ISSN 1004-4140
CN 11-3017/P

工业CT技术在地球科学中的应用

汤戈, 赵欣雨, 王宇翔, 冯鹏, 魏彪

汤戈, 赵欣雨, 王宇翔, 等. 工业CT技术在地球科学中的应用[J]. CT理论与应用研究(中英文), 2024, 33(1): 119-134. DOI: 10.15953/j.ctta.2023.091.
引用本文: 汤戈, 赵欣雨, 王宇翔, 等. 工业CT技术在地球科学中的应用[J]. CT理论与应用研究(中英文), 2024, 33(1): 119-134. DOI: 10.15953/j.ctta.2023.091.
TANG G, ZHAO X Y, WANG Y X, et al. Applications of Industrial Computed Tomography Technology in the Geosciences[J]. CT Theory and Applications, 2024, 33(1): 119-134. DOI: 10.15953/j.ctta.2023.091. (in Chinese).
Citation: TANG G, ZHAO X Y, WANG Y X, et al. Applications of Industrial Computed Tomography Technology in the Geosciences[J]. CT Theory and Applications, 2024, 33(1): 119-134. DOI: 10.15953/j.ctta.2023.091. (in Chinese).

工业CT技术在地球科学中的应用

基金项目: 科技部重点研发专项(重点锂、铍成矿带成矿规律与预测评价研究与综合(2019YFC0605203));国家自然科学基金青年基金(核辐射环境下硅双极型晶体管瞬态协同损伤机制研究(12205028));重庆市科委技术创新与应用发展专项(轨道交通智慧化车站研究及应用(cstc2021jscx-gksbX0056));成都理工大学2022年中青年骨干教师资助计划(10912-JXGG2022-08363)。
详细信息
    作者简介:

    汤戈: 男,成都理工大学核技术与自动化工程学院副教授、硕士生导师,主要从事核信号采集与数字化处理,E-mail:tangge_cqu@163.com

    通讯作者:

    冯鹏: 男,重庆大学光电工程学院副教授、博士生导师,主要从事CT理论与应用研究,E-mail:coe-fp@cqu.edu.cn

  • 中图分类号: P  631

Applications of Industrial Computed Tomography Technology in the Geosciences

  • 摘要:

    工业CT作为计算机断层成像(CT)发展至今的一个重要分支,得益于其分辨率高、可重复、探测范围广等优势,在航空航天、军事工业、地质分析等多个领域得到了广泛应用。本文在深入调研国内外工业CT技术研究现状的基础上,综述了在地球科学领域中的3种典型工业CT技术(地震波CT、电阻率CT、电磁波CT)以及多种物探方法组合而成的综合物探方法,重点介绍工业CT在孔隙研究、天然气水合物研究、构建数字岩心和二氧化碳地质利用与封存方面的最新应用。同时,总结工业CT在地球科学领域中的发展趋势。

    Abstract:

    As an important branch of computed tomography (CT), industrial CT is used widely in many fields, such as aerospace, military industry, and geological analysis fields, because of its advantages of high resolution, repeatability, and wide detection range. On the basis of thorough investigation and study, this paper summarizes three typical industrial CT technologies (i.e., seismic wave CT, resistivity CT, and electromagnetic wave CT) as well as the comprehensive geophysical exploration methods used in the geosciences. The current applications of industrial CT in pore structure studies, gas hydrate studies, digital core construction, and geological utilization and storage of carbon dioxide are introduced. The development trend of industrial CT in the geosciences is also discussed.

  • 患者,女性,38岁,13 h前无明显诱因突发上腹部疼痛,为间断绞痛,无放射痛,改变体位及进食后疼痛加重,来我院急诊就诊。

    查体:心率80次/min,血压140/90 mmHg;血常规:白细胞11.94×109/L(升高)、嗜中性粒细胞10.06×109/L(升高)、嗜中性粒细胞百分比84.2%(升高)、血红蛋白77 g/L(下降)、平均红细胞体积73.5 fL(下降),淀粉酶167 U/L(升高)、脂肪酶665 U/L(升高),C-反应蛋白0.6 mg/L。以“急性胰腺炎”收入我院消化科治疗,常规治疗后患者病情未见明显改善。

    X线立位腹平片图像显示:脾脏轮廓显示不清,脾区仅见充气扩张的胃肠道影(图1)。

    图  1  立位腹平片图像
    Figure  1.  Plain radiographs of abdomen in a vertical position

    腹部CT平扫图像显示:脾脏增大并向前移位,超过中线(图2)。脾门区结构不清;脾脏内侧与膈肌间可见“漩涡征”(图2(d)~图2(f))。

    图  2  腹部CT平扫图像
    Figure  2.  CT of abdomen

    腹部CT增强动脉期图像显示:脾脏增大并未见明显强化(图3),脾门区结构不清,脾静脉显示不清,脾动脉及胰尾部呈“漩涡状”改变(横轴位图像图3(a)~图3(f)、曲面重建图像图3(g));白色箭头指向胰尾,黑色箭头指向脾动脉(图3(e))。

    图  3  腹部CT增强动脉期图像
    Figure  3.  Images of abdominal contrast-enhanced arterial phase CT

    腹部CT增强门脉期及延迟期图像显示:脾脏增大并延迟强化,局部脾脏无明显强化,脾动脉及胰尾部呈“漩涡状”改变(门静脉期图像图4(a)~图4(c)、延迟期图4(d)~图4(f));腹部CT平扫及增强检查诊断脾扭转伴胰尾扭转。

    图  4  腹部CT增强门脉期和延迟期图像
    Figure  4.  Abdominal CT enhanced portal vein phase and delayed phase images

    全腹CT平扫及三期增强扫描诊断脾扭转并胰尾扭转,剖腹探查结果与CT相同,行脾脏切除手术(图5(a)),术中见脾脏大小约35×15×10 cm,脾门血管扭转1周,胰尾牵拉反翘,脾肾韧带、脾结肠韧带均有撕脱,脾活动度大,在脾下极处可见大小约8×5×4 cm黑色缺血区域,将脾脏搬出体外,顺时针旋转1周解除脾门血管扭转及胰尾扭转,观察胰尾无异常,还纳胰腺后,行脾脏全切除术,术后病理脾脏出血、坏死(图5(b))。术后患者顺利复苏,安返病房。

    图  5  术中图片和病理图片
    Figure  5.  Intraoperative observation and pathological image

    术后第1天化验提示:淀粉酶77 U/L、脂肪酶59 U/L均较术前下降,症状明显减轻,仅有伤口不适,给予抗感染、抗凝血、补液、止痛等对症治疗,1周后患者恢复良好。化验提示:血小板820×109/L,彩超检查门静脉及肠系膜上静脉,未见血栓形成,予以出院。

    出院后口服阿司匹林,术后5周血小板降至正常水平,并停止服用阿司匹林,术后8周及12周复查未见异常。

    游走脾(wandering spleen,WS)是一种因固定脾脏的悬韧带(包括脾胃、脾肾、脾结肠及膈脾4条韧带)发育不良或松弛、过长的脾门血管蒂,导致脾脏的活动度增加,不在正常解剖位置(即左季肋区脾窝内),所引起的急或慢性疾病[1]

    脾扭转是在游走脾的基础上出现了脾蒂扭转,该病发病率不到0.2%[2]。好发人群呈双峰状分布,以30岁左右的育龄妇女(占70%)及10岁以下儿童(占30%)好发[3],女性在成年人中的发病率比男性高7~10倍[4-5]

    脾扭转伴发胰尾扭转极为罕见,正常胰腺是腹膜后器官,不会因脾蒂扭转而伴发扭转,只有当胚胎发育期壁层腹膜未与背侧胃系膜正常融合而使胰尾部位于腹腔内时,才会和脾蒂血管一起扭转[6-7]

    游走脾的临床症状多变,从无症状到出现急腹症症状[1]。患者一般以急或慢性腹痛、恶心、呕吐及腹部包块就诊。剧烈运动、外伤或消化道功能紊乱等原因,均可导致脾扭转的发生。脾蒂的扭转有急性扭转和慢性扭转之分,随之产生的病症,也不尽相同。

    急性扭转或重度扭转(扭转至2~3圈)时脾蒂血管完全梗阻,导致脾脏坏死、胃底食管静脉曲张出血,患者出现突发剧烈腹痛甚至休克。慢性扭转或轻度扭转(扭转小于半圈或180°)时,静脉回流受到阻碍,多表现为脾脏的淤血肿大,临床可出现轻度或间断的腹痛及因脾脏增大邻近脏器受压所致的相应症状。实验室检查对该病缺乏特异性,少数患者可出现白细胞增多、C反应蛋白增高[8]

    当脾扭转合并胰尾扭转时还需要注意观察有无闭合性胰腺损伤:外伤或重度脾蒂扭转挤压胰尾时,胰腺可出现不同程度损伤(从无症状或轻度损伤到胰腺导管损伤),虽然临床表现各有不同,但部分症状与脾扭转相似,不易鉴别。由于临床诊断的困难性及该病的罕见性,极易导致误诊,因此影像学检查为该病的确诊手段。

    X线腹部平片可观察左上腹脾脏轮廓是否正常,游走脾的患者常看不清脾脏轮廓,脾区仅可看见充气的胃肠道影,并见左肾影轮廓升高。彩超可以显示脾脏位置、体积及脾脏血供情况[9],但检查结果受操作者水平、手法及腹部肠气的影响极大,容易误诊、漏诊。所以主要的检查方式为CT平扫及增强检查,脾游走的CT检查可观察脾脏形态、位置、大小、密度的改变。

    ①CT平扫典型表现是脾脏游离出正常脾区,而在腹盆腔其他位置以软组织肿块方式显影。②当出现脾蒂血管扭转时可观察到特异性征象“漩涡征”(扭转的脾蒂血管呈“麻花样”),CT增强检查此征象更加明显。③当出现脾脏血管栓塞、脾脏坏死时平扫可看到脾门血管高密度充盈缺损、脾脏增大及“假包膜征”(当脾脏缺血坏死后,出现侧枝循环,导致脾实质的密度低于脾包膜),增强后脾门血管和脾脏不强化或延迟强化。④CT检查还可观察游走脾与邻近脏器的解剖关系及腹腔内其他情况,如伴发胰尾扭转、胃扭转,腹水、周围系膜水肿等[10-13]

    核磁共振与CT的检查结果基本相同,其优点是无需造影剂,脾脏的缺血或出血情况即可在T1加权序列上清晰显示,脾动脉的解剖形态及血流情况在磁共振血管成像序列上亦可做出诊断,胰尾扭转后有无闭合性胰管损伤也可在磁共振水成像序列上(MRCP)明确显示,其缺点是检查时间较长、禁忌症较多、基层医疗机构普及率低,故不作为首选检查。

    WS治疗上以外科手术为主,部分无症状患者可以采取保守治疗[14],但考虑到易合并脾扭转导致脾梗死的情况,所以即使无症状患者,大多数也建议手术治疗。手术方式为脾固定术或脾切除术,原则上要尽量采用脾固定术,防止脾扭转,保脾治疗可避免脾脏切除后患败血症的风险。但脾蒂血管栓塞、脾梗死、巨脾及脾功能亢进等仍是脾切除术的手术指征,临床上使用哪种术式还需结合患者的年龄、临床症状和影像表现等因素综合考虑[13]

    近年来,随着医学的发展,腹腔镜手术已经可以替代传统外科手术,完成脾脏复位、固定和切除等手术,效果堪比开腹手术,并且其具有手术时间短、创伤小、术后恢复快等优点,因此在游走脾和脾扭转的治疗上,腹腔镜手术已经逐步取代了传统外科手术。

    值得注意的是,脾脏切除后常会引进继发性血小板增多症,此时需要观察血小板情况及行门静脉、肠系膜上静脉彩超检查观察有无血栓形成,术后抗凝治疗[15-18]

    本病例中,患者脾蒂扭转伴发胰尾扭转,手术时需观察胰腺情况,明确胰腺有无肿胀、出血坏死及胰液渗漏等情况,并给与相应处理。术后因胰腺具有内、外分泌腺功能,还需观察相关实验室指标,予以对症治疗。

    WS临床症状不典型,仅靠问诊及体格检查很难确诊,脾扭转伴发胰尾扭转也多是只有急腹症症状。该病的诊断主要依靠影像学检查完成,其中腹部彩超可以检查左上腹(脾区)是否存在正常脾脏影像,脾脏有无增大,以及在腹腔其他部位是否出现软组织肿块;CT检查能显示脾脏的大小、位置、密度及脾蒂血管有无异常;CT增强检查可观察脾脏的血供情况及脾动静脉的形态,脾蒂血管漩涡征是脾扭转的特异性征象。本病需要与以下情况或疾病相鉴别。

    (1)脾脏切除术后,当患者既往因脾外伤、脾局部感染、脾脏良恶性肿瘤或囊肿等情况行脾脏切除手术,临床上体格检查或影像学检查也可表现脾区空虚,无正常脾脏。且脾切除术后患者免疫功能低下,易伴发感染引起腹部症状,临床需询问病史予以鉴别。

    (2)其他腹腔血管扭转,如肠系膜扭转等,此类疾病临床表现为腹部不适或急腹症,CT增强检查可见相应血管的“漩涡征”图像,此时需要鉴别血管来源,观察脾脏位置、大小及血流灌注情况。

    (3)腹部脏器肿块或肿瘤,游走脾由于活动度大,游走不定,体格检查易与胃肠道、左肾、胰腺、卵巢以及子宫肿块或肿瘤相混淆,需要影像学观察肿块有无脾蒂血管相连,借以鉴别二者。

    (4)其他疾病引起的急腹症:如胰腺炎、胆囊炎、阑尾炎、肠梗阻、胃肠道穿孔等。由于脾扭转可导致脾供血障碍,常有恶心、呕吐、剧烈腹痛、压痛、反跳痛等急腹症表现。影像学中超声及CT等检查可观察脾脏及其他腹腔脏器情况,即可鉴别。

    (5)脾扭转伴发胰尾扭转时,血清淀粉酶和(或)脂肪酶可能会升高,需要与急/慢性胰腺炎、胰腺损伤、胰腺囊肿、胰腺癌、胃十二指肠等疾病鉴别,超声、CT及MR通过观察脾蒂血管和胰尾有无扭转,即可鉴别。

    综上所述,WS是一种罕见的疾病,临床症状及实验室检查均没有明显特异性,当出现脾扭转合并胰腺扭转时,容易危及生命及误诊,需要借助影像学检查,其中CT平扫和增强是该病目前最为有效、直观的诊断方法,可为患者争取治疗时间。

  • 图  1   CT技术的发展

    Figure  1.   Development of CT technology

    图  2   X射线穿过物质的示意图

    Figure  2.   Diagram of an X-ray passing through a substance

    图  3   跨孔电阻率CT装置类型

    Figure  3.   Cross-hole resistivity-type CT device

    图  4   重庆真测科技股份有限公司生产的CD−130BX/μCT微纳三维分析仪[56]

    Figure  4.   CD-130BX/μCT micro-nano 3D analyzer produced by Chongqing Zhence Science and Technology Co., Ltd.[56]

    图  5   课题组使用CD-130BX/μCT微纳三维分析仪对岩矿样品进行扫描

    Figure  5.   The research group used the CD-130BX/μCT micro-nano 3D analyzer to scan rock and ore samples

    图  6   X-CT检测水合物

    Figure  6.   Implementation of X-ray CT to detect gas hydrate

    表  1   工业CT总结

    Table  1   Summary of industrial CT

    CT种类理论方法传播速度km/s操作难度精度经济成本
    地震波CT射线理论5.5-7
    电磁波CT射线理论约3×105较高
    电阻率CT高密度电法
    下载: 导出CSV

    表  2   CT技术在研究不同材料孔隙结构中的应用

    Table  2   Application of CT technology to study the pore structure of various materials

    孔隙结构孔隙半径R/μm使用CT种类结论
    页岩孔隙结构4~40×10-3X-CT  岩心不同部位形成不同数量的孔隙空间
    煤岩孔隙结构0.1~100 X-CT  孔隙结构与煤岩的体积分形维数有关 
    黄土孔隙结构2~6   Micro-CT孔隙体的渗透率随孔隙度的增大而增大
    下载: 导出CSV
  • [1] 高丽娜, 陈文革. CT技术的应用发展及前景[J]. CT理论与应用研究, 2009,18(1): 99−109.

    GAO L N, CHEN W G. The application and prospect of CT[J]. CT Theory and Applications, 2009, 18(1): 99−109. (in Chinese).

    [2] 顾孝同. 国内工程CT技术的发展与应用[J]. 工程地球物理学报, 2006,3(4): 278−282. DOI: 10.3969/j.issn.1672-7940.2006.04.007.

    GU X T. Developments and applications of engineering CT technologies[J]. Chinese Journal of Engineering Geophysics, 2006, 3(4): 278−282. DOI: 10.3969/j.issn.1672-7940.2006.04.007. (in Chinese).

    [3]

    CORMACK A M. Representation of a function by its line integrals, with some radiological applications[J]. Journal of Applied Physics, 1963, 34(9): 2722−2727. DOI: 10.1063/1.1729798.

    [4] 庄天戈. 医用X-线成像历史的追溯、思考与期盼−为纪念我国第一台CT诞生30周年而作[J]. 中国医疗器械杂志, 2013,37(6): 391−394. doi: 10.3969/j.issn.1671-7104.2013.06.001
    [5] 王革. X射线成像和深度学习的交叉融合[J]. CT理论与应用研究, 2022,31(1): 1−12. DOI: 10.15953/j.ctta.2021.053.

    WANG G. X-ray imaging meets deep learning[J]. CT Theory and Applications, 2022, 31(1): 1−12. DOI: 10.15953/j.ctta.2021.053. (in Chinese).

    [6] 倪培君, 李旭东, 彭建中. 工业CT技术[J]. 无损检测, 1996,18(6): 173−176.

    NI P J, LI X D, PENG J Z. Industrial CT technique[J]. Nondestructive Testing, 1996, 18(6): 173−176. (in Chinese).

    [7] 卢艳平, 王珏, 喻洪麟. 工业CT三维图像处理与分析系统[J]. 仪器仪表学报, 2009,30(2): 444−448. DOI: 10.19650/j.cnki.cjsi.2009.02.041.

    LU Y P, WANG J, YU H L. 3D image processing and analyzing system for industrial computed tomography[J]. Chinese Journal of Scientific Instrument, 2009, 30(2): 444−448. DOI: 10.19650/j.cnki.cjsi.2009.02.041. (in Chinese).

    [8] 方黎勇, 李柏林, 李辉, 等. 工业CT在反求工程上的应用[J]. 强激光与粒子束, 2013,25(7): 1620−1624. DOI: 10.3788/HPLPB20132507.1620.

    FANG L Y, LI B L, LI H, et al. Application of industrial CT in reverse engineering technology[J]. High Power Laser and Particle Beams, 2013, 25(7): 1620−1624. DOI: 10.3788/HPLPB20132507.1620. (in Chinese).

    [9] 张鹰, 郑红岩, 张志芳. 奋发图强, 为振兴中华而战−中国第一台γ射线 ICT实用样机诞生记[J]. 中国高等教育, 1995,(1): 39−41.
    [10] 段黎明, 刘元宝, 吴志芳, 等. 基于工业计算机断层成像技术的三维CAD模型重构方法[J]. 计算机集成制造系统, 2009,15(3): 479−486. DOI: 10.13196/j.cims.2009.03.65.duanlm.015.

    DUAN L M, LIU Y B, WU Z F, et al. Method of reconstructing 3-D CAD model based on industrial computed tomography[J]. Computer Integrated Manufacturing Systems, 2009, 15(3): 479−486. DOI: 10.13196/j.cims.2009.03.65.duanlm.015. (in Chinese).

    [11] 孙晶晶, 杨民, 刘静华. 涡轮叶片CT图像边缘提取的最优算子研究[J]. 航空动力学报, 2010,25(1): 175−179. DOI: 10.13224/j.cnki.jasp.2010.01.038.

    SUN J J, YANG M, LIU J H. Research on optimal operator of blade edge detection from computed tomography images based on computational theory[J]. Journal of Aerospace Power, 2010, 25(1): 175−179. DOI: 10.13224/j.cnki.jasp.2010.01.038. (in Chinese).

    [12] 胡俊杰, 徐洪苗, 王鹏, 等. 基于三维可视化的跨孔电磁波CT在岩溶勘察方面的应用[J]. 工程地球物理学报, 2022, 19(4): 443−449. DOI: 10.3969/j.issn.1672-7940.2022.04.004.

    HU J J, XU H M, WANG P, et al. Application of cross-hole electromagnetic wave tomography based on 3D visualization in Karst exploration[J]. Chinese Journal of Engineering Geophysics, 2022, 19(4): 443−449. DOI:10.3969/j.issn.1672-7940.2022.04.004. (in Chinese).

    [13] 许继峰, 储著银, 李杰, 等. 难熔元素和代表性放射性同位素体系分析技术的进展、问题和应用展望[J]. 岩石学报, 2022,38(6): 1565−1576. DOI: 10.18654/1000-0569/2022.06.01.

    XU J F, CHU Z Y, LI J, et al. Progress, open questions and application prospects of analytical techniques for refractory elements and representative radioisotope systems[J]. Acta Petrologica Sinica, 2022, 38(6): 1565−1576. DOI: 10.18654/1000-0569/2022.06.01. (in Chinese).

    [14] 田德祥, 刘新利, 王德志. 超声波在材料工程中的应用研究进展[J]. 材料研究与应用, 2022,16(6): 942−958. DOI: 10.20038/j.cnki.mra.2022.000608.

    TIAN D X, LIU X L, WANG D Z. Research progress of ultrasonic technology in materials engineering applications[J]. Materials Research and Application, 2022, 16(6): 942−958. DOI: 10.20038/j.cnki.mra.2022.000608. (in Chinese).

    [15] 邹子龙. 地震CT技术及其在工程地质勘探中的应用[J]. 有色金属设计, 2020,47(3): 109−111. doi: 10.3969/j.issn.1004-2660.2020.03.032

    ZOU Z L. Seismic CT technique and its application in engineering geological exploration[J]. Nonferrous Metals Design, 2020, 47(3): 109−111. (in Chinese). doi: 10.3969/j.issn.1004-2660.2020.03.032

    [16] 童平. 地震层析成像方法及其应用研究[D]. 北京: 清华大学, 2012.
    [17] 陈敬. 基于波形反演的地震定位和层析成像研究[D]. 北京: 清华大学, 2021. DOI: 10.27266/d.cnki.gqhau.2021.000136.
    [18]

    TAPE C, LIU Q, MAGGI A, et al. Adjoint tomography of the southern California crust[J]. Science, 2009, 325(5943): 988−992. DOI: 10.1126/science.1175298.

    [19]

    LIU Q, GU Y J. Seismic imaging: From classical to adjoint tomography[J]. Tectonophysics, 2012, 566: 31−66. DOI: 10.1016/j.tecto.2012.07.006.

    [20] 张超, 刘伟, 褚金桥, 等. 电磁波 CT 技术在工程地质勘察中的应用[J]. Geomatics Science and Technology, 2020,8(2): 47−53. DOI: 10.12677/GST.2020.82006.

    ZHANG C, LIU W, CHU J Q, et al. Application of electromagnetic wave CT technology in engineering geological survey[J]. Geomatics Science and Technology, 2020, 8(2): 47−53. DOI: 10.12677/GST.2020.82006. (in Chinese).

    [21] 陈杭, 邢亚东, 邓超云. 跨孔电磁波CT在煤矿采空区探测中的应用探究[J]. 矿山测量, 2022,50(1): 21−23, 37. DOI: 10.3969/j.issn.1001-358X.2022.01.006.

    CHEN H, XING Y D, DENG C Y. Application of borehole electromagnetic wave CT in coal mine goaf detection[J]. Mine Surveying, 2022, 50(1): 21−23, 37. DOI: 10.3969/j.issn.1001-358X.2022.01.006. (in Chinese).

    [22] 郭光裕. 无线电波坑道透视技术在煤矿勘探隐伏地质构造中的应用[J]. 煤炭技术, 2018,37(8): 116−118. DOI: 10.13301/j.cnki.ct.2018.08.044.

    GUO G Y. Application of radio wave tunnel perspective technology in exploration of concealed geological structure in coal mine[J]. Coal Technology, 2018, 37(8): 116−118. DOI: 10.13301/j.cnki.ct.2018.08.044. (in Chinese).

    [23]

    HE T, LI G, LUO F, et al. Research on mining-induced stress distribution of extrathick coal seams based on electromagnetic wave CT technology[J]. Advances in Civil Engineering, 2022, 2022. DOI: 10.1155/2022/6870207.

    [24]

    HUANG S, LIN J, HUANG Q, et al. An emerging method using electromagnetic wave computed tomography for the detection of Karst caves[J]. Geotechnical and Geological Engineering, 2020, 38: 2713−2723. DOI: 10.1007/s10706-019-01180-w.

    [25] 甘满光, 缪秀秀, 张力为, 等. CT扫描技术在二氧化碳地质利用与封存领域的应用研究综述[J]. 水利水电技术, 2019,50(8): 174−184. DOI: 10.13928/j.cnki.wrahe.2019.08.022.

    GAN M G, MIAO X X, ZHANG L W, et al. Review on applications of CT scanning technique in the field of CO2 geological utilization and storage[J]. Water Resources and Hydropower Engineering, 2019, 50(8): 174−184. DOI: 10.13928/j.cnki.wrahe.2019.08.022. (in Chinese).

    [26] 张小海, 刘二军. 射线照相检验中X射线强度衰减的数值分析[J]. 无损检测, 2013,34(6): 1−4. DOI: cnki:sun:wsjc.0.2012-06-004.

    ZHANG X H, LIU E J. Numerical analysis on X-ray intensity attenuation in radiographic testing[J]. Nondestructive Testing, 2013, 34(6): 1−4. DOI: cnki:sun:wsjc.0.2012-06-004. (in Chinese).

    [27]

    YAN C H, WHALEN R T, BEAUPRE G S, et al. Reconstruction algorithm for polychromatic CT imaging: Application to beam hardening correction[J]. IEEE Transactions on Medical Imaging, 2000, 19(1): 1−11. DOI: 10.1109/42.832955.

    [28] 魏雨浓, 石战结, 余天祥. 不同电极阵列联合反演在古墓探测中的应用[J]. CT理论与应用研究, 2022,31(3): 280−292. DOI: 10.15953/j.ctta.2022.008.

    WEI Y N, SHI Z J, YU T X. Application of joint inversion of different electrode arrays in ancient mausoleum detection[J]. CT Theory and Applications, 2022, 31(3): 280−292. DOI: 10.15953/j.ctta.2022.008. (in Chinese).

    [29] 方易小锁, 孟永东, 田斌, 等. 高密度电阻率法对不同电极排列的分辨率响应研究[J]. 地球物理学进展, 2019,34(6): 2424−2428. DOI: 10.6038/pg2019CC0313.

    FANGYI X S, MENG Y D, TIAN B, et al. Study on resolution response of different electrode arrangements by high density resistivity method[J]. Progress in Geophysic, 2019, 34(6): 2424−2428. DOI: 10.6038/pg2019CC0313. (in Chinese).

    [30]

    BING Z, GREENHALGH S A. Cross-hole resistivity tomography using different electrode configurations[J]. Geophysical Prospecting, 2000, 48(5): 887−912. DOI: 10.1046/j.1365-2478.2000.00220.x.

    [31]

    MOREIRA C A, GUIRELI NETTO L, CAMARERO P L, et al. Application of electrical resistivity tomography (ERT) in uranium mining earth dam[J]. Journal of Geophysics and Engineering, 2022, 19(6): 1265−1279. DOI: 10.1093/jge/gxac082.

    [32]

    YI M, KIM J, SON J. Three-dimensional anisotropic inversion of resistivity tomography data in an abandoned mine area[J]. Exploration Geophysics, 2011, 42(1): 7−17. DOI: 10.1071/EG11005.

    [33]

    NIELSON T, BRADFORD J, PIERCE J, et al. Soil structure and soil moisture dynamics inferred from time-lapse electrical resistivity tomography[J]. Catena, 2021, 207: 105553. DOI: 10.1016/j.catena.2021.105553.

    [34]

    de JONG S M, HEIJENK R A, NIJLAND W, et al. Monitoring soil moisture dynamics using electrical resistivity tomography under homogeneous field conditions[J]. Sensors, 2020, 20(18): 5313. DOI: 10.3390/s20185313.

    [35]

    GAO W, SHI L, ZHAI P. Water detection within the working face of an underground coal mine using 3D electric resistivity tomography (ERT)[J]. Journal of Environmental and Engineering Geophysics, 2019, 24(3): 497−505. DOI: 10.2113/JEEG24.3.497.

    [36]

    CHENG Q, CHEN X, TAO M, et al. Characterization of Karst structures using quasi-3D electrical resistivity tomography[J]. Environmental Earth Sciences, 2019, 78: 1−12. DOI: 10.1007/s12665-019-8284-2.

    [37]

    WANG Y, ANDERSON N, TORGASHOV E. Condition assessment of building foundation in Karst terrain using both electrical resistivity tomography and multi-channel analysis surface wave techniques[J]. Geotechnical and Geological Engineering, 2020, 38: 1839−1855. DOI: 10.1007/s10706-019-01133-3.

    [38] 朱飞飞. 地井联合物探技术在岩溶注浆检测中的应用[J]. 工程地球物理学报, 2022,19(4): 450−458. DOI: 10.3969/j.issn.1672-7940.2022.04.005.

    ZHU F F. Application of geophysical prospecting technology combined with ground and well in Karst grouting detection[J]. Chinese Journal of Engineering Geophysics, 2022, 19(4): 450−458. DOI: 10.3969/j.issn.1672-7940.2022.04.005. (in Chinese).

    [39] 车传强, 陈波, 谢明佐, 等. 综合物探方法在高压架空线路下方采空区探测中的应用[J]. CT理论与应用研究, 2022,31(1): 23−31. DOI: 10.15953/j.1004-4140.2022.31.01.03.

    CHE C Q, CHEN B, XIE M Z, et al. Application of integrated geophysics method in goaf detection under high voltage overhead lines[J]. CT Theory and Applications, 2022, 31(1): 23−31. DOI: 10.15953/j.1004-4140.2022.31.01.03. (in Chinese).

    [40]

    LU Y, CAO C, LIU Y, et al. Study on application of comprehensive geophysical prospecting method in urban geological survey-taking concealed bedrock detection as an example in dingcheng district, Changde city, Hunan province, China[J]. Applied Sciences-basel, 2023, 13(1): 417. DOI: 10.3390/app13010417.

    [41]

    ZHANG L, XU L, XIAO Y, et al. Application of comprehensive geophysical prospecting method in water accumulation exploration of multilayer goaf in integrated mine[J]. Advances in Civil Engineering, 2021, 2021: 1434893. DOI: 10.1155/2021/1434893.

    [42] 朱亚军, 王艳新. 高密度电法和瞬变电磁法在地下岩溶探测中的综合应用[J]. 工程地球物理学报, 2012,9(6): 738−742. DOI: 10.3969/j.issn.1672-7940.2012.06.017.

    ZHU Y J, WANG Y X. The application of high density resistivity and TEM method to underground Karst detection[J]. Chinese Journal of Engineering Geophysics, 2012, 9(6): 738−742. DOI: 10.3969/j.issn.1672-7940.2012.06.017. (in Chinese).

    [43] 杨峰, 刘晓甲, 李鹏博. 综合评定法在西南地区铁路岩溶路基注浆质量检测的应用[J]. 工程地球物理学报, 2021,15(8): 744−753. DOI: 10.3969/j.issn.1672-7940.2021.05.027.

    YANG F, LIU X J, LI P B. Application of comprehensive evaluation method in grouting quality detection of railway Karst subgrade in Southwest China[J]. Chinese Journal of Engineering Geophysics, 2021, 15(8): 744−753. DOI: 10.3969/j.issn.1672-7940.2021.05.027. (in Chinese).

    [44] 章飞亮, 田占峰. 综合物探技术在空铁岩溶探测中的应用[J]. 工程地球物理学报, 2021,18(5): 730−737. DOI: 10.3969/j.issn.1672-7940.2021.05.025.

    ZHANG F L, TIAN Z F. Application of comprehensive geophysical technology in air-rail Karst detection[J]. Chinese Journal of Engineering Geophysics, 2021, 18(5): 730−737. DOI: 10.3969/j.issn.1672-7940.2021.05.025. (in Chinese).

    [45] 唐塑, 武银婷, 邢浩, 等. 高密度电法与瞬变电磁法在戈壁区找水的联合应用[J]. CT理论与应用研究, 2023,32(1): 27−34. DOI: 10.15953/j.ctta.2022.081.

    TANG S, WU Y T, XING H, et al. Combined application of high-density electrical method and transient electromagnetic method in Gobi desert area[J]. CT Theory and Applications, 2023, 32(1): 27−34. DOI: 10.15953/j.ctta.2022.081. (in Chinese).

    [46] 余涛, 王小龙, 王俊超. 综合物探方法在城市地铁岩溶勘察中的应用[J]. CT理论与应用研究, 2022,31(5): 587−596. DOI: 10.15953/j.ctta.2021.073.

    YU T, WANG X L, WANG J C. Application of comprehensive geophysical prospecting method in Karst exploration of urban subway[J]. CT Theory and Applications, 2022, 31(5): 587−596. DOI: 10.15953/j.ctta.2021.073. (in Chinese).

    [47] 胡富彭, 欧元超, 付茂如. 不同充填介质下的溶洞跨孔电阻率CT探查数值模拟[J]. 中国岩溶, 2019,38(5): 766−773. DOI: 10.11932/Karst20190513.

    HU F P, OU Y C, FU M R. Study on numerical simulation of Karst cross-hole resistivity CT exploration at cave with different filling media[J]. Carsologica Sinica, 2019, 38(5): 766−773. DOI: 10.11932/Karst20190513. (in Chinese).

    [48]

    TSOURLOS P, OGILVY R, PAPAZACHOS C, et al. Measurement and inversion schemes for single borehole-to-surface electrical resistivity tomography surveys[J]. Journal of Geophysics and Engineering, 2011, 8(4): 487−497. DOI: 10.1088/1742-2132/8/4/001.

    [49] 周权, 王莉蓉. 地球物理方法在金属矿深部找矿中的应用及展望[J]. 世界有色金属, 2021,(9): 49−50. DOI: 10.3969/j.issn.1002-5065.2021.09.025.

    ZHOU Q, WANG L R. Application and prospect of geophysical methods in deep prospecting of metal deposits[J]. World Nonferrous Metals, 2021, (9): 49−50. DOI: 10.3969/j.issn.1002-5065.2021.09.025. (in Chinese).

    [50]

    MOJICA A, PÉREZ T, TORAL J, et al. Shallow electrical resistivity imaging of the limón fault, Chagres river watershed, Panama Canal[J]. Journal of Applied Geophysics, 2017, 138: 135−142. DOI: 10.1016/j.jappgeo.2017.01.010.

    [51]

    JUNG H B, JANSIK D, UM W. Imaging wellbore cement degradation by carbon dioxide under geologic sequestration conditions using X-ray computed microtomography[J]. Environmental science & technology, 2013, 47(1): 283−289. DOI: 10.1021/es3012707.

    [52] 高星. 地震层析成像研究的回顾与展望[J]. 地球物理学进展, 2000,15(4): 41−45. DOI: 10.3969/j.issn.1004-2903.2000.04.006.

    GAO X. Advance and review in seismic tomography research[J]. Progress in Geophysics, 2000, 15(4): 41−45. DOI: 10.3969/j.issn.1004-2903.2000.04.006. (in Chinese).

    [53]

    ZHANG P, LEE Y I, ZHANG J. A review of high-resolution X-ray computed tomography applied to petroleum geology and a case study[J]. Micron, 2019, 124: 102702. DOI: 10.1016/j.micron.2019.102702.

    [54]

    GALLMEISTER K, AZZAM R. Applications of X-ray computed tomography (CT) in engineering geology[J]. Advances in X-ray Tomography for Geomaterials, 2006: 135-142.

    [55] 李国荣, 李永耀. 工程CT技术的发展与应用[J]. 延安职业技术学院学报, 2012,26(3): 90−91. doi: 10.3969/j.issn.1674-6198.2012.03.037
    [56] 重庆真测科技股份有限公司. 纳米CT[EB/OL]. (2020-09-09)[2023-5-11]. http://www.zcict.com/.
    [57] 陈超, 魏彪, 梁婷, 等. 一种基于工业CT技术的岩芯样品孔隙度测量分析方法[J]. 物探与化探, 2013,37(3): 500−507. DOI: 10.11720/j.issn.1000-8918.2013.3.22.

    CHEN C, WEI B, LIANG T, et al. The application of industrial computation tomography (CT) to the analysis of core sample porosity[J]. Geophysical and Geochemical Exploration, 2013, 37(3): 500−507. DOI: 10.11720/j.issn.1000-8918.2013.3.22. (in Chinese).

    [58] 张向东, 王浩, 敬鹏飞. 基于岩石“等效损伤”探究宏观断裂规律[J]. 中国地质灾害与防治学报, 2020,31(3): 117−125. DOI: 10.16031/j.cnki.issn.1003-8035.2020.03.16.

    ZHANG X D, WANG H, JING P F. Studying the macroscopic fracture rule based on rock "equivalent damage"[J]. The Chinese Journal of Geological Hazard and Control, 2020, 31(3): 117−125. DOI: 10.16031/j.cnki.issn.1003-8035.2020.03.16. (in Chinese).

    [59] 宋力, 魏赛平, 谷麟, 等. 微孔洞缺陷岩石轴压下弹塑脆性模型损伤研究[J]. 有色金属(矿山部分), 2014,66(3): 59−63. DOI: 10.3969/j.issn.1671-4172.2014.03.016.

    SONG L, WEI S P, GU L, et al. Study on elastoplastic-brittle model damage under axial compression in rocks with micro-cavity defect[J]. Nonferrous Metals (Mine Section), 2014, 66(3): 59−63. DOI: 10.3969/j.issn.1671-4172.2014.03.016. (in Chinese).

    [60] 古启雄, 黄震, 钟文, 等. 高温循环后花岗岩孔隙结构与物理力学特性演化规律研究[J]. 岩石力学与工程学报, 2022: 1-16. DOI: 10.13722/j.cnki.jrme.2022.1024.

    GU Q X, HUANG Z, ZHONG W, et al. Study on the variations of pore structure and physical and mechanical properties of granite after high temperature cycling[J]. Chinese Journal of Rock Mechanics and Engineering, 2022: 1-16. DOI:10.13722/j.cnki.jrme.2022.1024. (in Chinese).

    [61]

    FAN L F, GAO J W, WU Z J, et al. An investigation of thermal effects on micro-properties of granite by X-ray CT technique[J]. Applied Thermal Engineering, 2018, 140: 505−519. DOI: 10.1016/j.applthermaleng.2018.05.074.

    [62] 李晓雪, 郤保平, 何水鑫, 等. 热冲击下花岗岩的细观变化规律[J]. 矿业研究与开发, 2021,41(5): 67−73. DOI: 10.13827/j.cnki.kyyk.2021.05.013.

    LI X X, XI B P, HE S X, et al. Mcroscopic change laws of granite under thermal shock[J]. Mining Research and Development, 2021, 41(5): 67−73. DOI: 10.13827/j.cnki.kyyk.2021.05.013. (in Chinese).

    [63]

    VIDANA PATHIRANAGEI S, GRATCHEV I, SOKOLOWSKI K A. Investigation of the microstructural characteristics of heated sandstone by micro-computed tomography technique[J]. Environmental Earth Sciences, 2022, 81(15): 401. DOI: 10.1007/s12665-022-10514-6.

    [64]

    SAXENA N, HOWS A, HOFMANN R, et al. Rock properties from micro-CT images: Digital rock transforms for resolution, pore volume, and field of view[J]. Advances in Water Resources, 2019, 134: 103419. DOI: 10.1016/j.advwatres.2019.103419.

    [65] 左顺吉, 冯鹏, 黄盼, 等. 基于双域自适应网络的岩矿样工业CT图像金属伪影校正算法研究[J]. CT理论与应用研究, 2022,31(6): 783−792. DOI: 10.15953/j.ctta.2022.041.

    ZUO S J, FENG P, HUANG P, et al. Metal artifact reduction algorithm for CT images of rock and mineral samples based on dual-domain adaptive network[J]. CT Theory and Applications, 2022, 31(6): 783−792. DOI: 10.15953/j.ctta.2022.041. (in Chinese).

    [66]

    ANOVITZ L M, COLE D R. Characterization and analysis of porosity and pore structures[J]. Reviews in Mineralogy and geochemistry, 2015, 80: 61−164. DOI: 10.2138/rmg.2015.80.04.

    [67]

    TIWARI P, DEO M, LIN C L, et al. Characterization of oil shale pore structure before and after pyrolysis by using X-ray micro CT[J]. Fuel, 2013, 107: 547−554. DOI: 10.1016/j.fuel.2013.01.006.

    [68]

    WANG G, SHEN J, LIU S, et al. Three-dimensional modeling and analysis of macro-pore structure of coal using combined X-ray CT imaging and fractal theory[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 123: 104082. DOI: 10.1016/j.ijrmms.2019.104082.

    [69] 王超, 吴丰, 陈义国, 等. 基于微米CT技术的黄土岩孔隙保存机制及渗透率各向异性[J]. 科学技术与工程, 2021,21(27): 11527−11535. DOI: 10.3969/j.issn.1671-1815.2021.27.010.

    WANG C, WU F, CHEN Y G, et al. Preservation mechanism of pores and permeability anisotropy of loessite based on micro-CT technology[J]. Science Technology and Engineering, 2021, 21(27): 11527−11535. DOI: 10.3969/j.issn.1671-1815.2021.27.010. (in Chinese).

    [70]

    LI P, SHAO S. Can X-ray computed tomography (CT) be used to determine the pore-size distribution of intact loess?[J]. Environmental Earth Sciences, 2020, 79: 29. DOI: 10.1007/s12665-019-8777-z.

    [71] 徐文世, 于兴河, 刘妮娜, 等. 天然气水合物开发前景和环境问题[J]. 天然气地球科学, 2005,16(5): 680−683. DOI: cnki:sun:tdkx.0.2005-05-029.

    XU W S, YU X H, LIU N N, et al. The development perapective and environmental problems of natural gas hydrates[J]. Natural Gas Geoscience, 2005, 16(5): 680−683. DOI: cnki:sun:tdkx.0.2005-05-029. (in Chinese).

    [72]

    WATANABE S, SAITO K, OHMURA R. Crystal growth of clathrate hydrate in liquid water saturated with a simulated natural gas[J]. Crystal Growth & Design, 2011, 11(7): 3235−3242. DOI: 10.1021/cg2005024.

    [73] 李彦龙, 刘昌岭, 刘乐乐. 含水合物沉积物损伤统计本构模型及其参数确定方法[J]. 石油学报, 2016,37(10): 1273−1279. DOI: 10.7623/syxb201610007.

    LI Y L, LIU C L, LIU L L. Damage statistic constitutive model of hydrate-bearing sediments and the determination method of parameters[J]. Acta Petrolei Sinica, 2016, 37(10): 1273−1279. DOI: 10.7623/syxb201610007. (in Chinese).

    [74]

    LIU L, DAI S, NING F, et al. Fractal characteristics of unsaturated sands− implications to relative permeability in hydrate-bearing sediments[J]. Journal of Natural Gas Science and Engineering, 2019, 66: 11−17. DOI: 10.1016/j.jngse.2019.03.019.

    [75]

    YANG L, AI L, XUE K, et al. Analyzing the effects of inhomogeneity on the permeability of porous media containing methane hydrates through pore network models combined with CT observation[J]. Energy, 2018, 163: 27−37. DOI: 10.1016/j.energy.2018.08.100.

    [76]

    ZHANG L, GE K, WANG J, et al. Pore-scale investigation of permeability evolution during hydrate formation using a pore network model based on X-ray CT[J]. Marine and Petroleum Geology, 2020, 113: 104157. DOI: 10.1016/j.marpetgeo.2019.104157.

    [77] 陈亮, 叶旺全, 李承峰, 等. 基于时间演化的天然气水合物CT图像阈值分割[J]. CT理论与应用研究, 2023,32(2): 171−178. DOI: 10.15953/j.ctta.2022.062.

    CHEN L, YE W Q, LI C F, et al. Natural gas hydrate CT image threshold segmentation based on time evolution[J]. CT Theory and Applications, 2023, 32(2): 171−178. DOI: 10.15953/j.ctta.2022.062. (in Chinese).

    [78] 李小彬. 基于三维数字岩心的岩石孔隙结构表征及弹渗属性模拟研究[D]. 武汉: 中国地质大学(武汉), 2021.
    [79]

    ALHASHMI Z, BLUNT M J, BIJELJIC B. The impact of pore structure heterogeneity, transport, and reaction conditions on fluid–fluid reaction rate studied on images of pore space[J]. Transport in Porous Media, 2016, 115(2): 215−237. DOI: 10.1007/s11242-016-0758-z.

    [80]

    LIN W, LI X, YANG Z, et al. Modeling of 3D rock porous media by combining X-ray CT and Markov chain Monte Carlo[J]. Journal of Energy Resources Technology, 2020, 142(1): 13001. DOI: 10.1115/1.4045461.

    [81] 方黎勇, 陈鹏, 陈浩. 一种基于工业CT图像的岩心孔隙率计算方法[J]. 强激光与粒子束, 2014,26(3): 246−250. DOI: 10.3788/HPLPB201426.034008.

    FANG L Y, CHEN P, CHEN H. A calculation method of core porosity based on industrial CT images[J]. High Power Laser and Particle Beams, 2014, 26(3): 246−250. DOI: 10.3788/HPLPB201426.034008. (in Chinese).

    [82] 姚军, 赵秀才, 衣艳静, 等. 数字岩心技术现状及展望[J]. 油气地质与采收率, 2005,(6): 52−54. DOI: 10.3969/j.issn.1009-9603.2005.06.017.

    YAO J, ZHAO X C, YI Y J. et al. The current situation and prospect on digital core technology[J]. Petroleum Geology and Recovery Efficiency, 2005, (6): 52−54. DOI: 10.3969/j.issn.1009-9603.2005.06.017. (in Chinese).

    [83]

    LIN W, LI X, YANG Z, et al. Construction of dual pore 3-D digital cores with a hybrid method combined with physical experiment method and numerical reconstruction method[J]. Transport in Porous Media, 2017, 120(1): 227−238. DOI: 10.1007/s11242-017-0917-x.

    [84] 赵建鹏, 陈惠, 李宁, 等. 三维数字岩心技术岩石物理应用研究进展[J]. 地球物理学进展, 2020,35(3): 1099−1108. DOI: 10.6038/pg2020DD0486.

    ZHAO J P, CHEN H, LI N, et al. Research advance of petrophysical application based on digital core technology[J]. Progress in Geophysics, 2020, 35(3): 1099−1108. DOI: 10.6038/pg2020DD0486. (in Chinese).

    [85] 邓世冠, 吕伟峰, 刘庆杰, 等. 利用CT技术研究砾岩驱油机理[J]. 石油勘探与开发, 2014,41(3): 330−335. DOI: 10.11698/PED.2014.03.08.

    DENG S G, LV W F, LIU Q J, et al. Research on displacement mechanism in conglomerate using CT scanning method[J]. Petroleum Exploration and Development, 2014, 41(3): 330−335. DOI: 10.11698/PED.2014.03.08. (in Chinese).

    [86] 屈乐, 孙卫, 杜环虹, 等. 基于CT扫描的三维数字岩心孔隙结构表征方法及应用−以莫北油田116井区三工河组为例[J]. 现代地质, 2014,28(1): 190−196. DOI: 10.3969/j.issn.1000-8527.2014.01.020.

    QU L, SUN W, DU H H, et al. Characterization technique of pore structure by 3D digital core based on CT scanning and its application: An example from Sangonghe formation of 116 well field in Mobei oilfield[J]. Geoscience, 2014, 28(1): 190−196. DOI: 10.3969/j.issn.1000-8527.2014.01.020. (in Chinese).

    [87] 盛军, 杨晓菁, 李纲, 等. 基于多尺度X-CT成像的数字岩心技术在碳酸盐岩储层微观孔隙结构研究中的应用[J]. 现代地质, 2019,33(3): 653−661. DOI: 10.19657/j.geoscience.1000-8527.2019.03.17.

    SHENG J, YANG X J, LI G, et al. Aplication of multiscale X-CT imaging digital core technique on observing micro-pore structure of carbonate reservoirs[J]. Geoscience, 2019, 33(3): 653−661. DOI: 10.19657/j.geoscience.1000-8527.2019.03.17. (in Chinese).

    [88] 郝艳军, 杨顶辉. 二氧化碳地质封存问题和地震监测研究进展[J]. 地球物理学进展, 2012,27(6): 2369−2383. DOI: 10.6038/j.issn.1004-2903.2012.06.012.

    HAO Y J, YANG D H. Research progress of carbon dioxide capture and geologicalsequestration problem and seismic monitoring research[J]. Progress in Geophysics, 2012, 27(6): 2369−2383. DOI: 10.6038/j.issn.1004-2903.2012.06.012. (in Chinese).

    [89]

    ANDREW M, BIJELJIC B, BLUNT M J. Pore-scale contact angle measurements at reservoir conditions using X-ray microtomography[J]. Advances in Water Resources, 2014, 68(2014): 24−31. DOI: 10.1016/j.advwatres.2014.02.014.

    [90]

    SAHNI A, BURGER J, BLUNT M. Measurement of three phase relative permeability during gravity drainage using CT[C]//SPE/DOE Improved Oil Recovery Symposium, 1998. DOI: 10.2118/39655-MS.

    [91]

    ZHANG Y, NISHIZAWA O, KIYAMA T, et al. Flow behaviour of supercritical CO2 and brine in Berea sandstone during drainage and imbibition revealed by medical X-ray CT images[J]. Geophysical Journal International, 2014, 197(3): 1789−1807. DOI: 10.1093/gji/ggu089.

    [92] 施有志, 赵花丽, 黄钰琳, 等. 厦门地区孤石分布规律及对地铁工程的影响[J]. 地质与勘探, 2019,55(3): 862−869. DOI: 10.12134/j.dzykt.2019.03.018.

    SHI Y Z, ZHAO H L, HUANG Y L, et al. The distribution rule of the solitary stones of granite in Xiamen and its influence on metro engineering[J]. Geology and Exploration, 2019, 55(3): 862−869. DOI: 10.12134/j.dzykt.2019.03.018. (in Chinese).

    [93] 李术才, 刘征宇, 刘斌, 等. 基于跨孔电阻率CT的地铁盾构区间孤石探测方法及物理模型试验研究[J]. 岩土工程学报, 2015,37(3): 446−457. DOI: 10.11779/CJGE201503008.

    LI S C, LIU Z Y, LIU B, et al. Boulder detection method for metro shield zones based on cross-hole resistivity tomography and its physical model tests[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(3): 446−457. DOI: 10.11779/CJGE201503008. (in Chinese).

    [94] 刘畅, 李振春, 曲英铭, 等. 地震层析成像方法综述[J]. 物探与化探, 2020,44(2): 227−234. DOI: 10.11720/wtyht.2020.1243.

    LIU C, LI Z C, QU Y M, et al. A review of seismic tomography methods[J]. Geophysical and Geochemical Exploration, 2020, 44(2): 227−234. DOI: 10.11720/wtyht.2020.1243. (in Chinese).

    [95] 秦晶晶, 袁洪克, 何银娟, 等. 层析成像技术在城市活断层探测中的应用[J]. 地球物理学进展, 2018,33(5): 2153−2158. DOI: 10.6038/pg2018BB0383.

    QIN J J, YUAN H K, HE Y J, et al. Application of tomography inversion method in detecting active fault[J]. Progress in Geophysics, 2018, 33(5): 2153−2158. DOI: 10.6038/pg2018BB0383. (in Chinese).

    [96]

    GHORBANI Y, BECKER M, PETERSEN J, et al. Use of X-ray computed tomography to investigate crack distribution and mineral dissemination in sphalerite ore particles[J]. Minerals Engineering, 2011, 24(12): 1249−1257. DOI: 10.1016/j.mineng.2011.04.008.

    [97]

    LIU Z, YANG Y, YAO J, et al. Pore-scale remaining oil distribution under different pore volume water injection based on CT technology[J]. Advances in Geo-Energy Research, 2017, 1(3): 171−181. DOI: 10.26804/ager.2017.03.04.

    [98]

    WILDENSCHILD D, SHEPPARD A P. X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in subsurface porous medium systems[J]. Advances in Water Resources, 2013, 51: 217−246. DOI: 10.1016/j.advwatres.2012.07.018.

  • 期刊类型引用(1)

    1. 黄小燕,刘锟,林正秀,付玉川. 儿童游离脾伴脾蒂及胰尾扭转一例. 肝胆胰外科杂志. 2024(06): 378-380 . 百度学术

    其他类型引用(0)

图(6)  /  表(2)
计量
  • 文章访问数:  529
  • HTML全文浏览量:  76
  • PDF下载量:  89
  • 被引次数: 1
出版历程
  • 收稿日期:  2023-04-17
  • 修回日期:  2023-05-15
  • 录用日期:  2023-05-30
  • 网络出版日期:  2023-07-02
  • 刊出日期:  2024-01-09

目录

/

返回文章
返回
x 关闭 永久关闭