Microgravity Monitoring Technology for Deep Gas-Reservoir Development based on Dixi 121 Wellblock in Xinjiang Oilfield
-
摘要:
天然气富集差异会引起地下介质密度较大的变化,进而引起地表重力值的响应。微重力技术通过测量地表重力值来监测气藏开发区地下密度变化,从而推测气藏开发中的流体变化。微重力监测的重力异常分离提取对于精细刻画气藏开发层段的密度变化至关重要。优选深度递推法实现不同尺度重力场分离,提取得到可靠的剩余重力异常场,以新疆油田滴西121井区为例,结合钻探与生产动态数据,研究剩余微重力异常与储层特征的关系。本文将微重力技术应用于中深层储层的气藏开发,创新性地针对研究区地质情况建立砂地比正演模型,分析砂体厚度在剩余重力异常场中的响应情况。结果表明:微重力技术在中深层气藏开发中应用效果较好;气藏开发层段砂地比越高,剩余微重力异常越低,与正演认识相符,并与地震数据刻画的砂体分布规律一致。
Abstract:The difference in natural-gas enrichment significantly affects the underground medium density and thus the surface gravity. Microgravity monitoring technology monitors the morphological changes of a gas-reservoir development zone by measuring the surface gravity to obtain the change information of gas-reservoir development. The separation and extraction of gravity anomalies in microgravity monitoring is necessitated to accurately characterize the changes in gas-reservoir development intervals. The depth recursive method is the preferred method for separating residual gravity anomalies of different scales and extract reliable residual gravity anomalies. Considering the Dixi 121 well area of Xinjiang oilfield as an example and using the dynamic data of oil and gas drilling and production, the relationship between residual microgravity anomalies and reservoir characteristics is investigated in this study. The application of microgravity technology to the development of gas reservoirs in the middle and deep reservoirs is achieved, and a sand-ground ratio forward model is innovatively established for the geological conditions of the study area to analyse the response of the sand thickness in the residual gravity anomaly field. The findings of the study indicate that microgravity technology is an efficient method for developing reservoirs of middle and deep reservoirs. the higher the sand-ground ratio of the reservoir section, the lower the residual microgravity anomaly, which is in accordance with forward modelling and the distribution law of the sand-body depicted by seismic data.
-
-
表 1 模型一正演模型参数
Table 1 Model forward parameters
直立长方体
序号长度
/m宽度
/m厚度
/m顶面埋深/m 剩余密度/(g/cm3) A1 50 50 50 100 0.85 A2 50 50 50 50 0.85 A3 50 50 50 100 0.85 B 400 500 150 100 0.85 表 2 目标区地层厚度与砂地比统计表
Table 2 Statistical table of formation thickness and sand ratio in target area
井号 头屯河组
地层厚度/m头屯河组
砂厚/m头屯河组
砂地比t1地层
厚度/mt1砂厚
/mt1砂
地比t2地层
厚度/mt2砂厚
/mt2砂
地比平均剩余密度
/($ \mathit{g}/{{{\mathrm{c}}}{{\mathrm{m}}}}^{3} $)Well5 54.00 20.00 0.37 54.00 20.00 0.37 − − − 0.53 Well4 52.00 18.00 0.35 52.00 18.00 0.35 − / / 0.35 Well2 58.00 18.00 0.31 58.00 18.00 0.31 / / / 0.58 Well1 59.00 15.00 0.25 59.00 15.00 0.25 / / / 0.60 Well3 57.70 13.00 0.23 57.70 13.00 0.23 / / / 0.62 Well8 87.00 17.00 0.20 56.20 17.00 0.30 − / / 0.55 Well12 134.00 20.00 0.15 66.50 16.00 0.24 67.50 4.00 0.06 0.36 Well10 170.00 19.00 0.11 50.00 3.00 0.06 120.00 16.00 0.13 0.61 Well6 84.50 6.00 0.07 55.00 4.00 0.07 29.50 2.00 0.07 0.31 表 3 实际剩余重力异常与正演剩余重力异常归一化统计表
Table 3 Normalized statistical table of actual and forward residual gravity anomalies
井号 头屯河组砂地比 归一化前 归一化后 实际段内平均剩余
重力异常正演段内平均剩余
重力异常实际段内平均剩余
重力异常正演段内平均剩余
重力异常Well5 0.37 −8.43 17.97 0.08 0.00 Well4 0.35 −9.81 17.99 0.00 0.09 Well2 0.31 −2.25 18.02 0.43 0.23 Well1 0.25 −2.97 18.07 0.39 0.45 Well3 0.23 3.79 18.10 0.78 0.56 Well8 0.20 3.96 18.12 0.79 0.68 Well12 0.15 2.84 18.17 0.73 0.86 Well10 0.11 7.58 18.20 1.00 1.00 -
[1] 王谦身, 张赤军, 周文虎, 等. 微重力测量: 理论、方法与应用[M]. 北京: 科学出版社, 1995. WANG Q S, ZHANG C J, ZHOU W H, et al. Microgravity measurement: Theory, methods and applications[M]. Beijing: Science Press, 1995. (in Chinese).
[2] 石亚雄, 孙少安, 吴丽华, 等. 微重力测量在溶洞探测中的应用[J]. 物探与化探, 1991, 15(6): 468-470. SHI Y X, SUN S A, WU L H, et al. The application of minigravity survey to Carst cave exploration[J]. Geophyical and Geochemical Exploration, 1991, 15(6): 468-470. (in Chinese).
[3] 王谦身, 周文虎. 微重力方法在考古工程中的应用—明茂陵地下陵殿探查[J]. 地球物理学进展, 1995, 10(2): 85-94. WANG Q S, ZHOU W H. The application of microgracimentry in archaeological engineering—proseciton of underground palcace of Maoling mausoleum of Ming Dynasty[J]. Progress in Geophysics, 1995, 10(2): 85-94. (in Chinese).
[4] 曾华霖. 重力场与重力勘探[M]. 北京: 地质出版社, 2005. ZENG H L. Gravity field and gravity exploration[M]. Beijing: Geology Press, 2005. (in Chinese).
[5] 王萌, 姚长利, 孟小红, 等. 卫星重力资料的处理及其在南美洲大陆区域构造研究中的应用[C]//中国地球物理论文集, 2013: 52-53. WANG M, YAO C L, MENG X H, et al. The pro-cessing of satellite gravity data and its application in the study of regional tectonics of the South American continent[C]//Chinese Geophysical Papers. Kunming, 2013: 52-53. (in Chinese).
[6] 黄金明. 重磁数据处理解释技术在华南地区岩体圈定与形态反演中的应用研究[D]. 北京: 中国地质大学(北京), 2013. HUANG J M. The study of gravity and magnetic data processing and interpretation method on boundary delineation and shape inversion of rock body in south China[D]. Beijing: China University of Geosciences Beijing, 2013. (in Chinese).
[7] 刘燕平, 任康. 海南岛戈枕金矿带重力勘探实验研究[J]. 物探与化探, 1995, (4): 311-315. LIU Y P, REN K. Gracity exploration experimental study of the Gezhen gold roe belt, Hainan island[J]. Geophyical and Geochemical Exploration, 1991, 15(6): 468-470. (in Chinese).
[8] 袁学诚. 论中国西部岩石圈三维结构及其对寻找油气资源的启示[J]. 中国地质, 2005, 32(1): 1-12. DOI: 10.3969/j.issn.1000-3657.2005.01.001. YUAN X C. 3D lithospheric structure of western China and its englightenment on peteoleum prospecting[J]. Geology in China, 2005, 32(1): 1-12. DOI: 10.3969/j.issn.1000-3657.2005.01.001. (in Chinese).
[9] 马小雷. 鄂尔多斯盆地西南部地球物理场特征与砂岩型铀矿关系[D]. 西安: 西安石油大学, 2016. MA X L. The relationship between Geophysical field features and sandstone-type uranium deposits in the west-south of Ordos Basin[D]. Xi´an: Xi´an Shiyou Univer-sity, 2016. (in Chinese).
[10] 徐桂芬, 赵文举, 何展翔, 等. 时移微重力监测技术在油气田开发中的应用[C]//2017物探技术研讨会论文集, 2017: 775-777. XU G F, ZHAO W J, HE Z X, et al. Application of time-lapse microgravity monitoring technology in oil and gas field development[C]//Geophysical Exploration Technology Seminar, 2017: 775-777. (in Chinese).
[11] 赵文举, 刘云祥, 胡文涛. 时移微重力监测技术在气藏开发中的应用[C]//中国地球科学联合学术年会, 2017: 1425-1426. ZHAO W J, LIU Y X, HU W T. Application of time-lapse microgravity monitoring technology in gas reservoir development[C]//China Earth Science Joint Academic Conference, 2017: 1425-1426. (in Chinese).
[12] 冯强汉, 魏千盛, 江磊, 等. 微重力监测技术在气藏开发中的应用[J]. 天然气地球科学, 2021, 32(10): 1571-1580. FENG Q H, WEI Q S, JIANG L, et al. The application of microgravity monitoring technology in gas reservoir development[J]. Natural Gas Geoscience, 2021, 32(10): 1571-1580. DOI:10.11764/j.issn.1672-1926.2021.07.012. (in Chinese).
[13] MARTIN V G, ROGER H, MIRJAM, B. Gravity changes and natural gas extraction in Groningen[J]. Geophysical Prospecting, 2001, 47(6): 979-993. DOI: 10.1046/j.issn.1365-2478.1999.00159.x.
[14] JENNIFER L H, JOHN F F, CARLOS LV A, et al. 4-D microgravity modeling and inversion for waterflood surveillance: A model study for the Prudhoe Bay reservoir, Alaska[C]//SEG Technical Program Expanded Abstracts 1997, Society of Exploration Geophysicists, 1997, 513-516. DOI:10.1190/1.1885948 issn.1052-3812.
[15] 袁炳强, 陈青, 党炜. 新疆和田凹陷重力场与构造特征[J]. 西北大学学报(自然科学版), 2009, 39(3): 399-403. YUAN B Q, CHEN Q, DANG Y. The gravity field and tectonic feature at Hetian depression of Xinjiang[J]. Journal of Northwest University (Natural Science Edition), 2009, 39(3): 399-403. (in Chinese).
[16] 李玉君, 任芳祥, 杨立强, 等. 稠油注蒸汽开采蒸汽腔扩展形态4D 微重力测量技术[J]. 石油勘探与开发, 2013, 40(3): 381-384. DOI: 10.11698/PED.2013.03.19. LI Y J, REN F X, YANG L Q, et al. Description of steam chamber shape in heavy oil recovery using 4D microgravity measurement technology[J]. Petroleum Exploration and Development, 2013, 40(3): 381-384. DOI: 10.11698/PED.2013.03.19. (in Chinese).
[17] 辛坤烈. 蒸汽腔立体监测技术在SAGD开发中的应用[J]. 中外能源, 2018, 23(9): 43-51. XIN K L. Application of three-dimensional monitoring technique of steam chamber to SAGD development[J]. Sino-global Energy, 2018, 23(9): 43-51. (in Chinese).
[18] 蔡宁骁, 王真理, 周大胜, 等. 注蒸汽稠油热采开发区浅层汽窜的微重力勘探方法[J]. 石油地球物理勘探, 2019, 54(1): 235-242. DOI: 10.13810/j.cnki.issn.1000-7210.2019.01.027. CAI N X, WANG Z L, ZHOU D S, et al. A microgravity method for prospecting shallow steam channeling in thermal recovery zones[J]. Oil Geophysical Prospecting, 2019, 54(1): 235-242. DOI: 10.13810/j.cnki.issn.1000-7210.2019.01.027. (in Chinese).
[19] 蔡贇, 王真理, 梁瑶, 等. 双树复小波变换在时移微重力监测上的应用—以辽河油田SAGD区为例[J]. 地球物理学进展, 2021, 36(2): 549-558. DOI: 10.6038/pg2021DD0529. CAI Y, WANG Z L, LIANG Y, et al. Application of DTCWT in time-lapse microgravity monitoring: A case studyfrom SAGD area of Liaohe Oilfield[J]. Progress in Geophysics, 2021, 36(2): 549-558. DOI: 10.6038/pg2021DD0529. (in Chinese).
[20] 蔡贇. 基于双树复小波和YOLO v3算法的微重力异常分离研究[D]. 北京: 中国科学院大学, 2020. CAI Y. Research on separation of microgravity anomaly based on dual tree complex wavelet and YOLO v3 algorithm[D]. Beijing: University of Chinese academy of sciences, 2020. (in Chinese).
[21] 廖伟, 刘国良, 何国林, 等. 基于微重力监测技术的地下储气库库容动用评价方法[J]. 天然气工业, 2022, 42(3): 106-113. DOI: 10.3787/j.issn.1000-0976.2022.03.012. LIAO W, LIU G L, HE G L, et al. Underground gas storage capacity utilization evaluation method based on microgravity monitoring technology[J]. Natural Gas Industry, 2022, 42(3): 106-113. DOI: 10.3787/j.issn.1000-0976.2022.03.012. (in Chinese).
[22] 刘代芹, 玄松柏, 陈石, 等. 基于高精度时变微重力方法研究呼图壁储气库地下介质密度变化特征[J]. 地震地质, 2022, 44(2): 414-427. DOI: 10.3969/j.issn.0253-4967.2022.02.009. LIU D Q, XUAN S B, CHEN S, et al. Study on the density variation characteristics of underground medium in Hutubi gas storage based on high-precision time-varying microgravity method[J]. Seismology and Geology, 2022, 44(2): 414-427. DOI: 10.3969/j.issn.0253-4967.2022.02.009. (in Chinese).
[23] 郭良辉, 孟小红, 石磊, 等. 重力异常分离的相关方法[J]. 地球物理学进展, 2008, 23(5): 1425-1430. DOI: 10.6038/j.issn.0001-5733.2012.12.020. GUO L H, MENG X H, SHI L, et al. Preferential filtering method and its application to Bouguer gravity anomaly of Chinese continent[J]. Progress in Geophysics, 2012, 55(2): 4078-4088. DOI:10.6038/j.issn.0001-5733.2012.12.020. (in Chinese).
[24] 石磊, 陈石, 蒋长胜, 等. 2013. 基于优化滤波法对芦山地震震区重力异常特征的分析[J]. 地震学报, 2013, 35(5): 704-716. DOI: 10.3969/j.issn.0253-3782.2013.05.009. SHI L, CHEN S, JIANG C S, et al. Characteristics of gravity anomaly in Lushan earthquake zone based on preferential filtering method[J]. Acta Seismologica Sinica, 2013, 35(5): 704-716. DOI:10.3969/j.issn.0253-3782.2013.05.009. (in Chinese).
[25] MENG X H, GUO L H, CHEN Z X, et al. A method for gravity anomaly separation based on preferential continuation and its application[J]. Applied Geophysics, 2009, 6(3): 217-225. DOI: 10.1007/s11770-009-0025-y.
[26] 王真理. 一种获得剩余重力异常的方法及装置: 201711216885.9[P]. 2018-05-08. WANG Z L. Method and apparatus for obtaining resi-dual gravity anomaly: 201711216885. 9[P]. 2018-05-08. (in Chinese).
[27] 蔡宁骁. 基于多尺度曲面拟合的异常提取方法及应用研究[D]. 北京: 中国科学院大学, 2018. CAI N X. Research on anomaly extraction method and application based on multiscale surface fitting[D]. Beijing: University of Chinese Academy of Sciences, 2018. (in Chinese).
-
期刊类型引用(3)
1. 卢振如,王婷. 成人肠道套细胞淋巴瘤合并回盲型肠套叠一例. 中国医学科学院学报. 2024(03): 458-461 . 百度学术
2. 王婷,田松林,郑珂. MR小肠造影对肠道T细胞淋巴瘤与B细胞淋巴瘤的鉴别效能分析. 罕少疾病杂志. 2024(10): 95-97 . 百度学术
3. 陈衍池. 超声诊断肠梗阻的价值分析. 中国医疗器械信息. 2023(14): 16-18+176 . 百度学术
其他类型引用(0)