ISSN 1004-4140
CN 11-3017/P

融合形状变换及纹理学习的肺结节生长预测

马力, 黄德皇, 王艳芳

马力, 黄德皇, 王艳芳. 融合形状变换及纹理学习的肺结节生长预测[J]. CT理论与应用研究(中英文), 2024, 33(3): 317-324. DOI: 10.15953/j.ctta.2023.167.
引用本文: 马力, 黄德皇, 王艳芳. 融合形状变换及纹理学习的肺结节生长预测[J]. CT理论与应用研究(中英文), 2024, 33(3): 317-324. DOI: 10.15953/j.ctta.2023.167.
MA L, HUANG D H, WANG Y F. Predicting Lung Nodule Growth with Shape Transformation and Texture Learning[J]. CT Theory and Applications, 2024, 33(3): 317-324. DOI: 10.15953/j.ctta.2023.167. (in Chinese).
Citation: MA L, HUANG D H, WANG Y F. Predicting Lung Nodule Growth with Shape Transformation and Texture Learning[J]. CT Theory and Applications, 2024, 33(3): 317-324. DOI: 10.15953/j.ctta.2023.167. (in Chinese).

融合形状变换及纹理学习的肺结节生长预测

基金项目: 中山市2019年高端科研机构创新专项(第一批)(基于人工智能CT时序列的肺癌早期预测及其应用)。
详细信息
    作者简介:

    马力: 男,中山仰视科技有限公司CTO,主要从事人工智能深度学习技术在医学影像上的开发与应用系列研究,E-mail:ma20230704@163.com

    通讯作者:

    王艳芳: 女,中山仰视科技有限公司CEO,主要从事人工智能深度学习技术在医学影像上的开发与应用系列研究,E-mail:yfwang6@sina.cn

  • 中图分类号: O  242;R  814;R  563

Predicting Lung Nodule Growth with Shape Transformation and Texture Learning

  • 摘要:

    虽然人工智能在肺结节检测方面已经相当成熟,但对其生长预测的研究仍然有限。准确的生长预测有助于临床决策,为患者随访策略提供信息。本文提出一种新的结节生长预测网络模型,该模型可以在特定时间间隔生成高质量的肺结节图像。模型使用双分支结构对肺结节图像进行特征提取,其中一个分支,利用位移场预测机制,通过体素水平的未来位移估计来学习肺结节的形状转换;另一分支,采用3D U-Net,学习肺结节的纹理变化。随后,对提取的高维特征图通过坐标注意力机制,突出有利的图像特征,再拼接两个分支的结果,输入至特征重建模块得到最终的肺结节生长预测图像。同时,本文引入时间间隔编码模块,将期望的时间间隔纳入网络,从而能够生成不同未来时间点的预测图像。

    Abstract:

    While artificial intelligence has achieved considerable maturity in lung nodule detection, research on growth prediction remains limited. Accurate growth prediction aids clinical decision-making, informing patient follow-up strategies. This paper proposes a novel nodule growth prediction network model that generates high-quality lung nodule images at specific time intervals. The model employs a two-branch structure for feature extraction. One branch, leveraging a displacement field prediction mechanism, models the shape transformation of pulmonary nodules through voxel-level future displacement estimation. The other branch, empowered by a three-dimensional U-Net, focused on learning texture changes within the nodules. A coordinate attention mechanism that emphasizes informative features within the extracted high-dimensional feature map. Subsequently, the outputs of both branches are fused and fed into the feature reconstruction module to generate the final lung nodule growth prediction image. Furthermore, a time interval coding module is introduced to incorporate the desired time interval into the network, enabling the generation of prediction images for different future time points.

  • 图  1   网络模型整体结构

    Figure  1.   The overall structure of the network model

    图  2   CA模块[11]

    Figure  2.   The coordinate attention module

    图  3   基于时间间隔预测的肺结节图像

    Figure  3.   Lung nodule images based on time interval predictions

    表  1   实验环境

    Table  1   The experimental environment

    名称 配置
    操作系统 Ubuntu16.04.1 LTS
    编程语言 Python3.7.8
    AI框架 PyTorch 1.9.0
    CPU Intel(R) Core(TM) i7-7820 X CPU @ 3.60 GHz
    GPU NVDIA GeForce GTX 1080 Ti*2(11 GB*2)
    内存 32 GB
    下载: 导出CSV

    表  2   实验结果

    Table  2   The results of the experiment

    方法 PSNR/dB SSIM
    基线(3D U-Net) 16.12 0.8056
    形状分支 18.09 0.8375
    纹理分支 18.20 0.8398
    形状+纹理双分支 19.31 0.8513
    下载: 导出CSV

    表  3   注意力对比实验

    Table  3   The attention contrast experiment

    方法 PSNR/dB SSIM
    SE 19.11 0.8479
    CA 19.31 0.8513
    下载: 导出CSV

    表  4   同类方法对比实验

    Table  4   Comparative experiment of similar methods

    方法 PSNR/dB
    NoFoNet 18.21
    本文   19.31
    下载: 导出CSV
  • [1]

    OUDKERK M, LIU S, HEUVELMANS M A, et al. Lung cancer LDCT screening and mortality reduction: Evidence, pitfalls and future perspectives[J]. Nature Reviews (Clinical Oncology), 2021, 18(3): 135−151. DOI: 10.1038/s41571-020-00432-6.

    [2]

    SHEN W, ZHOU M, YANG F, et al. Multi-scale Convolutional Neural Networks for lung nodule Classication[C]//Information Processing in Medical Imaging: 24th International Conference, UK: Springer, 2015: 588-599.

    [3]

    SHEN W, ZHOU M, YANG F, et al. Multi-crop convolutional neural networks for lung nodule malignancy suspiciousness classification[J]. Pattern Recognition, 2017, 61: 663−673. DOI: 10.1016/j.patcog.2016.05.029.

    [4]

    ZHANG L, LU L, SUMMERS R M, et al. Convolutional invasion and expansion networks for tumor growth prediction[J]. IEEE Transactions on Medical Imaging, 2018, 37(2): 638-648.

    [5]

    RAFAEL-PALOU X, AUBANELL A, BONAVITA I, et al. Re-identification and growth detection of pulmonary nodules without image registration using 3D siamese neural networks[J]. Medical Image Analysis, 2021, 67: 101823. DOI: 10.1016/j.media.2020.101823.

    [6]

    SHENG J, LI Y, CAO G, et al. Modeling nodule growth via spatial transformation for follow-up prediction and diagnosis[C]//2021 International Joint Conference on Neural Networks (IJCNN). Shenzhen: IEEE, 2021: 1-7.

    [7]

    LI Y, YANG J, XU Y, et al. Learning tumor growth via follow-up volume prediction for lung nodules[C]//Proceedings of the 23th International Conference on Medical Image Computing and Computer-assisted Intervention. Peru: Springer, 2020: 508-517.

    [8]

    RONNEBERGER O, FISCHER P, BROX T. U-Net: Convolutional networks for biomedical image segmentation[C]//Proceedings of the 18th International Conference on Medical Image Computing and Computer-assisted Intervention. Munich: Springer, 2015: 234-241.

    [9]

    BALAKRISHNAN G, ZHAO A, SABUNCU M R, et al. VoxelMorph: A learning framework for deformable medical image registration[J]. IEEE Transactions on Medical Imaging, 2019: 1788-1800. DOI: 10.1109/TMI.2019.2897538.

    [10]

    HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011−2023. DOI: 10.1109/TPAMI.2019.2913372.

    [11] 唐秉航, 王艳芳, 马力, 等. 基于混合注意力机制的肺结节假阳性降低[J]. CT理论与应用研究, 2022, 31(1): 63−72. DOI: 10.15953/j.ctta.2021.002.

    TANG B H, WANG Y F, MA L, et al. False positive reduction of pulmonary nodules based on mixed attentional mechanism[J]. CT Theory and Applications, 2022, 31(1): 63−72. DOI: 10.15953/j.ctta.2021.002. (in Chinese).

    [12]

    HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016: 770-778.

    [13]

    WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: From error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600−612. DOI: 10.1109/TIP.2003.819861.

  • 期刊类型引用(2)

    1. 李洋森,王伟,李炳颖,毛云新,刘晓晖. 分频AVO技术在西湖凹陷中深层薄储层评价中的应用. CT理论与应用研究(中英文). 2025(03): 409-418 . 百度学术
    2. 朱焱辉. 基于压缩感知的地震频带拓宽方法——以珠江口盆地东部惠州地区为例. 中外能源. 2023(06): 44-52 . 百度学术

    其他类型引用(0)

图(3)  /  表(4)
计量
  • 文章访问数:  154
  • HTML全文浏览量:  33
  • PDF下载量:  35
  • 被引次数: 2
出版历程
  • 收稿日期:  2023-08-28
  • 修回日期:  2023-12-21
  • 录用日期:  2023-12-24
  • 网络出版日期:  2024-01-29
  • 刊出日期:  2024-05-12

目录

    /

    返回文章
    返回
    x 关闭 永久关闭