Rock Physics Modeling and Fracture Prediction of Double Porosity Media in the Hutubi Area
-
摘要:
呼图壁地区深层目标合层系白垩系清水河组与侏罗系喀拉扎组、头屯河组(K1q、J3k、J2t)具有规模储层且油气资源丰富,但传统孔隙介质岩石物理建模无法有效区分油气甜点与泥岩。本文在系统分析目标段测井曲线特征基础上,通过微分等效介质岩石物理模型进行横波速度校正,通过Gassman方程流体置换恢复纵横波速度比和纵波阻抗曲线原状地层响应特征,突出甜点储层与泥岩区分度;引入线性滑动理论,建立双孔介质裂缝型储层岩石物理模型。将原生孔隙的微分等效介质岩石物理模型与各向异性次生裂缝的线性滑动模型进行有机融合,实现呼1井-呼6井区孔缝型储层各向异性介质岩石物理建模,构建岩石物理量板。结合叠前OVT域地震数据各向异性反演,有效进行叠前AVAZ裂缝预测。本文形成一套完整的深层甜点预测方法技术流程,为类似探区深层目标勘探开发提供参考。
Abstract:The deep target strata K1q, J3k and J2t in the Hutubi area have large-scale reservoirs and abundant oil and gas resources, but the traditional rock physics modeling of porous media cannot effectively distinguish oil and gas desserts from mudstones. Based on the systematic analysis of the logging curve characteristics of the target section, the shear wave velocity is corrected by the differential equivalent medium rock physics model, and the VPVSC and PIMP curves are restored by the Gassman equation fluid replacement, which highlights the sweet spot reservoir and mudstone discrimination. The linear sliding theory is introduced to establish the rock physics model of fractured reservoirs in dual-porosity media. The differential equivalent medium rock physics model for primary pores and the linear sliding model for anisotropic secondary fractures are organically integrated to realize the anisotropic medium rock physics modeling of the pore-fracture reservoir in the Hu 1-Hu 6 well area, and the rock physics plate is constructed. Combined with the anisotropic inversion of pre-stack OVT domain seismic data, the dominant reservoirs are effectively predicted. This paper has formed a complete set of deep fracture prediction method and technical processes, that provide a reference for the exploration and development of deep targets in similar exploration areas.
-
Keywords:
- anisotropy inversion /
- dual-porous medium /
- rock-physical /
- fracture prediction
-
-
-
[1] 杜金虎, 熊金良, 王喜双, 等. 世界物探技术现状及中国物探技术发展的思考[J]. 岩性油气藏, 2011,23(4): 1−8. doi: 10.3969/j.issn.1673-8926.2011.04.001 DU J H, XIONG J L, WANG X S, et al. Status quo of international geophysical exploration technologies and thinking about the development of PetroChina geophysical exploration technologies[J]. Lithologic Reservoirs, 2011, 23(4): 1−8. (in Chinese). doi: 10.3969/j.issn.1673-8926.2011.04.001
[2] 李金诺. 浅谈石油行业大数据的发展趋势[J]. 价值工程, 2013,32(29): 172−174. doi: 10.3969/j.issn.1006-4311.2013.29.090 LI J N. The development tendency of big data in petroleum industry[J]. Value Engineering, 2013, 32(29): 172−174. (in Chinese). doi: 10.3969/j.issn.1006-4311.2013.29.090
[3] 张保庆, 周辉, 左黄金, 等. 宽方位地震资料处理技术及应用效果[J]. 石油地球物理勘探, 2011,46(6): 396−400, 406. doi: 10.13810/j.cnki.issn.1000-7210.2011.03.027 ZHANG B Q, ZHOU H, ZUO H J, et al. Wide azimuth data processing techniques and their applications[J]. Oil Geophysical Prospecting, 2011, 46(6): 396−400, 406. (in Chinese). doi: 10.13810/j.cnki.issn.1000-7210.2011.03.027
[4] 李桂林, 夏忠谋, 陈高, 等. 陆上复杂介质下高精度叠前宽方位角地震采集技术—以镇巴工区为例[J]. 地球物理学进展, 2014,29(1): 0282−0290. LI G L, XIA Z M, CHEN G, et al. High-resolution prestack wide azimuth seismic acquisition technique in complex media of land: A example in Zhenba area[J]. Progress in Geophysics, 2014, 29(1): 0282−0290. (in Chinese).
[5] WILLIAMS M, JENNER E. Interpreting seismic data in the presence of azimuthal anisotropy; or azimuthal anisotropy in the presence of the seismic interpretation[J]. The Leading Edge, 2002, 21(8): 771−774. doi: 10.1190/1.1503192
[6] 孙炜, 何治亮, 李玉凤, 等. 改进的方位各向异性裂缝预测方法及应用[J]. 石油地球物理勘探, 2014,49(6): 1170−1178. SUN W, HE Z L, LI Y F, et al. An improved method of fracture prediction based on P-wave anisotropy and its application[J]. Oil Geophysical Prospecting, 2014, 49(6): 1170−1178. (in Chinese).
[7] 姜传金, 鞠林波, 张广颖, 等. 利用地震叠前数据预测火山岩裂缝的方法和效果分析—以松辽盆地北部徐家围子断陷营城组火山岩为例[J]. 地球物理学报, 2011,54(2): 515−523. doi: 10.3969/j.issn.0001-5733.2011.02.031 JIANG C J, JU L B, ZHANG G Y, et al. The method and effect analysis of volcanic fracture prediction with prestack seismic data: An example from the volcanic rocks of Yingcheng formation in Xujiaweizi fault depression, north of Songliao basin[J]. Chinese Journal of Geophysics, 2011, 54(2): 515−523. (in Chinese). doi: 10.3969/j.issn.0001-5733.2011.02.031
[8] 陈明春, 徐晟, 魏春光. 裂缝型碳酸盐岩储层预测技术及海外气田勘探实践[J]. 地球物理学进展, 2015,30(4): 1660−1665. doi: 10.6038/pg20150419 CHEN M C, XU S, WEI C G. Technique of fractured carbonate reservoir prediction and its application in oversea gas field exploration[J]. Progress in Geophysics, 2015, 30(4): 1660−1665. (in Chinese). doi: 10.6038/pg20150419
[9] 刘军迎, 雍学善, 杨午阳, 等. 基于叠前方位振幅的大港-埕海地区奥陶系风化壳裂缝储层的叠前预测[J]. 地球物理学进展, 2012,27(4): 1588−1597. doi: 10.6038/j.issn.1004-2903.2012.04.036 LIU J Y, YONG X S, YANG W Y, et al. Prestack fracture reservoir bed estimation of Ordovician weather layer of Dagang-Chenghai area based on azimuthal prestack seismic amplitude[J]. Progress in Geophysics, 2012, 27(4): 1588−1597. (in Chinese). doi: 10.6038/j.issn.1004-2903.2012.04.036
[10] 贾跃玮, 魏水建, 吕林. 应用地震纵波方位各向异性定量预测火山岩裂缝[J]. 石油物探, 2014,53(4): 477−483. doi: 10.3969/j.issn.1000-1441.2014.04.014 JIA Y W, WEI S J, LV L. Application of seismic P-wave azimuthal anisotropy in volcanic fracture quantitative prediction[J]. Geophysical Prospecting for Petroleum, 2014, 53(4): 477−483. (in Chinese). doi: 10.3969/j.issn.1000-1441.2014.04.014
[11] 王康宁, 李慧莉, 张继标. 塔中北坡地区奥陶系碳酸盐岩叠前地震裂缝预测方法应用研究[J]. 地球物理学进展, 2017,32(5): 2078−2084. doi: 10.6038/pg20170530 WANG K N, LI H L, ZHANG J B. Study of pre-stack seismic fracture prediction method and its application in Ordovician carbonate formation in northern slope of the Tazhong uplift[J]. Progress in Geophysics, 2017, 32(5): 2078−2084. (in Chinese). doi: 10.6038/pg20170530
[12] 印兴耀, 马正乾, 向伟, 等. 地震岩石物理驱动的裂缝预测技术研究现状与进展(I)−裂缝储层岩石物理理论[J]. 石油物探, 2022,61(2): 183−204. YIN X Y, MA Z Q, XIANG W, et al. Review of fracture prediction driven by the seismic rock physics theory (Ⅰ): Effective anisotropic seismic rock physics theory[J]. Geophysical Prospecting for Petroleum, 2022, 61(2): 183−204. (in Chinese).