ISSN 1004-4140
CN 11-3017/P

CCTA斑块特征在冠状动脉管腔狭窄程度进展预测及预后的价值研究

李正腾, 王敏, 潘冬梅, 王宪凯

李正腾, 王敏, 潘冬梅, 等. CCTA斑块特征在冠状动脉管腔狭窄程度进展预测及预后的价值研究[J]. CT理论与应用研究(中英文), 2025, 34(1): 23-30. DOI: 10.15953/j.ctta.2024.172.
引用本文: 李正腾, 王敏, 潘冬梅, 等. CCTA斑块特征在冠状动脉管腔狭窄程度进展预测及预后的价值研究[J]. CT理论与应用研究(中英文), 2025, 34(1): 23-30. DOI: 10.15953/j.ctta.2024.172.
LI Z T, WANG M, PAN D M, et al. Predictive Value of CCTA Plaque Characteristics for the Progression and Prognosis of Coronary Artery Stenosis[J]. CT Theory and Applications, 2025, 34(1): 23-30. DOI: 10.15953/j.ctta.2024.172. (in Chinese).
Citation: LI Z T, WANG M, PAN D M, et al. Predictive Value of CCTA Plaque Characteristics for the Progression and Prognosis of Coronary Artery Stenosis[J]. CT Theory and Applications, 2025, 34(1): 23-30. DOI: 10.15953/j.ctta.2024.172. (in Chinese).

CCTA斑块特征在冠状动脉管腔狭窄程度进展预测及预后的价值研究

基金项目: 济宁市重点研发计划(双源CT双能量减影技术在评估严重钙化冠状动脉狭窄程度的应用研究(2023YXNS074);AI辅助下的冠状动脉CTA预测斑块进展和急性冠脉综合征的价值探讨(2024YXNS173))。
详细信息
    作者简介:

    李正腾,男,主治医师,主要从事心胸疾病影像诊断工作,E-mail:lztmail1@163.com

    通讯作者:

    王宪凯✉,男,主管技师,主要从事心血管扫描及后处理工作,E-mail:xraywang1987@163.com

  • 中图分类号: R 814

Predictive Value of CCTA Plaque Characteristics for the Progression and Prognosis of Coronary Artery Stenosis

  • 摘要:

    目的:探讨冠状动脉CTA(CCTA)斑块定性、定量特征在预测冠状动脉管腔狭窄程度进展及预后的价值。方法:回顾性分析济宁市第一人民医院2018年5月至2023年8月行2次CCTA检查的患者66例,分为管腔狭窄非进展组和进展组,将患者CCTA图像传入人工智能软件进行斑块分析,共检出斑块87个。分析参数包括一般临床资料、斑块性质、狭窄范围、斑块长度、钙化成分CT值及体积、非钙化成分CT值及体积、低密度成分CT值及体积、斑块总体积、总钙化积分、钙化斑块等效质量、重构指数、低密度斑块、正性重构、“餐巾环征”、点状钙化。分别比较斑块进展组和非进展组以及存在易损斑块和非易损斑块患者的预后情况。结果:与狭窄非进展组相比,进展组糖尿病、易损斑块比例高于非进展组;进展组钙化积分、斑块钙化成分体积、钙化成分占比和钙化斑块等效质量低于非进展组且点状钙化发生率高于非进展组。多因素Logistic回归显示糖尿病(OR值=3.67,95% CI:1.21~11.11)、易损斑块(OR值=3.97,95% CI:1.32~11.94)、点状钙化(OR值=5.73,95% CI:2.03~16.17)为狭窄进展的独立危险因素,钙化成分体积(OR值=0.986,95% CI:0.976~0.997)为狭窄进展的独立保护因素。生存分析曲线显示,非进展组无MACE生存率高于进展组;非易损斑块组无MACE生存率高于易损斑块组。结论:糖尿病、易损斑块、点状钙化为狭窄进展的独立危险因素,钙化成分体积为狭窄进展的独立保护因素,冠状动脉CTA斑块定性、定量特征在预测冠状动脉管腔狭窄进展及预后中有较好的临床价值。

    Abstract:

    Objective: To investigate the value of qualitative and quantitative plaque characteristics on coronary computed tomography angiography (CCTA) in predicting coronary stenosis progression and prognosis. Methods: This retrospective study analyzed the data of66 patients who underwent two CCTA examinations in Jining First People’s Hospital from May 2018 to August 2023. Patients were categorized into non-progressive and progressive groups. CCTA images were processed with an artificial intelligence software for plaque analysis, identifying 87 plaques. Analysis parameters included general clinical data; plaque characteristics; stenosis range; plaque length; CT values and volumes of calcified, non-calcified, and low-density components; total plaque volume; total calcification score; equivalent mass of calcified plaque; remodeling index; low-density plaque; positive remodeling; “napkin-ring sign;” and punctate calcification. Prognoses were compared between the progression and non-progression groups and between the vulnerable and non-vulnerable plaque groups. Results: The progression group had a higher proportion of patients with diabetes and vulnerable plaques compared to the non-progression group. The calcification score, calcified component volume, proportion of calcified components, and equivalent mass of calcified plaque in the progression group were lower than those in the non-progression group, whereas punctate calcification incidence was higher than that in the non-progression group. Multivariate logistic regression analysis indicated that diabetes (odds ratio OR=3.67, 95% confidence interval CI: 1.21~11.11), vulnerable plaque (OR=3.97, 95% CI: 1.32~11.94), and punctate calcification (OR=5.73, 95% CI: 2.03~16.17) were independent risk factors for stenosis progression, whereas calcification volume (OR=0.986, 95% CI: 0.976~0.997) was an independent protective factor. Survival analysis curve revealed that major adverse cardiovascular event-free survival rate was significantly lower in the progression group than in the non-progression group and similarly lower in the vulnerable plaque group than in the non-vulnerable plaque group. Conclusions: Diabetes, vulnerable plaques, and punctate calcification are independent risk factors for coronary stenosis progression, whereas calcified component volume is an independent protective factor. The qualitative and quantitative characteristics of plaques on coronary CTA provide a good clinical value for predicting the progression and prognosis of coronary stenosis.

  • 图  1   男性,50岁。(a)为基线CCTA显示管腔轻度狭窄。(b)为12个月后随访CCTA显示管腔中度狭窄。对比两次检查该斑块狭窄进展变化率为55.5%,其中长度增加7.8 mm,斑块体积增加49.4 mm3

    Figure  1.   A 50-year-old man. (a) baseline CCTA demonstrates mild luminal stenosis. (b) CCTA indicates that moderate lumen stenosis is present after 12 months.The plaque stenosis has progressed by 55.5%, increasing in length by 7.8 mm and in volume by 49.4 mm

    图  2   不同参数预测冠状动脉病变进展的ROC曲线

    Figure  2.   ROC curves of different parameters predicting the progression of coronary artery disease

    图  3   Kaplan–Meier生存曲线评估进展组和非进展组间无MACE事件生存率,易损斑块和非易损斑块间无MACE事件生存率

    Figure  3.   Kaplan-Meier survival curve assessing the incidence of non-MACEs between the progressive and non-progressive groups

    表  1   进展组与非进展组之间基线临床特征的比较

    Table  1   Comparison of baseline clinical features between the progressive and non-progressive groups

    临床特征 组别 统计检验
    无狭窄进展(n=38) 狭窄进展(n=28) t/x2/z P
    年龄/(岁,$\bar x\pm s $) 55.6±8.2 56.5±7.3 −1.12 0.236
    BMI 24.6(22.1,28.6) 24.9(22.9,27.7) −0.18 0.859
    性别/(例,%) 25(65.8) 15(53.6) 1.01 0.227
    13(34.2) 13(46.4)
    高血压/(例,%) 21(55.3) 20(71.4) 1.79 0.140
    17(44.7) 8(28.6)
    糖尿病/(例,%) 16(42.1) 20(71.4) 5.59 0.017
    22(57.9) 8(28.6)
    高血脂/(例,%) 14(36.8) 12(42.9) 0.24 0.405
    24(63.2) 16(57.1)
    吸烟史/(例,%) 18(47.4) 7(25.0) 3.43 0.054
    20(52.6) 21(75.0)
    症状/(例,%) 心绞痛 16(42.1) 12(42.9) 0.652*
    不典型的心绞痛胸痛 8(21.1) 9(32.1)
    胸闷或心悸 7(18.4) 5(17.9)
    无症状 6(15.8) 2(7.1)
    易损斑块/(例,%) 10(26.3) 16(57.1) 6.42 0.021
    28(73.7) 12(42.9)
    总钙化积分 145.6(13.4,270.7) 43.3(4.6,101.3) −2.38 0.017
    下载: 导出CSV

    表  2   进展组与非进展组之间基线CT特征的比较

    Table  2   Comparison of baseline CT features between the progressive and non-progressive groups

    CT特征 组别 统计检验
    非进展组(n=47) 进展组(n=40) t/x2/z P
    斑块性质/例 非钙化斑块 4 4
    混合斑块 32 29 0.782*
    钙化斑块 11 7
    狭窄范围/例 局限性狭窄 12 13
    节段性狭窄 24 21 1.16 0.601
    弥漫性狭窄 11 6
    斑块长度/mm 19.2(10.8,30.3) 15.8(9.4,24) −1.32 0.190
    钙化成分CT值/HU 432.0±146.6 389.5±121.9 −1.45 0.148
    钙化成分体积/mm3 51.4(12.7,89.4) 17.2(6.7,35.1) −2.44 0.014
    钙化成分占比(%) 0.5(0.3,0.8) 0.3(0.1,0.7) −2.04 0.042
    非钙化成分CT值/HU 103.4±28.5 98.9±33.3 −0.84 0.407
    非钙化成分体积/mm3 41.7(14.9,91.7) 40.3(19.1,90) −0.38 0.712
    非钙化成分占比(%) 0.5(0.3,0.8) 0.7(0.4,0.9) −1.80 0.072
    低密度成分CT值/HU 8(0,15) 8(0,13) −0.68 0.498
    低密度成分体积/mm3 1.8(0,16.7) 3.6(0.2,20.6) −0.66 0.510
    低密度成分占比(%) 0.03(0,0.1) 0.05(0.003,0.2) −1.03 0.305
    斑块总体积/mm3 106.2(45.6,224.6) 64.4(39.1,168.5) −1.39 0.167
    钙化斑块等效质量 9.5(1.6,28.1) 5.1(0.7,12.1) −2.08 0.037
    重构指数 0.9(0.8,1.1) 0.9(0.8,1) −0.19 0.850
    低密度斑块/(例,%) 11(23.4) 4(10.0) 0.154*
    36(76.6) 36(90.0)
    正性重构/(例,%) 9(19.1) 7(17.5) 0.039 1.000
    38(80.9) 33(82.5)
    餐巾环征/(例,%) 8(17.0) 9(22.5) 0.410 0.593
    39(83.0) 31(77.5)
    点状钙化/(例,%) 23(48.9) 33(82.5) 10.610 0.002
    24(51.1) 7(17.5)
    注:*采用Fisher检验。
    下载: 导出CSV

    表  3   不同参数对冠状动脉病变进展的预测价值

    Table  3   Predictive values of different parameters for the progression of coronary artery disease

    特征 曲线下面积 标准误 P 95% CI 最佳截断值 敏感度 特异度
    糖尿病      0.65 0.069 0.043 0.512~0.781 0.579 0.714
    易损斑块     0.66 0.070 0.031 0.521~0.795 0.615 0.700
    总钙化积分    0.67 0.067 0.018 0.540~0.804 106.985 0.605 0.821
    钙化成分体积   0.65 0.059 0.015 0.537~0.768 50.225 0.511 0.850
    钙化成分占比   0.63 0.060 0.042 0.509~0.745 0.385 0.681 0.575
    钙化斑块等效质量 0.63 0.060 0.038 0.513~0.746 17.345 0.468 0.850
    点状钙化     0.67 0.058 0.007 0.554~0.782 0.825 0.511
    下载: 导出CSV

    表  4   采用逐步法Logistic回归筛选出预测狭窄进展的独立影响因素

    Table  4   Stepwise Logistic regression was used to screen independent factors influencing stenosis progression

    危险因素 β 标准误 OR值 95% CI P
    lower upper
    糖尿病    1.300 0.565 3.668 1.211 11.110 0.022
    易损斑块   1.379 0.562 3.973 1.321 11.944 0.014
    钙化成分体积 −0.014 0.005 0.986 0.976 0.997 0.009
    点状钙化   1.745 0.530 5.727 2.028 16.174 0.001
    注:β值为回归系数,OR值为优势比,CI为可信区间。
    下载: 导出CSV
  • [1] 胡盛寿, 高润霖, 刘力生, 等. 《中国心血管病报告2018》概要[J]. 中国循环杂志, 2019, 34(3): 209-220. DOI: 10.3969/j.issn.1000-3614.2019.03.001.

    HU S, GAO R, LIU L, et al. Summary of the 2018 report on cardiovascular diseases in China[J]. Chinese Circulation Journal, 2019, 34(3): 209-220. DOI: 10.3969/j.issn.1000-3614.2019.03.001. (in Chinese).

    [2]

    AHMADI A, ARGULIAN E, LEIPSIC J, et al. From subclinical atherosclerosis to plaque progression and acute coronary events: JACC state-of-the-art review[J]. Journal of the American College of Cardiology, 2019, 74(12): 1608-1617. DOI: 10.1016/j.jacc.2019.08.012.

    [3]

    DESEIVE S, KUPKE M, STRAUB R, et al. Quantified coronary total plaque volume from computed tomography angiography provides superior 10-year risk stratification[J]. European Heart Journal: Cardiovascular Imaging, 2021, 22(3): 314-321. DOI: 10.1093/ehjci/jeaa228.

    [4] 朱娜君, 方欣欣, 尹伊君, 等. 心绞痛患者斑块进展危险因素与冠状动脉CT血管成像指标的关系研究[J]. CT理论与应用研究, 2023, 32(2): 217-222. DOI: 10.15953/j.ctta.2022.219.

    ZHU N J, FANG X X, YIN Y J, et al. Risk factors of plaque progression in patients with angina pectoris and their relationships with coronary CT angiography[J]. CT Theory and Applications, 2023, 32(2): 217-222. DOI: 10.15953/j.ctta.2022.219. (in Chinese).

    [5]

    Van ROSENDAEL A R, SHAW L J, XIE J X, et al. Superior risk stratification with coronary computed tomography angiography using a comprehensive atherosclerotic risk score[J]. Journal of the American College of Cardiology: Cardiovascular Imaging, 2019, 12(10): 1987-1997. DOI: 10.1016/j.jcmg.2018.10.024.

    [6] 谢丽响, 胡春峰. 基于冠状动脉CT血管成像的冠状动脉斑块风险分层的研究进展[J]. 中国临床医生杂志, 2023, 51(11): 1272-1277. DOI: 10.3969/j.issn.2095-8552.2023.11.004.
    [7] 袁嘉俊, 袁明远, 张佳胤. 人工智能在冠状动脉CT血管成像中的应用与进展[J]. 中国医刊, 2023, 58(5): 468-472. DOI: 10.3969/j.issn.1008-1070.2023.05.002.
    [8] 宋瑶, 霍怀璧, 李晗, 等. 冠状动脉CTA多参数AI特征对急性冠脉综合征的诊断价值[J]. 放射学实践, 2023, 38(7): 873-878. DOI: 10.13609/j.cnki.1000-0313.2023.07.011.

    SONG Y, HUO H, LI H, et al. et al. Diagnostic value of multi-parameter AI features in coronary computed tomography angiography for acute coronary syndrome[J]. Radiologic Practice, 2023, 38(7): 873-878. DOI: 10.13609/j.cnki.1000-0313.2023.07.011. (in Chinese).

    [9] 闫昕, 赵建华. 基于CCTA的冠状动脉周围脂肪组织影像组学研究进展[J]. CT理论与应用研究(中英文), 2024, 33(4): 531-538. DOI: 10.15953/j.ctta.2023.179.

    YAN X, ZHAO J H. Research progress of pericoronary adipose tissue radiomics based on coronary computed tomography angiography[J]. CT Theory and Applications, 2024, 33(4): 531-538. DOI: 10.15953/j.ctta.2023.179. (in Chinese).

    [10] 中国医师协会放射医师分会. 冠状动脉CT血管成像斑块分析和应用中国专家建议[J]. 中华放射学杂志, 2022, 6(56): 595-607. DOI: 10.3760/cma.j.cn112149-20211129-01055.

    Chinese Medical Doctor Association Radiology Branch. Chinese expert recommendations of coronary atherosclerotic plaque assessment and applications of using CT angiography[J]. Chinese Journal of Radiology, 2022, 6(56): 595-607. DOI: 10.3760/cma.j.cn112149-20211129-01055. (in Chinese).

    [11] 李苏豫, 唐春香, 张龙江. 冠状动脉CT血管成像评估易损斑块新进展[J]. 中华放射学杂志, 2022, 56(3): 330-334. DOI: 10.3760/cma.j.cn112149-20210315-00231.

    LI S Y, TANG C X, ZHANG L J. Coronary CT angiography of vulnerable plaque[J]. Chinese Journal of Radiology, 2022, 56(3): 330-334. DOI: 10.3760/cma.j.cn112149-20210315-00231. (in Chinese).

    [12] 刘博清, 余再新. 连续冠状动脉CT血管造影评估动脉粥样硬化斑块逆转治疗的研究进展[J]. 中国介入心脏病学杂志, 2023, 31(10): 775-780. DOI: 10.3969/j.issn.1004-8812.2023.10.009.

    LIU B Q, YU Z X. Research progress on evaluating atherosclerotic plaque regression therapies using serial coronary CT angiography[J]. Chinese Journal of Interventional Cardiology, 2023, 31(10): 775-780. DOI: 10.3969/j.issn.1004-8812.2023.10.009. (in Chinese).

    [13]

    VERGALLO R, CREA F. Atherosclerotic plaque healing[J]. New England Journal of Medicine, 2020, 383(9): 846-857. DOI: 10.1056/NEJMra2000317.

    [14]

    JIAN Z, YAO G, GUO H, et al. The impact of baseline calcified plaque volume on coronary rapid plaque progression by serial coronary computed tomography angiography in patients with type 2 diabetes[J]. Annals of Medicine, 2023, 55(1): 2196438. DOI: 10.1080/07853890.2023.2196438.

    [15]

    JIN H Y, WEIR-MCCALL J R, LEIPSIC J A, et al. The relationship between coronary calcification and the natural history of coronary artery disease[J]. Journal of the American College of Cardiology: Cardiovascular Imaging, 2021, 14(1): 233-242. DOI: 10.1016/j.jcmg.2020.08.036.

    [16]

    MAURIELLO A, SERVADEI F, ZOCCAI G B, et al. Coronary calcification identifies the vulnerable patient rather than the vulnerable plaque[J]. Atherosclerosis, 2013, 229(1): 124-129. DOI: 10.1016/j.atherosclerosis.2013.03.010.

    [17]

    NICHOLLS S J, TUZCU E M, WOLSKI K, et al. Coronary artery calcification and changes in atheroma burden in response to established medical therapies[J]. Journal of the American College of Cardiology, 2007, 49(2): 263-270. DOI: 10.1016/j.jacc.2006.10.038.

    [18]

    ITO H, MOTOYAMA S, SARAI M, et al. Characteristics of plaque progression detected by serial coronary computed tomography angiography[J]. Heart Vessels, 2014, 29(6): 743-749. DOI: 10.1007/s00380-013-0420-4.

    [19] 史东星, 王道清, 张卉, 等. CCTA技术下斑块定量分析预测冠心病患者斑块进展的价值[J]. 中国CT和MRI杂志, 2023, 21(2): 73-75. DOI: 10.3969/j.issn.1672-5131.2023.02.026.

    SHI D X, WANG D Q, ZHANG H, et al. Value of plaque quantitative analysis in predicting plaque progression in patients with coronary heart disease by CCTA[J]. Chinese Journal of CT and MRI, 2023, 21(2): 73-75. DOI: 10.3969/j.issn.1672-5131.2023.02.026. (in Chinese).

    [20]

    SHI X, GAO J, LV Q, et al. Calcification in atherosclerotic plaque vulnerability: Friend or foe?[J]. Frontiers in Physiology, 2020, 11: 56. 2020. DOI: 10.3389/fphys.2020.00056.eCollection.

    [21]

    Van DRIEST F Y, BIJNS C M, Van der GEEST R J, et al. Utilizing (serial) coronary computed tomography angiography (CCTA) to predict plaque progression and major adverse cardiac events (MACE): Results, merits and challenges[J]. European Radiology, 2022, 32(5): 3408-3422. DOI: 10.1007/s00330-021-08393-9.

    [22]

    YU M, LI W, LU Z, et al. Quantitative baseline CT plaque characterization of unrevascularized non-culprit intermediate coronary stenosis predicts lesion volume progression and long-term prognosis: A serial CT follow-up study[J]. International Journal of Cardiology, 2018, 264: 181-186. DOI: 10.1016/j.ijcard.2018.03.021.

    [23] 罗玮, 赵茹, 赵惠, 等. 冠状动脉轻中度狭窄患者的预后影响因素分析[J]. 临床放射学杂志, 2021, 40(12): 2410-2415. DOI: 10.13437/j.cnki.jcr.2021.12.031.

    LYO W, ZHAO R, ZHAO H, et al. Prognostic factors of patients with mild to moderate coronary artery stenosis[J]. Journal of Clinical Radiology, 2021, 40(12): 2410-2415. DOI: 10.13437/j.cnki.jcr.2021.12.031. (in Chinese).

  • 期刊类型引用(1)

    1. 刘庆文,秦德文,胡伟. AVO信息约束匹配追踪技术在富煤储层刻画中的应用. CT理论与应用研究. 2023(02): 189-197 . 本站查看

    其他类型引用(2)

图(3)  /  表(4)
计量
  • 文章访问数:  210
  • HTML全文浏览量:  29
  • PDF下载量:  43
  • 被引次数: 3
出版历程
  • 收稿日期:  2024-08-06
  • 修回日期:  2024-10-17
  • 录用日期:  2024-10-24
  • 网络出版日期:  2024-11-07
  • 刊出日期:  2025-01-04

目录

    /

    返回文章
    返回
    x 关闭 永久关闭