Clinical Characteristics and Imaging Features of COVID-19 at Initial Diagnosis in Fever Clinic
-
摘要: 目的:探讨重型危重型新型冠状病毒感染者在门诊首诊时的临床特征和肺部CT表现。方法:回顾性分析发热门诊就诊的140例新型冠状病毒感染患者,其中中型组101例,重型危重型组39例。比较两组患者的一般人口学特征、临床表现、胸部薄层平扫CT(HRCT)检查及血常规+C反应蛋白(CRP)的差异性。结果:中型组和重型危重型组相比,①基线特征显示重型危重型组的年龄更高(66.05±14.38 vs. 77.90±13.12),首诊时病程更短(5.40±3.81 vs. 3.97±3.12),血氧饱和度(SPO2)更低(97.88±1.73 vs. 92.92±4.01),体温峰值(Tmax)更高(38.32±0.66 vs. 38.68±0.63);②肺部 CT显示重型危重型组的肺炎容积半定量更大(18.85±13.51 vs. 34.41±19.34);③血常规+CRP实验室检查显示重型危重型组的CRP更高(29.42±26.93 vs. 80.67±48.01),淋巴细胞计数(LYM)更低(1.64±0.68 vs. 0.95±0.64),粒细胞淋巴细胞比值更高(NLR)(3.48±2.46 vs. 9.36±10.42)。logistic回归分析显示年龄(OR=1.090,95%CI 1.006~1.181)、肺炎容积半定量(OR=1.086,95%CI 1.086~1.019)和SPO2(OR=0.261,95%CI 0.089~0.762)与新冠病毒感染重症危重症的发生相关,差异具有统计学意义;CRP(OR=1.054,95%CI 1.023~1.087)和LYM(OR=0.039,95%CI 0.04~0.391)与新冠病毒感染重症危重症的发生相关,差异具有显著统计学意义。结论:高龄、首诊时病程更短、SPO2更低、肺炎容积半定量更大、CRP升高、LYM下降与后期发展至新冠感染重型危重型相关,需要早期识别。Abstract: Objective: Objective: To explore and analyze the clinical features and chest thin-slice non-enhanced computed tomography (CT) imaging features of patients with coronavirus disease 2019 (COVID-19) at initial diagnosis in a fever clinic. Methods: A retrospective analysis was performed on 140 patients with COVID-19 at initial diagnosis in a fever clinic, including 101 and 39 cases in the moderate and severe and critical groups , respective-ly. Baseline, clinical characteristics, complete blood count + C-reactive protein (CBC+CRP), and chest thin-slice non-enhanced CT imaging characteristics of the patients were analyzed. Results: (1) The comparison between the moderate and severe and criti-cal groups showed that there were statistically significant differences in age (66.05±14.38 vs. 77.90±13.12,), course of initial diagnosis (5.40±3.81 vs. 3.97±3.12), SPO2 (97.88±1.73 vs. 92.92±4.01), and Tmax (38.32±0.66 vs. 38.68±0.63).(2) CT features between the two groups showed statistically significant differences in semi-quantitative volume (18.85±13.51 vs. 34.41±19.34). (3) The comparison between the moderate and severe and critical groups showed that there were statistically significant differ-ences in CRP (29.42±26.93 vs. 80.67±48.01), LYM (1.64±0.68 vs. 0.95±0.64), and NLR (3.48±2.46 vs. 9.36±10.42). (4) Six indicators, namely age, the course of initial diagnosis, SPO2, semi-quantitative volume, CRP, and LYM, were screened for multivariate logistic regression analysis. The result show that age (OR=1.090, 95%CI 1.006 ~ 1.181), semi-quantitative (OR=1.086, 95%CI 1.086 ~ 1.019), and SPO2 (OR=0.261, 95%CI 0.089 ~ 0.762), are related to the occurrence of severe and critical COVID-19 infection, and the difference is statistically significant; CRP (OR=1.054, 95%CI 1.023 ~ 1.087) and LYM (OR=0.039, 95%CI 0.04 ~ 0.391) are related to the occurrence of severe and critical COVID-19 infection, and the difference is significant statistically significant. Conclusion: Age, lower SPO2 and LYM, a shorter course; a higher Tmax, semi-quantitative volume, CRP, and NLR are associ-ated with severe and critical cases and required early identification.
-
Key words:
- CT /
- COVID-19 /
- Omicron /
- clinical characteristics
-
表 1 新型冠状病毒感染患者140例一般资料比较
Table 1. Statistics of baseline and clinical characteristics of moderateand and severe and critical groups
一般资料 中型组(n=101) 重型危重型组(n=39) 统计检验 $\chi^2/t $ P 性别(男)/例(%) 56(55.4) 22(56.4) 0.011 0.981 年龄/岁 66.05±14.38 77.90±13.12 -4.476 0.000** 临床症状 SPO2/% 97.88±1.73 92.92±4.01 3.285 0.004** 首诊时间/d 5.40±3.81 3.97±3.12 2.053 0.042* 发热/例(%) 99(99.0) 39(100.0) - 1.000 体温高峰/℃ 38.32±0.66 38.68±0.63 -2.575 0.012* 咳嗽/例(%) 87(86.1) 31(79.5) 0.940 0.332 咽痛/例(%) 33(32.7) 9(23.1) 1.234 0.267 胸闷/例(%) 8(7.9) 5(12.8) 0.326 0.568 腹泻/例(%) 8(7.9) 2(5.1) 0.044 0.834 高危因素 高龄(≥65岁)/(例%) 61(60.4) 33(84.6) 7.481 0.006** 肺部基础病/例(%) 9(8.9) 6(15.4) 0.649 0.421 糖尿病/例(%) 28(27.7) 15(35.8) 1.525 0.217 高血压/例(%) 31(30.7) 22(56.4) 7.910 0.050 冠心病/例(%) 18(17.8) 12(30.8) 2.810 0.094 肿瘤/例(%) 6(5.9) 3(7.7) 0.000 1.000 其高危因素(慢性肝病、肾病、维持性透析、晚期妊娠围产期、肥胖、重度吸烟)/例(%) 2(2.0) 5(12.8) 4.866 0.008** 注:*为P<0.05表示差异有统计学意义,**为P<0.01表示差异有显著统计学意义。 表 2 患者肺内病变HRCT征象比对
Table 2. Comparison of abnormal pulmonary signs on CT in patients with COVID-19
CT征象 总患者(n=140) 中型(n=101) 重型和危重型(n=39) 统计检验 $\chi^2/t $ P 病变密度/例(%) GGO为主 131(93.5) 93(92.1) 38(97.2) 1.930 0.165 实变影为主 62(44.3) 46(45.5) 16(41.0) 0.048 0.826 网格影为主 113(80.7) 79(78.2) 34(86.1) 1.473 0.225 蜂窝影为主 11(7.9) 10(9.9) 1(2.6) 5.632 0.018 病变分布/例(%) 0.619 0.431 双肺 121(86.4) 86(85.1) 35(89.7) 0.506 0.477 上肺为主 16(11.4) 12(11.9) 4(10.3) 0.000 1.000 下肺为主 62(44.3) 49(49.8) 13(33.3) 2.263 0.105 周围为主 65(46.4) 52(51.5) 13(33.3) 3.727 0.054 中央为主 25(17.9) 17(16.8) 8(20.5) 0.260 0.610 病变面积 9.201 0.002 容积半定量(%) - 18.85±13.51 34.41±19.34 -4.691 0.001** 面积>50%(例%) - 3(3.0) 14(35.9) 25.59 0.000** 伴随病变/例(%) 胸膜增厚 102(72.9) 72(71.7) 30(76.9) 0.452 0.501 小气道壁增厚 103(73.6) 75(74.3) 28(71.8) 0.767 血管束增厚 133(95.0) 94(93.1) 39(100) 0.210 胸腔积液 5(3.8) 4(4.0) 1(2.6) - 1.000 注:*为P<0.05表示差异有统计学意义,**为P<0.01表示差异有显著统计学意义。 表 3 中型组和重症危重症组实验室指标对比情况
Table 3. Comparison of laboratory results in moderate and severe and critical groups
检验项目 中型(n=101) 重型和危重型(n=39) 统计检验 $\chi^2/t $ P C反应蛋白/(mg/L) 29.42±26.93 80.67±48.01 -8.170 0.000** WBC/(×109/L) 6.85±2.25 7.29±3.60 -0.911 0.555 白细胞升高/例(%) 14(14) 7(17.9) 0.341 0.559 NEU/(×109/L) 4.96±3.71 5.77±2.96 -1.009 0.364 LYM/(×109/L) 1.64±0.68 0.95±0.64 5.412 0.000** NLR 3.48±2.46 9.36±10.42 -5.127 0.000** NLR>6.5/例(%) 9(9.0) 17(43.6) 22.080 0.000** NLR>3/例(%) 44(44) 36(92.3) 26.802 0.000** PLT/(×1012/L) 190.96±61.95 182.57±70.36 0.396 0.694 注:WBC为白细胞计数,NEU为中性粒细胞计数,LYM为淋巴细胞计数,PLT为血小板,NLR为中性粒细胞/淋巴细胞比值。*为P<0.05表示差异有统计学意义,**为P<0.01表示差异有显著统计学意义。 表 4 影响新型冠状病毒感染中型组及重型及危重型组的logistic回归分析结果
Table 4. Logistic regression analysis in moderate and severe and critical groups
变量 B值 SE值 Wald卡方值 OR值 95%CI P 年龄/岁 0.086 0.041 4.487 1.090 1.006~1.181 0.034* 首诊时间/d -0.203 0.144 1.967 0.817 0.615~1.084 0.161 SPO2 -1.345 0.547 6.039 0.664 0.664~0.350 0.014* 容积半定量 0.082 0.033 6.396 1.609 1.019~1.157 0.011* CRP 0.053 0.015 11.666 1.054 1.023~1.087 0.001** LYM -3.234 1.172 7.620 0.039 0.004~0.391 0.006** 注:*为P<0.05表示差异有统计学意义,**为P<0.01表示差异有显著统计学意义。 -
[1] WHO. Coronavirus (COVID-19) dashboard [EB/OL]. (2023-07-28) [2023-07-28]. https://covid19.who.int/. [2] 中华人民共和国家卫生健康委会. 新型冠状病毒感染诊疗方案(试行第十版)[EB/OL]. (2023-01-05) [2023-01-05]. https://www.nhc.gov.cn. [3] HUANG C, WANG Y, LI X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China[J]. Lancet, 2020, 395(10223): 497−506. doi: 10.1016/S0140-6736(20)30183-5 [4] MAHASE E. Coronavirus: COVID-19 has killed more people than SARS and MERS combined, despite lower case fatality rate[J]. British Medical Journal, 2020, 18(368): m641. [5] 张影, 李晓鹤, 陈凤, 等. 新型冠状病毒德尔塔和奥密克戎变异株感染患者的临床特征分析[J]. 新发传染病电子杂志, 2022, 7(3): 22-26.ZHANG Y, LI X H, CHEN F, et al. Clinical characteristics of patients infected with SARS-CoV-2 Delta and Omicron variants[J/CD]. Electronic Journal of Emerging Infectious Diseases, 2022, 7(3): 22-26. (in Chinese). [6] BERKHOUT B, HERRERA-CARRILLO E. SARS-CoV-2 evolution: On the sudden appearance of the omicron variant[J]. Journal of Virology, 2022, 96(7): [7] MANNAR D, SAVILLE J W, ZHU X, et al. SARS-CoV-2 Omicron variant: Antibody evasion and cryo-EM structure of spike protein-ACE2 complex[J]. Science, 2022, 375(6582): 760−764. doi: 10.1126/science.abn7760 [8] 中国疾病预防控制中心. 全国新型冠状病毒感染疫情情况[EB/OL]. (2023-02-21) [2023-02-21]. https://www.chinacdc.cn/jkzt/crb/zl/szkb_11803/jszl_13141/202302/t20230218_263807.html. [9] 车霄, 王乐霄, 赵磊, 等. 重症新型冠状病毒肺炎患者的临床特征及预后风险因素分析[J]. 解放军医学院学报, 2023,44(2): 101−107. doi: 10.3969/j.issn.2095-5227.2023.02.001CHE X, WANG L X, ZHAO L, et al. Clinical characteristics and prognostic factors of severe COVID-19[J]. Academic Journal of Chinese PLA Medical School, 2023, 44(2): 101−107. (in Chinese). doi: 10.3969/j.issn.2095-5227.2023.02.001 [10] GAO J, ZHANG S, ZHOU K, et al. Epidemiological and clinical characteristics of patients with COVID-19 from a designated hospital in Hangzhou City: A retrospective observational study[J]. Hong Kong Medical Journal, 2022, 28(1): 54−63. [11] 董宗祈, 朱达清, 黄开伟, 等. 无创氧饱和度换算动脉氧分压及其在儿科急救中的应用[J]. 实用儿科杂志, 1992,(1): 21−23. [12] 罗炎杰. 血气分析常用指标及其临床意义[J]. 中国临床医生, 2009,37(11): 30−33. [13] 韩文斌. 影响无创血氧饱和度监测值的相关因素[J]. 医疗卫生装备, 2011,32(7): 79−81. doi: 10.3969/j.issn.1003-8868.2011.07.034 [14] 陆世琼, 王琼. 影响急诊患者无创脉搏血氧饱和度监测结果的非疾病因素的原因分析[J]. 中华高血压杂志, 2015,23: 91−92. [15] 孙莹, 李玲, 刘晓燕, 等. 早期新型冠状病毒肺炎的胸部薄层平扫CT表现特征[J]. CT理论与应用研究, 2023,32(1): 131−138. DOI: 10.15953/j.ctta.2023.006.SUN Y, LI L, LIU X Y, et al. Imaging features of early COVID-19 on chest thin-slice non-enhanced CT[J]. CT Theory and Applications, 2023, 32(1): 131−138. DOI: 10.15953/j.ctta.2023.006. (in Chinese). [16] 李莉, 王珂, 任美吉, 等. 新型冠状病毒肺炎早期胸部CT表现[J]. 首都医科大学学报, 2020, 41(2): 174-177.LI L, WANG K, REN M J, et al. Early chest CT manifestations of COVID-19[J]. Journal of Capital medical University, 2020, 41(2): 174-177. (in Chinese). [17] BATTAGLINI D, LOPES-PACHECO M, CASTRO-FARIA-NETO H C, et al. Laboratory biomarkers for diagnosis and prognosis in COVID-19[J]. Frontiers in Immunology, 2022. [18] KARIMI A, SHOBEIRI P, KULASINGHE A, et al. Novel systemic inflammation markers to predict COVID-19 prognosis[J]. Front Immunol, 2021, 12: 741061. doi: 10.3389/fimmu.2021.741061 [19] LUO X, ZHOU W, YAN X, et al. Prognostic value of C-reactive protein in patients with coronavirus 2019[J]. Clinical Infectious Diseases, 2020, 71(16): 2174−2179. doi: 10.1093/cid/ciaa641 [20] WANG D, HU B, HU C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China[J]. JAMA, 2020, 323(11): 1061−1069. doi: 10.1001/jama.2020.1585 [21] ZAHOREC R. Ratio of neutrophil to lymphocyte counts—rapid and simple parameter of systemic inflammation and stress in critically ill[J]. Bratisl Lek Listy, 2001, 102(1): 5−14. [22] CANNON N A, MEYER J, IYENGAR P, et al. Neutrophil-lymphocyte and platelet-lymphocyte ratios as prognostic factors after stereotactic radiation therapy for early-stage non-small-cell lung cancer[J]. Journal of Thoracic Oncology, 2015, 10(2): 280−285. doi: 10.1097/JTO.0000000000000399 [23] BENITES-ZAPATA V A, HERNANDEZ A V, NAGARAJAN V, et al. Usefulness of neutrophil-to-lymphocyte ratio in risk stratification of patients with advanced heart failure[J]. The American Journal of Cardiology, 2015, 115(1): 57−61. doi: 10.1016/j.amjcard.2014.10.008 [24] HWANG S Y, SHIN T G, JO I J, et a l. Neutrophil-to-lymphocyte ratio as a prognostic marker in critically-ill septic patients[J]. The American Journal of Emergency Medicine, 2017, 35: 234−239. doi: 10.1016/j.ajem.2016.10.055 [25] SARI R, KARAKURT Z, AY M, et al. Neutrophil to lymphocyte ratio as a predictor of treatment response and mortality in septic shock patients in the intensive care unit[J]. Turkish Journal of Medical Sciences, 2019, 49(5): 1336−1349. doi: 10.3906/sag-1901-105 [26] WANG Y, JU M, CHEN C, et al. Neutrophil-to-lymphocyte ratio as a prognostic marker in acute respiratory distress syndrome patients: A retrospective study[J]. Journal of Thoracic Disease, 2018, 10(1): 273−282. doi: 10.21037/jtd.2017.12.131 [27] ULLOQUE-BADARACCO J R, IVAN SALAS-TELLO W, AL-KASSAB-CORDOVA A, et al. Prognostic value of neutrophil-to-lymphocyte ratio in COVID-19 patients: A systematic review and meta-analysis[J]. International Journal of Clinical Practice, 2021, 75(11): e14596. [28] PARTHASARATHI A, PADUKUDRU S, ARUNACHAL S, et al. The role of neutrophil-to-lymphocyte ratio in risk stratification and prognostication of COVID-19: A systematic review and meta-analysis[J]. Vaccines, 2022, 10(8): 1233. doi: 10.3390/vaccines10081233 [29] FEI M, TONG F, TAO X, et al. Value of neutrophil-to-lymphocyte ratio in the classification diagnosis of coronavirus disease 2019[J]. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue, 2020, 32(5): 554−558. [30] KUMAR A, SARKAR P G, PANT P, et al. Does neutrophil-to-lymphocyte ratio at admission predict severity and mortality in COVID-19 Patients? A systematic review and meta-analysis[J]. Indian Journal of Critical Care Medicine, 2022, 26(3): 361−375. doi: 10.5005/jp-journals-10071-24135 -