ISSN 1004-4140
CN 11-3017/P

呼图壁地区双孔介质岩石物理建模与裂缝预测—以准噶尔盆地呼探1井区为例

钦黎明, 程志国, 郑伟, 陈勇, 苏艳丽, 沈建文, 宋建国

钦黎明, 程志国, 郑伟, 等. 呼图壁地区双孔介质岩石物理建模与裂缝预测—以准噶尔盆地呼探1井区为例[J]. CT理论与应用研究, 2023, 32(6): 723-734. DOI: 10.15953/j.ctta.2023.117.
引用本文: 钦黎明, 程志国, 郑伟, 等. 呼图壁地区双孔介质岩石物理建模与裂缝预测—以准噶尔盆地呼探1井区为例[J]. CT理论与应用研究, 2023, 32(6): 723-734. DOI: 10.15953/j.ctta.2023.117.
QIN L M, CHENG Z G, ZHENG W, et al. Rock Physics Modeling and Fracture Prediction of Double Porosity Media in the Hutubi Area[J]. CT Theory and Applications, 2023, 32(6): 723-734. DOI: 10.15953/j.ctta.2023.117. (in Chinese).
Citation: QIN L M, CHENG Z G, ZHENG W, et al. Rock Physics Modeling and Fracture Prediction of Double Porosity Media in the Hutubi Area[J]. CT Theory and Applications, 2023, 32(6): 723-734. DOI: 10.15953/j.ctta.2023.117. (in Chinese).

呼图壁地区双孔介质岩石物理建模与裂缝预测—以准噶尔盆地呼探1井区为例

详细信息
    作者简介:

    钦黎明: 男,硕士,中国石油新疆油田分公司勘探开发研究院地球物理研究所工程师,主要研究方向为油气勘探,E-mail:qliming@petrochina.com.cn

    通讯作者:

    沈建文: 女,硕士,赛哲尔能源科技(北京)有限公司工程师,主要研究方向为地震岩石物理、地震反演及定量地震解释方法应用研究,E-mail:jianwen.shen@seiser.com.cn

  • 中图分类号: P  631;P  315;O  242

Rock Physics Modeling and Fracture Prediction of Double Porosity Media in the Hutubi Area

  • 摘要:

    呼图壁地区深层目标合层系白垩系清水河组与侏罗系喀拉扎组、头屯河组(K1q、J3k、J2t)具有规模储层且油气资源丰富,但传统孔隙介质岩石物理建模无法有效区分油气甜点与泥岩。本文在系统分析目标段测井曲线特征基础上,通过微分等效介质岩石物理模型进行横波速度校正,通过Gassman方程流体置换恢复纵横波速度比和纵波阻抗曲线原状地层响应特征,突出甜点储层与泥岩区分度;引入线性滑动理论,建立双孔介质裂缝型储层岩石物理模型。将原生孔隙的微分等效介质岩石物理模型与各向异性次生裂缝的线性滑动模型进行有机融合,实现呼1井-呼6井区孔缝型储层各向异性介质岩石物理建模,构建岩石物理量板。结合叠前OVT域地震数据各向异性反演,有效进行叠前AVAZ裂缝预测。本文形成一套完整的深层甜点预测方法技术流程,为类似探区深层目标勘探开发提供参考。

    Abstract:

    The deep target strata K1q, J3k and J2t in the Hutubi area have large-scale reservoirs and abundant oil and gas resources, but the traditional rock physics modeling of porous media cannot effectively distinguish oil and gas desserts from mudstones. Based on the systematic analysis of the logging curve characteristics of the target section, the shear wave velocity is corrected by the differential equivalent medium rock physics model, and the VPVSC and PIMP curves are restored by the Gassman equation fluid replacement, which highlights the sweet spot reservoir and mudstone discrimination. The linear sliding theory is introduced to establish the rock physics model of fractured reservoirs in dual-porosity media. The differential equivalent medium rock physics model for primary pores and the linear sliding model for anisotropic secondary fractures are organically integrated to realize the anisotropic medium rock physics modeling of the pore-fracture reservoir in the Hu 1-Hu 6 well area, and the rock physics plate is constructed. Combined with the anisotropic inversion of pre-stack OVT domain seismic data, the dominant reservoirs are effectively predicted. This paper has formed a complete set of deep fracture prediction method and technical processes, that provide a reference for the exploration and development of deep targets in similar exploration areas.

  • 图  1   呼图壁背斜带勘探成果图

    Figure  1.   Exploration results map of the Hutubi anticline belt area

    图  2   呼探1井(左)和呼6井(右)的测井解释成果对比图

    Figure  2.   Comparison of logging interpretation results of Hutan 1 well (left) and Hutan 6 well (right)

    图  3   呼101井各向同性介质岩石物理建模成果

    Figure  3.   Rock physics modeling results of isotropic medium in Hu 101 well

    图  4   岩石物理建模校正与储层流体置换校正效果图

    Figure  4.   Rock physics modeling correction and reservoir fluid replacement correction effect diagram

    图  5   呼6井双孔介质岩石物理评价成果图

    Figure  5.   The rock physics evaluation results of the double-porosity medium in Hu 6 well

    图  6   呼探1井双孔介质岩石物理评价成果图

    Figure  6.   The rock physics evaluation results of the double-porosity medium in Hutan 1 well

    图  7   呼探1井点OVT道集及其频谱图

    Figure  7.   Hutan 1 well point OVT gathers and amplitude spectrum

    图  8   呼探1井点OVT道集K1q顶面AVOZ曲线

    Figure  8.   AVOZ curve of K1q top surface of OVT gathers in Well Hutan 1

    图  9   呼探1井点方位角OVT道集

    Figure  9.   Hutan 1 well point azimuth OVT gathers

    图  10   呼探1井主测线裂缝强度剖面

    Figure  10.   Fracture strength profile of main survey line in Hutan 1 well

    图  11   清水河组(K1q)叠前AVAZ裂缝预测效果

    Figure  11.   Pre-stack AVAZ fracture prediction effect of Qingshuihe Formation (K1q)

    图  12   清水河组(K1q)黑框区域叠前AVAZ裂缝预测效果局部放大图

    Figure  12.   Local enlarged map of pre-stack AVAZ fracture prediction effect in black frame area of Qingshuihe Formation (K1q)

    图  13   清水河组(K1q)红框区域叠前AVAZ裂缝预测效果局部放大图

    Figure  13.   Local enlarged map of pre-stack AVAZ fracture prediction effect in red frame area of Qingshuihe Formation (K1q)

    图  14   喀拉扎组(J3k)叠前AVAZ裂缝预测效果

    Figure  14.   Prestack AVAZ fracture prediction effect of Kalazha Formation (J3k)

    图  15   喀拉扎组(J3k)黑框区域叠前AVAZ裂缝预测效果局部放大图

    Figure  15.   Local enlarged map of pre-stack AVAZ fracture prediction effect in black frame area of Kalazha Formation (J3k)

    图  16   喀拉扎组(J3k)红框区域叠前AVAZ裂缝预测效果局部放大图

    Figure  16.   Locally enlarged map of the pre-stack AVAZ fracture prediction effect in the red frame area of Kalazha Formation (J3k)

    图  17   头屯河组(J2t)叠前AVAZ裂缝预测效果

    Figure  17.   Prestack AVAZ fracture prediction effect of Toutunhe Formation (J2t)

  • [1] 杜金虎, 熊金良, 王喜双, 等. 世界物探技术现状及中国物探技术发展的思考[J]. 岩性油气藏, 2011,23(4): 1−8. doi: 10.3969/j.issn.1673-8926.2011.04.001

    DU J H, XIONG J L, WANG X S, et al. Status quo of international geophysical exploration technologies and thinking about the development of PetroChina geophysical exploration technologies[J]. Lithologic Reservoirs, 2011, 23(4): 1−8. (in Chinese). doi: 10.3969/j.issn.1673-8926.2011.04.001

    [2] 李金诺. 浅谈石油行业大数据的发展趋势[J]. 价值工程, 2013,32(29): 172−174. doi: 10.3969/j.issn.1006-4311.2013.29.090

    LI J N. The development tendency of big data in petroleum industry[J]. Value Engineering, 2013, 32(29): 172−174. (in Chinese). doi: 10.3969/j.issn.1006-4311.2013.29.090

    [3] 张保庆, 周辉, 左黄金, 等. 宽方位地震资料处理技术及应用效果[J]. 石油地球物理勘探, 2011,46(6): 396−400, 406. doi: 10.13810/j.cnki.issn.1000-7210.2011.03.027

    ZHANG B Q, ZHOU H, ZUO H J, et al. Wide azimuth data processing techniques and their applications[J]. Oil Geophysical Prospecting, 2011, 46(6): 396−400, 406. (in Chinese). doi: 10.13810/j.cnki.issn.1000-7210.2011.03.027

    [4] 李桂林, 夏忠谋, 陈高, 等. 陆上复杂介质下高精度叠前宽方位角地震采集技术—以镇巴工区为例[J]. 地球物理学进展, 2014,29(1): 0282−0290.

    LI G L, XIA Z M, CHEN G, et al. High-resolution prestack wide azimuth seismic acquisition technique in complex media of land: A example in Zhenba area[J]. Progress in Geophysics, 2014, 29(1): 0282−0290. (in Chinese).

    [5]

    WILLIAMS M, JENNER E. Interpreting seismic data in the presence of azimuthal anisotropy; or azimuthal anisotropy in the presence of the seismic interpretation[J]. The Leading Edge, 2002, 21(8): 771−774. doi: 10.1190/1.1503192

    [6] 孙炜, 何治亮, 李玉凤, 等. 改进的方位各向异性裂缝预测方法及应用[J]. 石油地球物理勘探, 2014,49(6): 1170−1178.

    SUN W, HE Z L, LI Y F, et al. An improved method of fracture prediction based on P-wave anisotropy and its application[J]. Oil Geophysical Prospecting, 2014, 49(6): 1170−1178. (in Chinese).

    [7] 姜传金, 鞠林波, 张广颖, 等. 利用地震叠前数据预测火山岩裂缝的方法和效果分析—以松辽盆地北部徐家围子断陷营城组火山岩为例[J]. 地球物理学报, 2011,54(2): 515−523. doi: 10.3969/j.issn.0001-5733.2011.02.031

    JIANG C J, JU L B, ZHANG G Y, et al. The method and effect analysis of volcanic fracture prediction with prestack seismic data: An example from the volcanic rocks of Yingcheng formation in Xujiaweizi fault depression, north of Songliao basin[J]. Chinese Journal of Geophysics, 2011, 54(2): 515−523. (in Chinese). doi: 10.3969/j.issn.0001-5733.2011.02.031

    [8] 陈明春, 徐晟, 魏春光. 裂缝型碳酸盐岩储层预测技术及海外气田勘探实践[J]. 地球物理学进展, 2015,30(4): 1660−1665. doi: 10.6038/pg20150419

    CHEN M C, XU S, WEI C G. Technique of fractured carbonate reservoir prediction and its application in oversea gas field exploration[J]. Progress in Geophysics, 2015, 30(4): 1660−1665. (in Chinese). doi: 10.6038/pg20150419

    [9] 刘军迎, 雍学善, 杨午阳, 等. 基于叠前方位振幅的大港-埕海地区奥陶系风化壳裂缝储层的叠前预测[J]. 地球物理学进展, 2012,27(4): 1588−1597. doi: 10.6038/j.issn.1004-2903.2012.04.036

    LIU J Y, YONG X S, YANG W Y, et al. Prestack fracture reservoir bed estimation of Ordovician weather layer of Dagang-Chenghai area based on azimuthal prestack seismic amplitude[J]. Progress in Geophysics, 2012, 27(4): 1588−1597. (in Chinese). doi: 10.6038/j.issn.1004-2903.2012.04.036

    [10] 贾跃玮, 魏水建, 吕林. 应用地震纵波方位各向异性定量预测火山岩裂缝[J]. 石油物探, 2014,53(4): 477−483. doi: 10.3969/j.issn.1000-1441.2014.04.014

    JIA Y W, WEI S J, LV L. Application of seismic P-wave azimuthal anisotropy in volcanic fracture quantitative prediction[J]. Geophysical Prospecting for Petroleum, 2014, 53(4): 477−483. (in Chinese). doi: 10.3969/j.issn.1000-1441.2014.04.014

    [11] 王康宁, 李慧莉, 张继标. 塔中北坡地区奥陶系碳酸盐岩叠前地震裂缝预测方法应用研究[J]. 地球物理学进展, 2017,32(5): 2078−2084. doi: 10.6038/pg20170530

    WANG K N, LI H L, ZHANG J B. Study of pre-stack seismic fracture prediction method and its application in Ordovician carbonate formation in northern slope of the Tazhong uplift[J]. Progress in Geophysics, 2017, 32(5): 2078−2084. (in Chinese). doi: 10.6038/pg20170530

    [12] 印兴耀, 马正乾, 向伟, 等. 地震岩石物理驱动的裂缝预测技术研究现状与进展(I)−裂缝储层岩石物理理论[J]. 石油物探, 2022,61(2): 183−204.

    YIN X Y, MA Z Q, XIANG W, et al. Review of fracture prediction driven by the seismic rock physics theory (Ⅰ): Effective anisotropic seismic rock physics theory[J]. Geophysical Prospecting for Petroleum, 2022, 61(2): 183−204. (in Chinese).

图(17)
计量
  • 文章访问数:  148
  • HTML全文浏览量:  66
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-29
  • 修回日期:  2023-06-03
  • 录用日期:  2023-06-25
  • 网络出版日期:  2023-08-03
  • 刊出日期:  2023-10-31

目录

    /

    返回文章
    返回
    x 关闭 永久关闭