他病理改变(如骨肿瘤、骨水泥等),则不宜进行骨密度测量,需要做好标记。
1.3 诊断依据
按《中国定量CT(QCT)骨质疏松症诊断指南(2018)》及《骨质疏松的影像学与骨密度诊断专家共识(2020)》所定标准进行诊断[3-4]。BMD>120 mg/cm3为骨密度正常,BMD=80~120 mg/cm3范围内为低骨量,BMD<80 mg/cm3为骨质疏松,BMD<80 mg/cm3且伴一处或多处的脆性骨折,为严重骨质疏松。
1.4 统计学方法
数据进行初步整理后,采用SPSS 22.0及Graph Pad 8.0.1软件,计数资料进行卡方检验,计量资料进行正态性检验,正态性分布的计量资料采用“平均值±标准差”
$(\bar x \pm s)$ 的形式表示,采用方差分析方法对多组间均值进行比较,采用LSD法进行组间两两比较,采用$\chi^2 $ 检验统计发病率的比较,采用Spearman法对等级资料进行相关分析,检验水准α=0.05。2. 结果
2.1 男女间各年龄段体检者的BMD比较
20~29岁、30~39岁、40~49岁3个年龄段男女之间BMD存在显著性差异,女性BMD显著高于男性,60~69岁;70~79岁两个年龄段男女之间BMD存在显著性差异,男性BMD显著高于女性。在40~49岁、50~59岁、60~69岁、70~79岁男性组及30~39岁、40~49岁、50~59岁、60~69岁女性组中,同一性别不同年龄段间的BMD比较差异也有统计学意义,且随年龄的增长呈下降趋势(表1)。
表 1 1065例健康成年人胸部CT体检者椎体BMD分析($\bar x \pm s $ ,mg/cm3)Table 1. Analysis of vertebral BMD in 1065 healthy adults undergoing chest CT examination年龄组/岁 男性 女性 t P 人数/例 BMD 人数/例 BMD 20~29 41 163.31±26.28 21 188.38±28.79 -3.442 0.001 30~39 93 160.62±26.86 64 172.42±29.21b -2.610 0.010 40~49 168 145.47±29.67a 97 158.05±32.50b -3.211 0.001 50~59 211 127.1±28.72a 127 127.95±38.05b -0.215 0.830 60~69 79 107.54±29.85a 67 92.36±25.64b 3.263 0.001 70~79 40 96.11±23.60a 25 84.43±18.11 2.114 0.038 80~89 16 91.51±26.78 16 77.38±17.21 1.775 0.086 F 56.893 74.37 P <0.001 <0.001 注:a表示在男性组中,该年龄段与前一年龄段比较P<0.05;b表示在女性组中,该年龄段与前一年龄段比较P<0.05。 2.2 各年龄段BMD正常、低骨量、骨质疏松及严重骨质疏松发病率比较
在男性组和女性组中,不同年龄段之间的OP发病率差异均有统计学意义,(表2)。采用Spearman法对等级资料进行相关分析,发现男女性年龄与OP发病率均呈正相关(r男=0.517,r女=0.636)。
表 2 1065例健康成年人胸部CT体检者骨质疏松筛查结果(例(%))Table 2. Screening results of osteoporosis in 1065 healthy adults undergoing chest CT examination年龄组/岁 男性 女性 正常 低骨量 OP 严重OP 正常 低骨量 OP 严重OP 20~29 38(92.68) 3(7.32) 0(0.00) 0(0.00) 21(100.00) 0(0.00) 0(0.00) 0(0.00) 30~39 90(96.77) 3(3.23) 0(0.00) 0(0.00) 61(95.31) 3(4.69) 0(0.00) 0(0.00) 40~49 137(81.55) 29(17.26) 1(0.60) 1(0.60) 85(87.63) 11(11.34) 0(0.00) 1(1.03) 50~59 125(59.24) 68(32.23) 13(6.16) 5(2.37) 68(53.54) 41(32.28) 12(9.45) 6(4.72) 60~69 25(31.65) 39(49.37) 13(16.46) 2(2.53) 8(11.94) 35(52.24) 22(32.84) 2(2.99) 70~79 4(10.00) 23(57.50) 11(27.50) 2(5.00) 1(4.00) 11(44.00) 10(40.00) 3(12.00) 80~89 2(12.50) 7(43.75) 4(25.00) 3(18.75) 0(0.00) 4(25.00) 10(62.50) 2(12.50) $\chi^2 $ 225.201 235.748 P <0.001 <0.001 3. 讨论
3.1 BMD测量的必要性及意义
随着我国社会人口老龄化加剧,OP作为一种中老年人最常见的全身性慢性骨骼疾病,越来越加重社会和医疗负担,已成为现阶段重要的公共卫生健康问题。OP患病率高危害大,但知晓率、诊断率、治疗率低(“一高三低”)是我国社会OP的防治现状[2,5];不同地区间及城乡间对OP诊疗水平更是存在着较大的差异[6-7]。原发性OP的基本病理改变是由于骨量不断减少而引起的一种全身慢性进行性骨结构退行性病变,包括绝经后OP(Ⅰ型)、老年OP(Ⅱ型)和特发性OP(包括青少年型),其发病机制复杂,近年来,国内外学者取得的研究新进展大大丰富了原发性OP发病机制[2,8]。
骨质疏松性骨折(又称脆性骨折),是指受到轻微外伤(接近站立高度或更低的高度跌倒)时,甚至在没有明显外伤的情况下即发生的骨折,是OP的严重临床后果。骨质疏松性骨折发生后,再骨折的风险显著增高,导致较高的致死率与致残率[9]。骨质疏松性骨折的好发部位包括脊柱椎体、腕部、股骨近端、肱骨近端等[10-11]。
骨密度(BMD)是指单位面积或单位体积所含的骨量。BMD测量技术是一种无创性定量测量人体骨矿含量、骨密度和体质成份的方法。椎体BMD测量能敏感、客观反映骨量变化,并作为诊断、防治OP的主要依据。当椎体局部BMD增高,或远超过该年龄段BMD或邻近正常椎体BMD,提示椎体骨挫伤、压缩骨折或成骨性病变;当椎体局部BMD降低,则提示骨质疏松或骨质破坏等椎体病变。椎体BMD对脊柱病变术前指导及术后疗效评估亦有重要的临床意义[12]。目前我国已经将骨密度检测项目纳入40岁以上人群常规体检内容[2]。
3.2 BMD的测量方法
双能X线(dual X-ray absorptiometry,DXA)BMD测量是目前认知度、认可度及临床应用最高的骨密度测量方法,DXA测量的是面积骨密度(area bone mineraldensity,aBMD),单位为g/cm2。目前国内外公认的OP诊断标准是以DXA测量的结果为依据[4]。DXA通常在椎体、股骨近端或桡骨远端等部位进行测量。DXA对骨密度水平的判断采用的是T值,须根据同种族同性别的正常参考值范围进行计算。
使用DXA诊断骨质疏松的标准由世界卫生组织(World Health Organization,WHO)专家组制定,T值≥-1.0 SD为正常,-2.5<T值<-1.0 SD为低骨量,T值≤-2.5 SD为骨质疏松,T值≤-2.5 SD且伴脆性骨折为严重骨质疏松;我国的骨质疏松学术组织基于2018年我国疾病控制中心组织的大范围多中心流行病学调查或大样本健康人群数据[13-15],也推荐该标准适用于中国绝经后女性和老年男性。对于儿童、青少年、绝经前女性以及50岁以下男性等人群,则采用中国人群数据库计算出的Z值对骨密度水平进行判断,Z值≤-2.0 SD(标准差)可诊断为“低于同年龄段预期范围”或低骨量[4,16-17]。由于受被检者的人种、年龄、性别、区域及检测方法等多种因素影响,以及采用不同的数据库,用DXA诊断骨质疏松症时,国内外报道OP发病率为14%~60%[18-19],会出现比较大的差距。而且,由于DXA是平面投影成像,其所测出的aBMD易受身高体重、脊柱侧弯、脊柱退变和血管钙化等因素影响,BMD测量的准确性降低,导致假阳性出现[20]。
定量CT(QCT)是一种经体模校准后,利用CT容积数据进行精准测量和定量分析的方法,可应用于骨密度、肝脏脂肪、体部脂肪及肌肉的测量,目前主要用于骨密度测量。QCT可以按需测量不同部位的骨密度,其中椎体和股骨上端最为常用。对于椎体,QCT测量的是椎体中央骨松质的体积骨密度,其测量的是真正的体积骨密度(volumetric bone mineraldensity,vBMD),单位为g/cm3,可敏感反映早期松质骨的丢失状况,且其测量结果不受身高体重、脊柱侧弯、退变和血管钙化等因素的影响[3]。近年来,随着QCT的技术优势和CT技术的快速发展,利用QCT开展骨密度领域研究和临床应用越来越受到关注。
目前的QCT诊断标准是国际临床骨密度学会(International Society for Clinical Densitometry,ISCD)和美国放射学院(American College of Radiology,ACR)分别于2007年和2018年提出,根据美国 Mindways QCT系统,采用120 kV管电压测量椎体骨密度结果数据制定的[21-22]。vBMD>120 mg/cm3为正常,80 mg/cm3≤vBMD≤120 mg/cm3为低骨量,vBMD<80 mg/cm3为骨质疏松,vBMD<80 mg/cm3且伴脆性骨折为严重骨质疏松。我国学者对QCT进行了积极探索、论证,建立了中国人群脊柱QCT正常参考值范围数据库,并认为此ISCD及ACR标准同样适用于中国人群骨质疏松症的诊断[23-24]。QCT如果单独使用,其辐射剂量高于DXA,研究证明低剂量胸部CT扫描与QCT相结合同样可以精准测量椎体骨密度[25-26],在健康管理中有较高的应用价值,因而建议在临床使用过程中,QCT扫描应尽量与临床CT扫描同步联合进行,而且推荐使用低剂量扫描技术[27-30]。
本研究通过对佛山市健康成年居民体检行常规/低剂量胸部CT平扫,应用QCT对胸12、腰1椎体BMD进行定量分析,探讨地区性BMD参考值范围。
3.3 BMD、OP与年龄、性别的关系
(1)表1显示,男女性BMD均随年龄的增长呈下降趋势,且女性下降总体幅度大于男性。在40~49岁、50~59岁、60~69岁、70~79岁男性组及30~39岁、40~49岁、50~59岁、60~69岁女性组中,同性别不同年龄段的BMD比较差异有统计学意义,说明女性骨量流失速度比男性提前10年,此与陈文清等[31]研究相符,考虑与女性怀孕哺乳期导致体内骨钙流失等有关。在70~79岁,女性骨量流失较男性有所减缓。在女性70~79岁年龄段及男性80~89岁年龄段,男女性BMD分别与各自前一年龄段比较均无明显区别,且均已接近OP临界值,亦说明女性BMD降低到病理临界值较男性提前10年。而80~89岁年龄段,男女性之间BMD及与各自前1年龄段比较均无明显区别。
(2)男女性BMD均在20~29岁达到峰值,在20~29岁、30~39岁、40~49岁年龄段男女性均随年龄增加BMD下降,女性的下降速度及幅度大于同年龄段男性,但女性的BMD仍高于同年龄组男性,考虑与此年龄段的女性为即将到来的生育、哺乳打下良好的基础作出充分准备有关。年龄低于40岁的男女性均未发现OP或严重OP。
(3)表1与表2显示,50~59岁年龄段男、女性BMD分别为127.1及127.95,此年龄段为女性绝经期前后,男、女性BMD数字相近,差异无统计学意义。在此年龄段后,男、女性BMD均出现下降,女性BMD下降更为明显,导致同年龄段的女性的BMD均低于男性。从40~49岁年龄段开始,随年龄增长,OP及严重OP在男、女性各年龄段均开始出现且发病率逐步上升。从50~59岁年龄段开始,女性OP及严重OP发病率均高于同年龄组男性。在60~69岁年龄段,男、女BMD分别为107.54及92.36,均达到低骨量诊断标准;此年龄段男、女OP发生率分别为16.46% 及32.84%,女性约是男性的两倍,且分别较同性别上一年龄段大幅增长。在80~89岁年龄段,女性BMD低于80,已全部达到OP;而男性的BMD仍在低骨量范围,但亦接近OP的诊断标准。
本研究采用的是Mindways公司的校准体模(Model 4)及QCT Pro 6.1v骨质密度测量软件,能够如实精准的反映BMD。研究显示,随年龄的增长,受试者的BMD逐渐下降,低骨量、OP及严重OP的发病率也逐渐上升,此结果与大多数文献报道的年龄与骨密度呈负相关、年龄与OP发病率呈正相关结论相符[32-33]。
4. 小结
本研究旨在初步探讨佛山地区成年居民骨密度数据参考值范围。研究发现本地区成年居民骨密度及骨质疏松发病率与全国水平相当。研究结果提示,对于40岁以上的人群,尤其是无症状人群,可以通过将QCT与胸部CT体检结合起来,进行骨密度测量,及时发现骨量减低的程度,以利于临床针对骨质疏松发展的不同阶段采取相应的预防和治疗措施,降低因骨质疏松引起的脆性骨折等潜在风险。
本研究不足之处:①未将20岁以下及90岁以上成年居民纳入样本,此年龄段人群参与胸部CT健康体检的样本量极少故未纳入;②未开展多中心研究,样本量相对局限。后续将继续针对不足之处进一步研究,为完善及建立本地区人群骨密度数据库提供更为可靠的理论支持。
-
表 1 工业CT总结
Table 1 Summary of industrial CT
CT种类 理论方法 传播速度km/s 操作难度 精度 经济成本 地震波CT 射线理论 5.5-7 中 高 高 电磁波CT 射线理论 约3×105 中 较高 中 电阻率CT 高密度电法 — 易 中 低 表 2 CT技术在研究不同材料孔隙结构中的应用
Table 2 Application of CT technology to study the pore structure of various materials
孔隙结构 孔隙半径R/μm 使用CT种类 结论 页岩孔隙结构 4~40×10-3 X-CT 岩心不同部位形成不同数量的孔隙空间 煤岩孔隙结构 0.1~100 X-CT 孔隙结构与煤岩的体积分形维数有关 黄土孔隙结构 2~6 Micro-CT 孔隙体的渗透率随孔隙度的增大而增大 -
[1] 高丽娜, 陈文革. CT技术的应用发展及前景[J]. CT理论与应用研究, 2009,18(1): 99−109. GAO L N, CHEN W G. The application and prospect of CT[J]. CT Theory and Applications, 2009, 18(1): 99−109. (in Chinese).
[2] 顾孝同. 国内工程CT技术的发展与应用[J]. 工程地球物理学报, 2006,3(4): 278−282. DOI: 10.3969/j.issn.1672-7940.2006.04.007. GU X T. Developments and applications of engineering CT technologies[J]. Chinese Journal of Engineering Geophysics, 2006, 3(4): 278−282. DOI: 10.3969/j.issn.1672-7940.2006.04.007. (in Chinese).
[3] CORMACK A M. Representation of a function by its line integrals, with some radiological applications[J]. Journal of Applied Physics, 1963, 34(9): 2722−2727. DOI: 10.1063/1.1729798.
[4] 庄天戈. 医用X-线成像历史的追溯、思考与期盼−为纪念我国第一台CT诞生30周年而作[J]. 中国医疗器械杂志, 2013,37(6): 391−394. doi: 10.3969/j.issn.1671-7104.2013.06.001 [5] 王革. X射线成像和深度学习的交叉融合[J]. CT理论与应用研究, 2022,31(1): 1−12. DOI: 10.15953/j.ctta.2021.053. WANG G. X-ray imaging meets deep learning[J]. CT Theory and Applications, 2022, 31(1): 1−12. DOI: 10.15953/j.ctta.2021.053. (in Chinese).
[6] 倪培君, 李旭东, 彭建中. 工业CT技术[J]. 无损检测, 1996,18(6): 173−176. NI P J, LI X D, PENG J Z. Industrial CT technique[J]. Nondestructive Testing, 1996, 18(6): 173−176. (in Chinese).
[7] 卢艳平, 王珏, 喻洪麟. 工业CT三维图像处理与分析系统[J]. 仪器仪表学报, 2009,30(2): 444−448. DOI: 10.19650/j.cnki.cjsi.2009.02.041. LU Y P, WANG J, YU H L. 3D image processing and analyzing system for industrial computed tomography[J]. Chinese Journal of Scientific Instrument, 2009, 30(2): 444−448. DOI: 10.19650/j.cnki.cjsi.2009.02.041. (in Chinese).
[8] 方黎勇, 李柏林, 李辉, 等. 工业CT在反求工程上的应用[J]. 强激光与粒子束, 2013,25(7): 1620−1624. DOI: 10.3788/HPLPB20132507.1620. FANG L Y, LI B L, LI H, et al. Application of industrial CT in reverse engineering technology[J]. High Power Laser and Particle Beams, 2013, 25(7): 1620−1624. DOI: 10.3788/HPLPB20132507.1620. (in Chinese).
[9] 张鹰, 郑红岩, 张志芳. 奋发图强, 为振兴中华而战−中国第一台γ射线 ICT实用样机诞生记[J]. 中国高等教育, 1995,(1): 39−41. [10] 段黎明, 刘元宝, 吴志芳, 等. 基于工业计算机断层成像技术的三维CAD模型重构方法[J]. 计算机集成制造系统, 2009,15(3): 479−486. DOI: 10.13196/j.cims.2009.03.65.duanlm.015. DUAN L M, LIU Y B, WU Z F, et al. Method of reconstructing 3-D CAD model based on industrial computed tomography[J]. Computer Integrated Manufacturing Systems, 2009, 15(3): 479−486. DOI: 10.13196/j.cims.2009.03.65.duanlm.015. (in Chinese).
[11] 孙晶晶, 杨民, 刘静华. 涡轮叶片CT图像边缘提取的最优算子研究[J]. 航空动力学报, 2010,25(1): 175−179. DOI: 10.13224/j.cnki.jasp.2010.01.038. SUN J J, YANG M, LIU J H. Research on optimal operator of blade edge detection from computed tomography images based on computational theory[J]. Journal of Aerospace Power, 2010, 25(1): 175−179. DOI: 10.13224/j.cnki.jasp.2010.01.038. (in Chinese).
[12] 胡俊杰, 徐洪苗, 王鹏, 等. 基于三维可视化的跨孔电磁波CT在岩溶勘察方面的应用[J]. 工程地球物理学报, 2022, 19(4): 443−449. DOI: 10.3969/j.issn.1672-7940.2022.04.004. HU J J, XU H M, WANG P, et al. Application of cross-hole electromagnetic wave tomography based on 3D visualization in Karst exploration[J]. Chinese Journal of Engineering Geophysics, 2022, 19(4): 443−449. DOI:10.3969/j.issn.1672-7940.2022.04.004. (in Chinese).
[13] 许继峰, 储著银, 李杰, 等. 难熔元素和代表性放射性同位素体系分析技术的进展、问题和应用展望[J]. 岩石学报, 2022,38(6): 1565−1576. DOI: 10.18654/1000-0569/2022.06.01. XU J F, CHU Z Y, LI J, et al. Progress, open questions and application prospects of analytical techniques for refractory elements and representative radioisotope systems[J]. Acta Petrologica Sinica, 2022, 38(6): 1565−1576. DOI: 10.18654/1000-0569/2022.06.01. (in Chinese).
[14] 田德祥, 刘新利, 王德志. 超声波在材料工程中的应用研究进展[J]. 材料研究与应用, 2022,16(6): 942−958. DOI: 10.20038/j.cnki.mra.2022.000608. TIAN D X, LIU X L, WANG D Z. Research progress of ultrasonic technology in materials engineering applications[J]. Materials Research and Application, 2022, 16(6): 942−958. DOI: 10.20038/j.cnki.mra.2022.000608. (in Chinese).
[15] 邹子龙. 地震CT技术及其在工程地质勘探中的应用[J]. 有色金属设计, 2020,47(3): 109−111. doi: 10.3969/j.issn.1004-2660.2020.03.032 ZOU Z L. Seismic CT technique and its application in engineering geological exploration[J]. Nonferrous Metals Design, 2020, 47(3): 109−111. (in Chinese). doi: 10.3969/j.issn.1004-2660.2020.03.032
[16] 童平. 地震层析成像方法及其应用研究[D]. 北京: 清华大学, 2012. [17] 陈敬. 基于波形反演的地震定位和层析成像研究[D]. 北京: 清华大学, 2021. DOI: 10.27266/d.cnki.gqhau.2021.000136. [18] TAPE C, LIU Q, MAGGI A, et al. Adjoint tomography of the southern California crust[J]. Science, 2009, 325(5943): 988−992. DOI: 10.1126/science.1175298.
[19] LIU Q, GU Y J. Seismic imaging: From classical to adjoint tomography[J]. Tectonophysics, 2012, 566: 31−66. DOI: 10.1016/j.tecto.2012.07.006.
[20] 张超, 刘伟, 褚金桥, 等. 电磁波 CT 技术在工程地质勘察中的应用[J]. Geomatics Science and Technology, 2020,8(2): 47−53. DOI: 10.12677/GST.2020.82006. ZHANG C, LIU W, CHU J Q, et al. Application of electromagnetic wave CT technology in engineering geological survey[J]. Geomatics Science and Technology, 2020, 8(2): 47−53. DOI: 10.12677/GST.2020.82006. (in Chinese).
[21] 陈杭, 邢亚东, 邓超云. 跨孔电磁波CT在煤矿采空区探测中的应用探究[J]. 矿山测量, 2022,50(1): 21−23, 37. DOI: 10.3969/j.issn.1001-358X.2022.01.006. CHEN H, XING Y D, DENG C Y. Application of borehole electromagnetic wave CT in coal mine goaf detection[J]. Mine Surveying, 2022, 50(1): 21−23, 37. DOI: 10.3969/j.issn.1001-358X.2022.01.006. (in Chinese).
[22] 郭光裕. 无线电波坑道透视技术在煤矿勘探隐伏地质构造中的应用[J]. 煤炭技术, 2018,37(8): 116−118. DOI: 10.13301/j.cnki.ct.2018.08.044. GUO G Y. Application of radio wave tunnel perspective technology in exploration of concealed geological structure in coal mine[J]. Coal Technology, 2018, 37(8): 116−118. DOI: 10.13301/j.cnki.ct.2018.08.044. (in Chinese).
[23] HE T, LI G, LUO F, et al. Research on mining-induced stress distribution of extrathick coal seams based on electromagnetic wave CT technology[J]. Advances in Civil Engineering, 2022, 2022. DOI: 10.1155/2022/6870207.
[24] HUANG S, LIN J, HUANG Q, et al. An emerging method using electromagnetic wave computed tomography for the detection of Karst caves[J]. Geotechnical and Geological Engineering, 2020, 38: 2713−2723. DOI: 10.1007/s10706-019-01180-w.
[25] 甘满光, 缪秀秀, 张力为, 等. CT扫描技术在二氧化碳地质利用与封存领域的应用研究综述[J]. 水利水电技术, 2019,50(8): 174−184. DOI: 10.13928/j.cnki.wrahe.2019.08.022. GAN M G, MIAO X X, ZHANG L W, et al. Review on applications of CT scanning technique in the field of CO2 geological utilization and storage[J]. Water Resources and Hydropower Engineering, 2019, 50(8): 174−184. DOI: 10.13928/j.cnki.wrahe.2019.08.022. (in Chinese).
[26] 张小海, 刘二军. 射线照相检验中X射线强度衰减的数值分析[J]. 无损检测, 2013,34(6): 1−4. DOI: cnki:sun:wsjc.0.2012-06-004. ZHANG X H, LIU E J. Numerical analysis on X-ray intensity attenuation in radiographic testing[J]. Nondestructive Testing, 2013, 34(6): 1−4. DOI: cnki:sun:wsjc.0.2012-06-004. (in Chinese).
[27] YAN C H, WHALEN R T, BEAUPRE G S, et al. Reconstruction algorithm for polychromatic CT imaging: Application to beam hardening correction[J]. IEEE Transactions on Medical Imaging, 2000, 19(1): 1−11. DOI: 10.1109/42.832955.
[28] 魏雨浓, 石战结, 余天祥. 不同电极阵列联合反演在古墓探测中的应用[J]. CT理论与应用研究, 2022,31(3): 280−292. DOI: 10.15953/j.ctta.2022.008. WEI Y N, SHI Z J, YU T X. Application of joint inversion of different electrode arrays in ancient mausoleum detection[J]. CT Theory and Applications, 2022, 31(3): 280−292. DOI: 10.15953/j.ctta.2022.008. (in Chinese).
[29] 方易小锁, 孟永东, 田斌, 等. 高密度电阻率法对不同电极排列的分辨率响应研究[J]. 地球物理学进展, 2019,34(6): 2424−2428. DOI: 10.6038/pg2019CC0313. FANGYI X S, MENG Y D, TIAN B, et al. Study on resolution response of different electrode arrangements by high density resistivity method[J]. Progress in Geophysic, 2019, 34(6): 2424−2428. DOI: 10.6038/pg2019CC0313. (in Chinese).
[30] BING Z, GREENHALGH S A. Cross-hole resistivity tomography using different electrode configurations[J]. Geophysical Prospecting, 2000, 48(5): 887−912. DOI: 10.1046/j.1365-2478.2000.00220.x.
[31] MOREIRA C A, GUIRELI NETTO L, CAMARERO P L, et al. Application of electrical resistivity tomography (ERT) in uranium mining earth dam[J]. Journal of Geophysics and Engineering, 2022, 19(6): 1265−1279. DOI: 10.1093/jge/gxac082.
[32] YI M, KIM J, SON J. Three-dimensional anisotropic inversion of resistivity tomography data in an abandoned mine area[J]. Exploration Geophysics, 2011, 42(1): 7−17. DOI: 10.1071/EG11005.
[33] NIELSON T, BRADFORD J, PIERCE J, et al. Soil structure and soil moisture dynamics inferred from time-lapse electrical resistivity tomography[J]. Catena, 2021, 207: 105553. DOI: 10.1016/j.catena.2021.105553.
[34] de JONG S M, HEIJENK R A, NIJLAND W, et al. Monitoring soil moisture dynamics using electrical resistivity tomography under homogeneous field conditions[J]. Sensors, 2020, 20(18): 5313. DOI: 10.3390/s20185313.
[35] GAO W, SHI L, ZHAI P. Water detection within the working face of an underground coal mine using 3D electric resistivity tomography (ERT)[J]. Journal of Environmental and Engineering Geophysics, 2019, 24(3): 497−505. DOI: 10.2113/JEEG24.3.497.
[36] CHENG Q, CHEN X, TAO M, et al. Characterization of Karst structures using quasi-3D electrical resistivity tomography[J]. Environmental Earth Sciences, 2019, 78: 1−12. DOI: 10.1007/s12665-019-8284-2.
[37] WANG Y, ANDERSON N, TORGASHOV E. Condition assessment of building foundation in Karst terrain using both electrical resistivity tomography and multi-channel analysis surface wave techniques[J]. Geotechnical and Geological Engineering, 2020, 38: 1839−1855. DOI: 10.1007/s10706-019-01133-3.
[38] 朱飞飞. 地井联合物探技术在岩溶注浆检测中的应用[J]. 工程地球物理学报, 2022,19(4): 450−458. DOI: 10.3969/j.issn.1672-7940.2022.04.005. ZHU F F. Application of geophysical prospecting technology combined with ground and well in Karst grouting detection[J]. Chinese Journal of Engineering Geophysics, 2022, 19(4): 450−458. DOI: 10.3969/j.issn.1672-7940.2022.04.005. (in Chinese).
[39] 车传强, 陈波, 谢明佐, 等. 综合物探方法在高压架空线路下方采空区探测中的应用[J]. CT理论与应用研究, 2022,31(1): 23−31. DOI: 10.15953/j.1004-4140.2022.31.01.03. CHE C Q, CHEN B, XIE M Z, et al. Application of integrated geophysics method in goaf detection under high voltage overhead lines[J]. CT Theory and Applications, 2022, 31(1): 23−31. DOI: 10.15953/j.1004-4140.2022.31.01.03. (in Chinese).
[40] LU Y, CAO C, LIU Y, et al. Study on application of comprehensive geophysical prospecting method in urban geological survey-taking concealed bedrock detection as an example in dingcheng district, Changde city, Hunan province, China[J]. Applied Sciences-basel, 2023, 13(1): 417. DOI: 10.3390/app13010417.
[41] ZHANG L, XU L, XIAO Y, et al. Application of comprehensive geophysical prospecting method in water accumulation exploration of multilayer goaf in integrated mine[J]. Advances in Civil Engineering, 2021, 2021: 1434893. DOI: 10.1155/2021/1434893.
[42] 朱亚军, 王艳新. 高密度电法和瞬变电磁法在地下岩溶探测中的综合应用[J]. 工程地球物理学报, 2012,9(6): 738−742. DOI: 10.3969/j.issn.1672-7940.2012.06.017. ZHU Y J, WANG Y X. The application of high density resistivity and TEM method to underground Karst detection[J]. Chinese Journal of Engineering Geophysics, 2012, 9(6): 738−742. DOI: 10.3969/j.issn.1672-7940.2012.06.017. (in Chinese).
[43] 杨峰, 刘晓甲, 李鹏博. 综合评定法在西南地区铁路岩溶路基注浆质量检测的应用[J]. 工程地球物理学报, 2021,15(8): 744−753. DOI: 10.3969/j.issn.1672-7940.2021.05.027. YANG F, LIU X J, LI P B. Application of comprehensive evaluation method in grouting quality detection of railway Karst subgrade in Southwest China[J]. Chinese Journal of Engineering Geophysics, 2021, 15(8): 744−753. DOI: 10.3969/j.issn.1672-7940.2021.05.027. (in Chinese).
[44] 章飞亮, 田占峰. 综合物探技术在空铁岩溶探测中的应用[J]. 工程地球物理学报, 2021,18(5): 730−737. DOI: 10.3969/j.issn.1672-7940.2021.05.025. ZHANG F L, TIAN Z F. Application of comprehensive geophysical technology in air-rail Karst detection[J]. Chinese Journal of Engineering Geophysics, 2021, 18(5): 730−737. DOI: 10.3969/j.issn.1672-7940.2021.05.025. (in Chinese).
[45] 唐塑, 武银婷, 邢浩, 等. 高密度电法与瞬变电磁法在戈壁区找水的联合应用[J]. CT理论与应用研究, 2023,32(1): 27−34. DOI: 10.15953/j.ctta.2022.081. TANG S, WU Y T, XING H, et al. Combined application of high-density electrical method and transient electromagnetic method in Gobi desert area[J]. CT Theory and Applications, 2023, 32(1): 27−34. DOI: 10.15953/j.ctta.2022.081. (in Chinese).
[46] 余涛, 王小龙, 王俊超. 综合物探方法在城市地铁岩溶勘察中的应用[J]. CT理论与应用研究, 2022,31(5): 587−596. DOI: 10.15953/j.ctta.2021.073. YU T, WANG X L, WANG J C. Application of comprehensive geophysical prospecting method in Karst exploration of urban subway[J]. CT Theory and Applications, 2022, 31(5): 587−596. DOI: 10.15953/j.ctta.2021.073. (in Chinese).
[47] 胡富彭, 欧元超, 付茂如. 不同充填介质下的溶洞跨孔电阻率CT探查数值模拟[J]. 中国岩溶, 2019,38(5): 766−773. DOI: 10.11932/Karst20190513. HU F P, OU Y C, FU M R. Study on numerical simulation of Karst cross-hole resistivity CT exploration at cave with different filling media[J]. Carsologica Sinica, 2019, 38(5): 766−773. DOI: 10.11932/Karst20190513. (in Chinese).
[48] TSOURLOS P, OGILVY R, PAPAZACHOS C, et al. Measurement and inversion schemes for single borehole-to-surface electrical resistivity tomography surveys[J]. Journal of Geophysics and Engineering, 2011, 8(4): 487−497. DOI: 10.1088/1742-2132/8/4/001.
[49] 周权, 王莉蓉. 地球物理方法在金属矿深部找矿中的应用及展望[J]. 世界有色金属, 2021,(9): 49−50. DOI: 10.3969/j.issn.1002-5065.2021.09.025. ZHOU Q, WANG L R. Application and prospect of geophysical methods in deep prospecting of metal deposits[J]. World Nonferrous Metals, 2021, (9): 49−50. DOI: 10.3969/j.issn.1002-5065.2021.09.025. (in Chinese).
[50] MOJICA A, PÉREZ T, TORAL J, et al. Shallow electrical resistivity imaging of the limón fault, Chagres river watershed, Panama Canal[J]. Journal of Applied Geophysics, 2017, 138: 135−142. DOI: 10.1016/j.jappgeo.2017.01.010.
[51] JUNG H B, JANSIK D, UM W. Imaging wellbore cement degradation by carbon dioxide under geologic sequestration conditions using X-ray computed microtomography[J]. Environmental science & technology, 2013, 47(1): 283−289. DOI: 10.1021/es3012707.
[52] 高星. 地震层析成像研究的回顾与展望[J]. 地球物理学进展, 2000,15(4): 41−45. DOI: 10.3969/j.issn.1004-2903.2000.04.006. GAO X. Advance and review in seismic tomography research[J]. Progress in Geophysics, 2000, 15(4): 41−45. DOI: 10.3969/j.issn.1004-2903.2000.04.006. (in Chinese).
[53] ZHANG P, LEE Y I, ZHANG J. A review of high-resolution X-ray computed tomography applied to petroleum geology and a case study[J]. Micron, 2019, 124: 102702. DOI: 10.1016/j.micron.2019.102702.
[54] GALLMEISTER K, AZZAM R. Applications of X-ray computed tomography (CT) in engineering geology[J]. Advances in X-ray Tomography for Geomaterials, 2006: 135-142.
[55] 李国荣, 李永耀. 工程CT技术的发展与应用[J]. 延安职业技术学院学报, 2012,26(3): 90−91. doi: 10.3969/j.issn.1674-6198.2012.03.037 [56] 重庆真测科技股份有限公司. 纳米CT[EB/OL]. (2020-09-09)[2023-5-11]. http://www.zcict.com/. [57] 陈超, 魏彪, 梁婷, 等. 一种基于工业CT技术的岩芯样品孔隙度测量分析方法[J]. 物探与化探, 2013,37(3): 500−507. DOI: 10.11720/j.issn.1000-8918.2013.3.22. CHEN C, WEI B, LIANG T, et al. The application of industrial computation tomography (CT) to the analysis of core sample porosity[J]. Geophysical and Geochemical Exploration, 2013, 37(3): 500−507. DOI: 10.11720/j.issn.1000-8918.2013.3.22. (in Chinese).
[58] 张向东, 王浩, 敬鹏飞. 基于岩石“等效损伤”探究宏观断裂规律[J]. 中国地质灾害与防治学报, 2020,31(3): 117−125. DOI: 10.16031/j.cnki.issn.1003-8035.2020.03.16. ZHANG X D, WANG H, JING P F. Studying the macroscopic fracture rule based on rock "equivalent damage"[J]. The Chinese Journal of Geological Hazard and Control, 2020, 31(3): 117−125. DOI: 10.16031/j.cnki.issn.1003-8035.2020.03.16. (in Chinese).
[59] 宋力, 魏赛平, 谷麟, 等. 微孔洞缺陷岩石轴压下弹塑脆性模型损伤研究[J]. 有色金属(矿山部分), 2014,66(3): 59−63. DOI: 10.3969/j.issn.1671-4172.2014.03.016. SONG L, WEI S P, GU L, et al. Study on elastoplastic-brittle model damage under axial compression in rocks with micro-cavity defect[J]. Nonferrous Metals (Mine Section), 2014, 66(3): 59−63. DOI: 10.3969/j.issn.1671-4172.2014.03.016. (in Chinese).
[60] 古启雄, 黄震, 钟文, 等. 高温循环后花岗岩孔隙结构与物理力学特性演化规律研究[J]. 岩石力学与工程学报, 2022: 1-16. DOI: 10.13722/j.cnki.jrme.2022.1024. GU Q X, HUANG Z, ZHONG W, et al. Study on the variations of pore structure and physical and mechanical properties of granite after high temperature cycling[J]. Chinese Journal of Rock Mechanics and Engineering, 2022: 1-16. DOI:10.13722/j.cnki.jrme.2022.1024. (in Chinese).
[61] FAN L F, GAO J W, WU Z J, et al. An investigation of thermal effects on micro-properties of granite by X-ray CT technique[J]. Applied Thermal Engineering, 2018, 140: 505−519. DOI: 10.1016/j.applthermaleng.2018.05.074.
[62] 李晓雪, 郤保平, 何水鑫, 等. 热冲击下花岗岩的细观变化规律[J]. 矿业研究与开发, 2021,41(5): 67−73. DOI: 10.13827/j.cnki.kyyk.2021.05.013. LI X X, XI B P, HE S X, et al. Mcroscopic change laws of granite under thermal shock[J]. Mining Research and Development, 2021, 41(5): 67−73. DOI: 10.13827/j.cnki.kyyk.2021.05.013. (in Chinese).
[63] VIDANA PATHIRANAGEI S, GRATCHEV I, SOKOLOWSKI K A. Investigation of the microstructural characteristics of heated sandstone by micro-computed tomography technique[J]. Environmental Earth Sciences, 2022, 81(15): 401. DOI: 10.1007/s12665-022-10514-6.
[64] SAXENA N, HOWS A, HOFMANN R, et al. Rock properties from micro-CT images: Digital rock transforms for resolution, pore volume, and field of view[J]. Advances in Water Resources, 2019, 134: 103419. DOI: 10.1016/j.advwatres.2019.103419.
[65] 左顺吉, 冯鹏, 黄盼, 等. 基于双域自适应网络的岩矿样工业CT图像金属伪影校正算法研究[J]. CT理论与应用研究, 2022,31(6): 783−792. DOI: 10.15953/j.ctta.2022.041. ZUO S J, FENG P, HUANG P, et al. Metal artifact reduction algorithm for CT images of rock and mineral samples based on dual-domain adaptive network[J]. CT Theory and Applications, 2022, 31(6): 783−792. DOI: 10.15953/j.ctta.2022.041. (in Chinese).
[66] ANOVITZ L M, COLE D R. Characterization and analysis of porosity and pore structures[J]. Reviews in Mineralogy and geochemistry, 2015, 80: 61−164. DOI: 10.2138/rmg.2015.80.04.
[67] TIWARI P, DEO M, LIN C L, et al. Characterization of oil shale pore structure before and after pyrolysis by using X-ray micro CT[J]. Fuel, 2013, 107: 547−554. DOI: 10.1016/j.fuel.2013.01.006.
[68] WANG G, SHEN J, LIU S, et al. Three-dimensional modeling and analysis of macro-pore structure of coal using combined X-ray CT imaging and fractal theory[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 123: 104082. DOI: 10.1016/j.ijrmms.2019.104082.
[69] 王超, 吴丰, 陈义国, 等. 基于微米CT技术的黄土岩孔隙保存机制及渗透率各向异性[J]. 科学技术与工程, 2021,21(27): 11527−11535. DOI: 10.3969/j.issn.1671-1815.2021.27.010. WANG C, WU F, CHEN Y G, et al. Preservation mechanism of pores and permeability anisotropy of loessite based on micro-CT technology[J]. Science Technology and Engineering, 2021, 21(27): 11527−11535. DOI: 10.3969/j.issn.1671-1815.2021.27.010. (in Chinese).
[70] LI P, SHAO S. Can X-ray computed tomography (CT) be used to determine the pore-size distribution of intact loess?[J]. Environmental Earth Sciences, 2020, 79: 29. DOI: 10.1007/s12665-019-8777-z.
[71] 徐文世, 于兴河, 刘妮娜, 等. 天然气水合物开发前景和环境问题[J]. 天然气地球科学, 2005,16(5): 680−683. DOI: cnki:sun:tdkx.0.2005-05-029. XU W S, YU X H, LIU N N, et al. The development perapective and environmental problems of natural gas hydrates[J]. Natural Gas Geoscience, 2005, 16(5): 680−683. DOI: cnki:sun:tdkx.0.2005-05-029. (in Chinese).
[72] WATANABE S, SAITO K, OHMURA R. Crystal growth of clathrate hydrate in liquid water saturated with a simulated natural gas[J]. Crystal Growth & Design, 2011, 11(7): 3235−3242. DOI: 10.1021/cg2005024.
[73] 李彦龙, 刘昌岭, 刘乐乐. 含水合物沉积物损伤统计本构模型及其参数确定方法[J]. 石油学报, 2016,37(10): 1273−1279. DOI: 10.7623/syxb201610007. LI Y L, LIU C L, LIU L L. Damage statistic constitutive model of hydrate-bearing sediments and the determination method of parameters[J]. Acta Petrolei Sinica, 2016, 37(10): 1273−1279. DOI: 10.7623/syxb201610007. (in Chinese).
[74] LIU L, DAI S, NING F, et al. Fractal characteristics of unsaturated sands− implications to relative permeability in hydrate-bearing sediments[J]. Journal of Natural Gas Science and Engineering, 2019, 66: 11−17. DOI: 10.1016/j.jngse.2019.03.019.
[75] YANG L, AI L, XUE K, et al. Analyzing the effects of inhomogeneity on the permeability of porous media containing methane hydrates through pore network models combined with CT observation[J]. Energy, 2018, 163: 27−37. DOI: 10.1016/j.energy.2018.08.100.
[76] ZHANG L, GE K, WANG J, et al. Pore-scale investigation of permeability evolution during hydrate formation using a pore network model based on X-ray CT[J]. Marine and Petroleum Geology, 2020, 113: 104157. DOI: 10.1016/j.marpetgeo.2019.104157.
[77] 陈亮, 叶旺全, 李承峰, 等. 基于时间演化的天然气水合物CT图像阈值分割[J]. CT理论与应用研究, 2023,32(2): 171−178. DOI: 10.15953/j.ctta.2022.062. CHEN L, YE W Q, LI C F, et al. Natural gas hydrate CT image threshold segmentation based on time evolution[J]. CT Theory and Applications, 2023, 32(2): 171−178. DOI: 10.15953/j.ctta.2022.062. (in Chinese).
[78] 李小彬. 基于三维数字岩心的岩石孔隙结构表征及弹渗属性模拟研究[D]. 武汉: 中国地质大学(武汉), 2021. [79] ALHASHMI Z, BLUNT M J, BIJELJIC B. The impact of pore structure heterogeneity, transport, and reaction conditions on fluid–fluid reaction rate studied on images of pore space[J]. Transport in Porous Media, 2016, 115(2): 215−237. DOI: 10.1007/s11242-016-0758-z.
[80] LIN W, LI X, YANG Z, et al. Modeling of 3D rock porous media by combining X-ray CT and Markov chain Monte Carlo[J]. Journal of Energy Resources Technology, 2020, 142(1): 13001. DOI: 10.1115/1.4045461.
[81] 方黎勇, 陈鹏, 陈浩. 一种基于工业CT图像的岩心孔隙率计算方法[J]. 强激光与粒子束, 2014,26(3): 246−250. DOI: 10.3788/HPLPB201426.034008. FANG L Y, CHEN P, CHEN H. A calculation method of core porosity based on industrial CT images[J]. High Power Laser and Particle Beams, 2014, 26(3): 246−250. DOI: 10.3788/HPLPB201426.034008. (in Chinese).
[82] 姚军, 赵秀才, 衣艳静, 等. 数字岩心技术现状及展望[J]. 油气地质与采收率, 2005,(6): 52−54. DOI: 10.3969/j.issn.1009-9603.2005.06.017. YAO J, ZHAO X C, YI Y J. et al. The current situation and prospect on digital core technology[J]. Petroleum Geology and Recovery Efficiency, 2005, (6): 52−54. DOI: 10.3969/j.issn.1009-9603.2005.06.017. (in Chinese).
[83] LIN W, LI X, YANG Z, et al. Construction of dual pore 3-D digital cores with a hybrid method combined with physical experiment method and numerical reconstruction method[J]. Transport in Porous Media, 2017, 120(1): 227−238. DOI: 10.1007/s11242-017-0917-x.
[84] 赵建鹏, 陈惠, 李宁, 等. 三维数字岩心技术岩石物理应用研究进展[J]. 地球物理学进展, 2020,35(3): 1099−1108. DOI: 10.6038/pg2020DD0486. ZHAO J P, CHEN H, LI N, et al. Research advance of petrophysical application based on digital core technology[J]. Progress in Geophysics, 2020, 35(3): 1099−1108. DOI: 10.6038/pg2020DD0486. (in Chinese).
[85] 邓世冠, 吕伟峰, 刘庆杰, 等. 利用CT技术研究砾岩驱油机理[J]. 石油勘探与开发, 2014,41(3): 330−335. DOI: 10.11698/PED.2014.03.08. DENG S G, LV W F, LIU Q J, et al. Research on displacement mechanism in conglomerate using CT scanning method[J]. Petroleum Exploration and Development, 2014, 41(3): 330−335. DOI: 10.11698/PED.2014.03.08. (in Chinese).
[86] 屈乐, 孙卫, 杜环虹, 等. 基于CT扫描的三维数字岩心孔隙结构表征方法及应用−以莫北油田116井区三工河组为例[J]. 现代地质, 2014,28(1): 190−196. DOI: 10.3969/j.issn.1000-8527.2014.01.020. QU L, SUN W, DU H H, et al. Characterization technique of pore structure by 3D digital core based on CT scanning and its application: An example from Sangonghe formation of 116 well field in Mobei oilfield[J]. Geoscience, 2014, 28(1): 190−196. DOI: 10.3969/j.issn.1000-8527.2014.01.020. (in Chinese).
[87] 盛军, 杨晓菁, 李纲, 等. 基于多尺度X-CT成像的数字岩心技术在碳酸盐岩储层微观孔隙结构研究中的应用[J]. 现代地质, 2019,33(3): 653−661. DOI: 10.19657/j.geoscience.1000-8527.2019.03.17. SHENG J, YANG X J, LI G, et al. Aplication of multiscale X-CT imaging digital core technique on observing micro-pore structure of carbonate reservoirs[J]. Geoscience, 2019, 33(3): 653−661. DOI: 10.19657/j.geoscience.1000-8527.2019.03.17. (in Chinese).
[88] 郝艳军, 杨顶辉. 二氧化碳地质封存问题和地震监测研究进展[J]. 地球物理学进展, 2012,27(6): 2369−2383. DOI: 10.6038/j.issn.1004-2903.2012.06.012. HAO Y J, YANG D H. Research progress of carbon dioxide capture and geologicalsequestration problem and seismic monitoring research[J]. Progress in Geophysics, 2012, 27(6): 2369−2383. DOI: 10.6038/j.issn.1004-2903.2012.06.012. (in Chinese).
[89] ANDREW M, BIJELJIC B, BLUNT M J. Pore-scale contact angle measurements at reservoir conditions using X-ray microtomography[J]. Advances in Water Resources, 2014, 68(2014): 24−31. DOI: 10.1016/j.advwatres.2014.02.014.
[90] SAHNI A, BURGER J, BLUNT M. Measurement of three phase relative permeability during gravity drainage using CT[C]//SPE/DOE Improved Oil Recovery Symposium, 1998. DOI: 10.2118/39655-MS.
[91] ZHANG Y, NISHIZAWA O, KIYAMA T, et al. Flow behaviour of supercritical CO2 and brine in Berea sandstone during drainage and imbibition revealed by medical X-ray CT images[J]. Geophysical Journal International, 2014, 197(3): 1789−1807. DOI: 10.1093/gji/ggu089.
[92] 施有志, 赵花丽, 黄钰琳, 等. 厦门地区孤石分布规律及对地铁工程的影响[J]. 地质与勘探, 2019,55(3): 862−869. DOI: 10.12134/j.dzykt.2019.03.018. SHI Y Z, ZHAO H L, HUANG Y L, et al. The distribution rule of the solitary stones of granite in Xiamen and its influence on metro engineering[J]. Geology and Exploration, 2019, 55(3): 862−869. DOI: 10.12134/j.dzykt.2019.03.018. (in Chinese).
[93] 李术才, 刘征宇, 刘斌, 等. 基于跨孔电阻率CT的地铁盾构区间孤石探测方法及物理模型试验研究[J]. 岩土工程学报, 2015,37(3): 446−457. DOI: 10.11779/CJGE201503008. LI S C, LIU Z Y, LIU B, et al. Boulder detection method for metro shield zones based on cross-hole resistivity tomography and its physical model tests[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(3): 446−457. DOI: 10.11779/CJGE201503008. (in Chinese).
[94] 刘畅, 李振春, 曲英铭, 等. 地震层析成像方法综述[J]. 物探与化探, 2020,44(2): 227−234. DOI: 10.11720/wtyht.2020.1243. LIU C, LI Z C, QU Y M, et al. A review of seismic tomography methods[J]. Geophysical and Geochemical Exploration, 2020, 44(2): 227−234. DOI: 10.11720/wtyht.2020.1243. (in Chinese).
[95] 秦晶晶, 袁洪克, 何银娟, 等. 层析成像技术在城市活断层探测中的应用[J]. 地球物理学进展, 2018,33(5): 2153−2158. DOI: 10.6038/pg2018BB0383. QIN J J, YUAN H K, HE Y J, et al. Application of tomography inversion method in detecting active fault[J]. Progress in Geophysics, 2018, 33(5): 2153−2158. DOI: 10.6038/pg2018BB0383. (in Chinese).
[96] GHORBANI Y, BECKER M, PETERSEN J, et al. Use of X-ray computed tomography to investigate crack distribution and mineral dissemination in sphalerite ore particles[J]. Minerals Engineering, 2011, 24(12): 1249−1257. DOI: 10.1016/j.mineng.2011.04.008.
[97] LIU Z, YANG Y, YAO J, et al. Pore-scale remaining oil distribution under different pore volume water injection based on CT technology[J]. Advances in Geo-Energy Research, 2017, 1(3): 171−181. DOI: 10.26804/ager.2017.03.04.
[98] WILDENSCHILD D, SHEPPARD A P. X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in subsurface porous medium systems[J]. Advances in Water Resources, 2013, 51: 217−246. DOI: 10.1016/j.advwatres.2012.07.018.
-
期刊类型引用(0)
其他类型引用(1)