Imaging and Clinical Characteristics of SARS-CoV-2 Omicron Variants in Elderly Patients with Underlying Diseases
-
摘要:
目的:探讨合并基础病的老年患者感染新型冠状病毒Omicron变异株的胸部CT和临床特征。方法:回顾性收集首都医科大学附属北京地坛医院确诊的140例新型冠状病毒Omicron变异株感染合并基础病的老年患者,根据临床分型分为中型组和重型/危重型组,分析两组患者的临床特征、实验室检查和胸部CT影像特征(肺内病灶分布、病灶形态、CT影像征象及肺叶评分)。结果:合并基础疾病的老年新冠病毒Omicron变异株感染者中高血压/高脂血症的发病率最高,胸部CT表现为磨玻璃密度影为主,分布以多肺叶混合分布为主,临床表现主要为发热、咳嗽/咳痰等。重型/危重型组患者发热比例高于中型组。中型组的淋巴细胞计数值高于重型/危重型组,而重型/危重型组的降钙素原值高于中型组。重型/危重型组胸膜增厚的比例高于中型组。中型组和重型/危重型组的右肺下叶肺叶评分均最高(2(1,3)和3(2,4))(M(Q));重型/危重型组的总评分和各肺叶评分均高于中型组。结论:对于合并基础病的新型冠状病毒Omicron变异株老年感染患者,胸部CT对肺内病变的临床分型、病情进展评估有重要价值,对临床治疗有一定指导意义。
Abstract:Objective: This study aimed to investigate the chest computed tomography (CT) findings of SARS-CoV-2 Omicron variants in elderly patients with underlying diseases. Methods: We retrospectively analyzed data from 140 elderly patients with underlying diseases who were infected with SARS-CoV-2 Omicron variants. The patients were divided into a moderate group and a severe/critical group based on their clinical classifications. Clinical data, laboratory results, and chest CT data (including lesion distribution, morphology, image signs, and lung lobe score) were collected and analyzed for all patients. Results: Hypertension and hyperlipidemia were the most prevalent underlying diseases among elderly patients with the Omicron variant of SARS-CoV-2. Ground-glass density opacity was the main chest CT manifestation, typically presenting as a mixed distribution across multiple lung lobes. Common clinical symptoms include fever, cough, and sputum production. The proportion of patients with fever was significantly higher in the severe/critical group compared to the moderate group. Additionally, the lymphocyte count was higher in the moderate group compared to the severe/critical group, while the procalcitonin level was significantly higher in the severe/critical group. Pleural thickening was also more prevalent in the severe/critical group. The right inferior lobe score was the highest in both groups (2 (1,3) and 3 (2,4) for moderate and severe/critical groups, respectively), with the total score and individual lobe scores being significantly higher in the severe/critical group. Conclusions: Chest CT scans play a crucial role in classifying disease severity and evaluating disease progression in elderly patients with underlying diseases infected with the Omicron variant of the novel coronavirus. These findings can also guide clinical treatment decisions.
-
-
表 1 新冠Omicron变异株感染合并基础病的老年患者一般资料和临床表现(例(%))
Table 1 General data and clinical manifestations of elderly patients infected with COVID-19 Omicron variant with underlying disease (case (%))
项目 临床分型 统计检验 总体(%) 中型(%) 重型/危重型(%) $\chi^2 $ P 人数 140 91 49 性别 男 88(62.86) 51(56.04) 37(75.51) 5.169 0.023 女 52(37.14) 40(43.96) 12(24.49) 临床表现 发热 123(87.86) 76(83.52) 47(95.92) 4.592 0.032 咳嗽/咳痰 114(81.43) 76(83.52) 38(77.55) 0.750 0.387 咽痛 41(29.29) 31(34.07) 10(20.41) 2.869 0.090 乏力 49(35.00) 31(34.07) 18(36.73) 0.100 0.752 肌肉酸痛 36(25.71) 26(28.57) 10(20.41) 1.111 0.292 畏寒/寒战 34(24.29) 23(25.27) 11(22.45) 0.138 0.710 鼻塞、流涕 25(17.86) 19(20.88) 6(12.24) 1.619 0.203 头痛 10(7.14) 6(6.59) 4(8.16) 0.001 1.000 呼吸困难/喘憋 28(20.00) 20(21.98) 8(16.33) 0.636 0.425 恶心/呕吐 8(5.71) 7(7.69) 1(2.04) 0.985 0.321 腹泻 11(7.86) 6(6.59) 5(10.20) 0.183 0.669 嗅觉异常 6(4.29) 5(5.49) 1(2.04) 0.276 0.600 味觉异常 8(5.71) 6(6.59) 2(4.08) 0.052 0.819 合并基础疾病 高血压/高脂血症 95(67.86) 58(63.74) 37(75.51) 2.024 0.155 糖尿病 65(46.43) 45(49.45) 20(40.82) 0.955 0.329 心血管疾病(冠心病/房颤/心律失常) 44(31.43) 31(34.07) 13(26.53) 0.839 0.360 呼吸系统疾病(肺癌/慢性支气管炎/肺间质病变) 17(12.14) 12(13.19) 5(10.20) 0.266 0.606 慢性肾脏疾病(糖尿病肾病/肾功能不全) 15(10.71) 11(12.09) 4(8.16) 0.513 0.474 肝病(肝炎/肝硬化/肝功能不全) 8(5.71) 3(3.30) 5(10.20) 1.684 0.194 脑梗死 7(5.00) 5(5.49) 2(4.08) 0.001 1.000 消化道恶性肿瘤 5(3.57) 4(4.40) 1(2.04) 0.057 0.811 泌尿系恶性肿瘤 4(2.86) 2(2.20) 2(4.08) 0.011 0.915 血液病 3(2.14) 3(3.30) 0(0.00) 0.453 0.501 乳腺癌 2(1.43) 2(2.20) 0(0.00) 0.089 0.542 表 2 感染新型冠状病毒Omicron变异株的合并基础病老年患者组间实验室指标比较(M(P 25,P 75))
Table 2 Comparison of laboratory indicators among groups of elderly patients with underlying disease infected with Omicron variant strains of the novel coronavirus (M(P 25, P 75))
项目 临床分型 统计检验 中型 重型/危重型 Z/t P CRP/(mg/L) 47.70(24.20,84.33) 48.85(20.55,145.60) -0.601 0.548 WBC/×109/L 5.77(4.19,7.87) 5.54(4.26,7.57) -0.125 0.901 LYMPH/×109/L 0.92(0.57,1.18) 0.69(0.50,1.01) -2.084 0.037 ESR/(mm/h) 38.39±21.22* 46.19±24.13* -1.621 0.108 IL-6/(pg/mL) 32.06(16.38,62.75) 28.82(10.54,75.87) -0.025 0.980 PCT/(ng/mL) 0.05(0.05,0.14) 0.13(0.06,0.19) -3.505 0.001 ORFlab基因 29.75±5.21* 30.42(26.10,35.92) -0.800 0.424 N基因 28.93±5.10* 30.70(25.30,35.00) -0.976 0.329 注:*为中型、重型/危重型组的红细胞沉降率值、中型组的ORF1 ab基因Ct值和N基因Ct值为正态分布资料,其余均为非正态分布资料。CRP为C-反应蛋白;WBC为白细胞;LYMPH为淋巴细胞;ESR为血沉;IL-6为白介素-6;PCT为降钙素原。 表 3 感染新型冠状病毒Omicron变异株的合并基础病老年患者胸部CT病变分布
Table 3 Distribution of chest computed tomography lesions in elderly patients with underlying diseases infected with the Omicron variant of SARS-CoV-2
病灶分布 临床分型 统计检验 中型/例(%) 重型/危重型/例(%) $t/\chi^2 $ P 胸膜下分布 18(20.93) 6(12.50) 1.489 0.222 中央型分布 0(0.00) 0(0.00) 混合分布 68(79.07) 42(87.50) 病灶累及总肺叶数量 4.24±1.448 4.61±1.096 -1.565 0.120 右肺上叶 78(90.70) 44(91.67) 0.001 1.000 右肺中叶 70(81.40) 42(87.50) 0.837 0.360 右肺下叶 81(94.19) 47(97.92) 0.320 0.572 左肺上叶 75(87.21) 47(97.92) 3.118 0.077 左肺下叶 81(94.19) 47(97.92) 0.320 0.572 表 4 感染新型冠状病毒Omicron变异株的合并基础病老年患者CT影像特征
Table 4 Computed tomography lesions in elderly patients with underlying diseases infected with the Omicron variant of SARS-CoV-2
CT影像特征/例(%) 临床分型 统计检验 总体 中型 重型/危重型 $\chi^2 $ P 病变形态 类圆形 34(24.29) 22(24.18) 12(24.49) 0.002 0.967 扇形 35(25.00) 19(20.88) 16(32.65) 2.355 0.125 不规则形 65(46.43) 45(49.45) 20(40.82) 0.955 0.329 CT影像征象 GGO* 130(92.86) 84(92.31) 46(93.88) 0.001 1.000 铺路石征 123(87.86) 79(86.81) 44(89.80) 0.266 0.606 GGO伴实变/实变 68(48.57) 41(45.05) 27(55.10) 1.287 0.257 支气管充气征 117(83.57) 73(80.22) 44(89.80) 2.127 0.145 GGO内支气管充气征 110(78.57) 71(78.02) 39(79.59) 0.047 0.829 实变内支气管充气征 61(43.57) 36(39.56) 25(51.02) 1.701 0.192 索条 41(29.29) 30(32.97) 11(22.45) 1.701 0.192 胸膜增厚 86(61.43) 49(53.85) 37(75.51) 6.309 0.012 胸腔积液 45(32.14) 30(32.97) 15(30.61) 0.081 0.776 注:GGO表示磨玻璃密度影。 表 5 感染新型冠状病毒Omicron变异株的合并基础病老年患者胸部CT病变肺叶评分(M(Q))
Table 5 Chest computed tomography scores of diseased lung lobes in elderly patients with underlying diseases infected with the Omicron variant
肺叶评分/分 临床分型 统计检验 中型 重型/危重型 Z P 总评分 8(5,11) 11.160±4.488* -3.562 0.001 右肺上叶 1(1,2) 2(1,3) -2.180 0.029 右肺中叶 1(1,2) 2(1,3) -2.241 0.025 右肺下叶 2(1,3) 3(2,4) -3.199 0.001 左肺上叶 1(1,2) 2(1,3) -2.663 0.008 左肺下叶 1(1,2) 2(1,3) -3.404 0.001 注:*重型/危重型总评分为正态分布资料,其余均为非正态分布资料。 -
[1] FERGUSON N, GHANI A, HINSLEY W, et al. Report 50: Hospitalisation risk for Omicron cases in England[J]. 2021. https://api.semanticscholar.org/CorpusID:245474800
[2] SHEIKH A, KERR S, WOOLHOUSE M, et al. Severity of Omicron variant of concern and effectiveness of vaccine boosters against symptomatic disease in Scotland (EAVE II): A national cohort study with nested test-negative design[J]. The Lancet Infectious Diseases, 2022, 22(7): 959−966. DOI: 10.1016/S1473-3099(22)00141-4.
[3] 中华人民共和国国家卫生健康委员会. 新型冠状病毒感染诊疗方案(试行第十版)[J]. 中华临床感染病杂志, 2023, 16(1): 1−9. DOI: 10.3760/cma.j.issn.1674-2397.2023.01.001. [4] 陈辉, 张紫欣, 陈七一, 等. 新型冠状病毒奥密克戎变异株感染者胸部CT表现及动态变化[J]. CT理论与应用研究, 2023, 32(3): 313−322. DOI: 10.15953/j.ctta.2023.051. CHEN H, ZHANG Z X, CHEN Q Y, et al. Imaging features and dynamic changes of chest computed tomography in patients infected with SARS-CoV-2 Omicron variants[J]. CT Theory and Applications, 2023, 32(3): 313−322. DOI: 10.15953/j.ctta.2023.051. (in Chinese).
[5] The government of the Hongkong special administrative region[EB/OL]. [2024-05-12]. https://www.aud.gov.hk/pdf_e/e39ch05.
[6] GRIGORAS M L, CITU I M, CITU C, et al. Evaluation of FIB-4, NFS, APRI and liver function tests as predictors for SARS-CoV-2 infection in the elderly population: A matched case-control analysis[J]. Journal of Clinical Medicine, 2022, 11(17): 5149. DOI: 10.3390/jcm11175149.
[7] FERICEAN R M, CITU C, MANOLESCU D, et al. Characterization and outcomes of SARS-CoV-2 infection in overweight and obese patients: A dynamic comparison of COVID-19 pandemic waves[J]. Journal of Clinical Medicine, 2022, 11(10): 2916. DOI: 10.3390/jcm11102916.
[8] BEYERSTEDT S, CASARO E B, RANGEL É B. COVID-19: Angiotensin-converting enzyme 2 (ACE2) expression and tissue susceptibility to SARS-CoV-2 infection[J]. European Journal of Clinical Microbiology & Infectious Diseases, 2021, 40(5): 905-919. DOI: 10.1007/s10096-020-04138-6
[9] ASAI Y, NOMOTO H, HAYAKAWA K, et al. Comorbidities as risk factors for severe disease in hospitalized elderly COVID-19 patients by different age-groups in Japan[J]. Gerontology, 2022, 68(9): 1027−1037. DOI: 10.1159/000521000.
[10] TSUZUKI S, AKIYAMA T, MATSUNAGA N, et al. Association between physical activity status and severity of COVID-19 in older adults[J]. Epidemiology and Infection, 2022, 150: e189. DOI: 10.1017/S0950268822001686.
[11] 陈波, 费宇, 李玟, 等. 重症新型冠状病毒肺炎患者死亡风险因素研究[J]. 现代预防医学, 2022, 49(15): 2856−2860. DOI: 10.20043/j.cnki.MPM.202201321. CHEN B, FEI Y, LI W, et al. Risk factors for mortality of severely ill patients with COVID-19[J]. Modern Preventive Medicine, 2022, 49(15): 2856−2860. DOI: 10.20043/j.cnki.MPM.202201321. (in Chinese).
[12] TAJMIRRIAHI M, SAMI R, MANSOURIAN M, et al. The clinical manifestation and outcome of COVID-19 in patients with a history of ischemic heart disease; A retrospective case-control study[J]. BMC Cardiovascular Disorders, 2023, 23(1): 241. DOI: 10.1186/s12872-023-03256-1.
[13] AIRG-E, EKPF, ALCER, et al. CKD: The burden of disease invisible to research funders[J]. Nefrologia (Engl Ed), 2022, 42(1): 65−84. DOI: 10.1016/j.nefroe.2021.09.005.
[14] LU G, ZHANG Y, ZHANG H, et al. Geriatric risk and protective factors for serious COVID-19 outcomes among older adults in Shanghai Omicron wave[J]. Emerging Microbes & Infections, 2022, 11(1): 2045−2054. DOI: 10.1080/22221751.2022.2109517.
[15] LIU R, ZHANG Y, MA J, et al. Epidemiological features of SARS-CoV-2 Omicron infection under new control strategy: A cross-sectional study of the outbreak since December 2022 in Sichuan, China[J]. BMC Public Health, 2023, 23(1): 2463. DOI: 10.1186/s12889-023-17361-5.
[16] GUAN W J, NI Z Y, HU Y, et al. Clinical characteristics of coronavirus disease 2019 in China[J]. The New England Journal of Medicine, 2020, 382(18): 1708−1720. DOI: 10.1056/NEJMoa2002032.
[17] ZHANG X, TAN Y, LING Y, et al. Viral and host factors related to the clinical outcome of COVID-19[J]. Nature, 2020, 583(7816): 437−440. DOI: 10.1038/s41586-020-2355-0.
[18] 王江洪, 孙跃玲, 鲁锦国, 等. 外周血淋巴细胞动态变化在新冠肺炎诊治中的意义[J]. 解放军预防医学杂志, 2020, 38(11): 115-118. WANG J H, SUN Y L, LU J G, et al. Significance of dynamic changes of peripheral blood lymphocytes in diagnosis and treatment of COVID-19[J]. Journal of Preventive Medicine of Chinese People's Liberation Army, 2020, 38(11): 115-118. (in Chinese).
[19] 黄颖, 谭明凯, 陈星, 等. 血清降钙素原在新型冠状病毒肺炎患者中的应用价值[J]. 中华临床实验室管理电子杂志, 2020, 8(3): 150−152. DOI: 10.3877/cma.j.issn.2095-5820.2020.03.005. HUANG Y, TAN M K, CHEN X, et al. Clinical value of procalcitonin in patients with COVID-19[J]. Chinese Journal of Clinical Laboratory Management (Electronic Editon), 2020, 8(3): 150−152. DOI: 10.3877/cma.j.issn.2095-5820.2020.03.005. (in Chinese).
[20] 降钙素原在成人下呼吸道感染性疾病分级管理中的应用专家共识组. 降钙素原在成人下呼吸道感染性疾病分级管理中的应用专家共识[J]. 中华急诊医学杂志, 2021, 30(4): 393-401. DOI: 10.3760/cma.j.issn.1671-0282.2021.04.004. [21] ACEDERA M L, SIRICHOKCHATCHAWAN W, BRIMSON S, et al. Age, comorbidities, C-reactive protein and procalcitonin as predictors of severity in confirmed COVID-19 patients in the Philippines[J]. Heliyon, 2023, 9(4): e15233. DOI: 10.1016/j.heliyon.2023.e15233.
[22] ITO N, KITAHARA Y, MIWATA K, et al. Comparison of COVID-19 pneumonia during the SARS-CoV-2 Omicron wave and the previous non-Omicron wave in a single facility[J]. Respiratory Investigation, 2022, 60(6): 772−778. DOI: 10.1016/j.resinv.2022.08.001.
[23] 张志平, 张烈光, 黄德扬, 等. 老年新型冠状病毒Delta变异株感染者的胸部CT表现[J]. 广东医学, 2021, 42(12): 1421−1425. DOI: 10.13820/j.cnki.gdyx.20211973. ZHANG Z P, ZHANG L G, HUANG D Y, et al. Chest CT manifestations of the elderly population infected with SARS-CoV-2 variant Delta in Guangzhou[J]. Guangdong Medical Journal, 2021, 42(12): 1421−1425. DOI: 10.13820/j.cnki.gdyx.20211973. (in Chinese).
[24] CHUNG M, BERNHEIM A, MEI X, et al. CT imaging features of 2019 novel coronavirus (2019-nCoV)[J]. Radiology, 2020, 295(1): 202−207. DOI: 10.1148/radiol.2020200230.
[25] HAN R, HUANG L, JIANG H, et a1. Early clinical and CT manifestations of coronavirus disease 2019 (COVID-19) pneumonia[J]. American Journal of Roentgenology, 2020, 215(2): 338−343. DOI: 10.2214/AJR.20.22961.
[26] 胡天丽, 甘清鑫, 黄德杨, 等. 新型冠状病毒Delta变异株感染患者的首次CT表现[J]. 广东医学, 2021, 42(12): 1411−1415. DOI: 10.13820/j.cnki.gdyx.20211768. HU T L, GAN Q X, HUANG D Y, et al. The initial CT findings of novel of coronavirus mutant strain Delta[J]. Guangdong Medical Journal, 2021, 42(12): 1411−1415. DOI: 10.13820/j.cnki.gdyx.20211768. (in Chinese).
[27] 刘瑞, 武婷婷, 勾少波, 等. 新型冠状病毒感染不同毒株的CT表现演变与临床转归的相关性分析[J]. CT理论与应用研究, 2023, 32(5): 627−635. DOI: 10.15953/j.ctta.2023.059. LIU R, WU T T, GOU S B, et al. Correlation analysis between dynamic changes in computed tomography findings and clinical outcomes in cases infected with different strains of coronavirus disease 2019[J]. CT Theory and Applications, 2023, 32(5): 627−635. DOI: 10.15953/j.ctta.2023.059. (in Chinese).
[28] 李琚, 项尖尖, 王宝华, 等. 超声检查胸膜增厚对胸腔积液良恶性鉴别诊断的意义[J]. 影像研究与医学应用, 2019, 3(22): 209−210. DOI: CNKI:SUN:YXYY.0.2019-22-138. [29] 杨国英, 赵殿辉, 刘靖, 等. 新冠病毒变异株Omicron老年感染者的肺部CT人工智能量化分析[J]. 中国医学计算机成像杂志, 2023, 29(1): 14−18. DOI: 10.3969/j.issn.1006-5741.2023.01.006. YANG G Y, ZHAO D H, LIU J, et al. Artificial intelligence quantitative analysis of lung CT in elderly patients infected with the SARS-CoV-2 Omicron variant[J]. Chinese Computed Medical Imaging, 2023, 29(1): 14−18. DOI: 10.3969/j.issn.1006-5741.2023.01.006. (in Chinese).
-
期刊类型引用(1)
1. 曹志明,杨丽云,康丽霞,刘艳芳,万小旭,马慧英. 呼和浩特地区老年新型冠状病毒奥密克戎毒株感染肺炎患者的临床特征及相关因素分析. 内蒙古医学杂志. 2025(03): 342-344 . 百度学术
其他类型引用(0)