Research Progress of High-resolution Magnetic Resonance Vessel Wall Imaging in the Identification of Intracranial Arterial Stenosis Etiology
-
摘要:
颅内动脉狭窄(ICAS)导致的缺血性脑卒中,具有高致残率和致死率的特点。临床上常规检查方法包括经颅多普勒超声、CT血管造影、磁共振血管造影和X射线数字减影血管造影等,上述方法都是针对血管狭窄,不能显示血管壁病变。高分辨磁共振血管壁成像技术(HR-VWI)是一种新出现的影像学检查手段,能够无创性显示血管壁病变,对判断ICAS病变性质具有重要价值。本文针对HR-VWI在ICAS病因鉴别中的应用研究进展进行综述。
Abstract:Ischemic stroke caused by intracranial arterial stenosis (ICAS) is characterized by high morbidity and mortality. Conventional clinical examination methods include transcranial Doppler ultrasound, CT angiography, magnetic resonance angiography, and X-ray digital subtraction angiography. These methods are aimed at vascular stenosis and do not show vascular wall lesions. High-resolution magnetic resonance vessel wall imaging (HR-VWI) is a new imaging method that can non-invasively display vascular wall lesions and has important value in judging the nature of ICAS lesions. In this paper, the application of HR-VWI in the identification of ICAS etiology is reviewed.
-
2019冠状病毒病(新冠肺炎)由新型严重急性呼吸综合征冠状病毒2型(SARS-CoV-2)引起,早期主要为病毒反应,后期发生严重的炎症反应。有报道约20% 患会发展为中度至重度危及生命的肺炎并伴有呼吸衰竭[1],重型及危重型患者常继发其他病原菌肺部感染,胸部CT检查对疾病的诊断和评估具有重要作用。
本文回顾性分析27例重型及危重型患者的胸部CT表现,同时分析其不同预后,有助于加深对本病的理解,提高诊疗水平。
1. 材料与方法
1.1 研究对象
收集首都医科大学附属北京佑安医院2022年11月1日至2023年2月1日的新型冠状病毒感染重型及危重型患者27例,年龄范围为42~91岁,中位数为77岁。
纳入标准:①患者咽拭子新冠病毒核酸检测为阳性;②病原学检查显示合并其他病原菌感染;③CT检查数据均为采集完病原学检查后进行的基线数据;④排除其他部位感染(如皮肤、尿路、消化道等感染)。新冠病毒感染诊断标准依据新型冠状病毒感染诊疗方案(试行第十版)。
1.2 病原学检测
主要包括痰细菌及真菌培养、呼吸道相关抗体及曲霉菌抗原检测。27例患者进行痰细菌及真菌培养,其中1例患者进行曲霉菌抗原检测,1例患者进行呼吸道相关抗体检测。
1.3 胸部CT检查
采用GE公司Light speed 64排VCT进行扫描,管电压设置为120 kV,采用管电流自动调制技术,NI值设置为10,范围30~500 mA,探测器宽度40 mm,螺距1.375,球管旋转时间0.6 s/r,重建层厚、层间距均为0.625 mm。
1.4 图像分析
所有患者均行胸部CT平扫常规检查,图像均由两位高年资影像科医师进行分析,确定肺内病变的部位、分布、密度、表现特征及肺外表现等,意见不一致时由第3位高级职称影像科医师加入协商决定。根据不同预后,比较其影像学表现的差异性。
1.5 统计学分析
使用SPSS 23.0软件进行统计学分析,不同数据间比较采用卡方检验。以P<0.05为差异具有统计学意义。
2. 结果
2.1 一般临床资料及实验室检查
患者多为老年男性,大部分伴有高血压基础病史,也可伴糖尿病、冠心病、肝肾疾病等情况,实验室检查指标异常提示存在较为严重的炎症反应,肝肾及心脏功能多有受损(表1和表2)。
表 1 一般临床资料Table 1. General clinical data项目 例数 占比/% 性别 男性/女性 19/8 70.3/29.6 基础病史 高血压 18 66.7 糖尿病 9 33.3 冠心病 4 14.8 恶性肿瘤 0 0.0 免疫抑制(移植术后、化疗等) 3 11.1 肝病 5 18.5 肾病 3 11.1 外科手术史 4 14.8 表 2 实验室检查指标变化情况表Table 2. Changes in laboratory examination results项目 例数 占比(%) 项目 例数 占比(%) WBC升高 21 77.8 SO2(%)≤93% 18 66.7 NEUT升高 22 81.5 P/F index≤30 mmHg 15 55.6 LYMPH降低 22 81.5 CRP升高 27 100.0 MONO升高 6 22.2 PCT升高 26 96.3 RBC减低 26 96.3 D-Dimer升高 21 77.8 HGB减低 25 92.6 CK升高 5 18.5 NLR升高 24 88.9 CK-MB升高 4 14.8 ALT升高 13 48.1 MYO升高 21 77.8 AST升高 19 70.4 TNI升高 23 85.2 eGFR减低 21 77.8 LNTP升高 26 96.3 注:WBC为白细胞计数,NEUT为中性粒细胞绝对值,LYMPH为淋巴细胞绝对值,MONO为单核细胞绝对值,RBC为红细胞计数,HGB为血红蛋白,NLR为中性粒细胞/淋巴细胞比值,ALT为丙氨酸氨基转移酶,AST为天门冬氨酸氨基转移酶,eGFR为肾小球滤过率,SO2为血氧饱和度,P/F index为肺动脉氧分压与吸氧浓度的比值,CRP为C反应蛋白,PCT为降钙素原,D-Dimer为D二聚体,CK为肌酸激酶,CK-MB为肌酸激酶同工酶,MYO为肌红蛋白,TNI为肌钙蛋白,LNTP为B型氨基端利钠肽原。 2.2 病原菌类型
27例患者中,13例患者分离出细菌,2例患者为真菌,其余12例同时分离出细菌和真菌。共分离出14株病原菌,其中鲍曼氏不动杆菌10例,屎肠球菌5例,克雷伯氏菌2例,嗜肺军团菌1例,丝带棒状杆菌1例,表皮葡萄球菌1例,嗜麦芽寡养单胞菌1例,溶血葡萄球菌1例,铜绿假单胞菌1例,人葡萄球菌1例,表皮葡萄球菌1例,纹带棒杆菌1例,大肠埃希氏菌1例,非发酵棒杆菌1例,金黄色葡萄球菌1例,其他革兰氏阴性杆菌4例,革兰氏阳性球菌5例,10例白色念珠菌,似光滑念珠菌2例,光滑念珠菌1例,似光滑念珠菌1例,曲霉菌1例,烟曲霉菌1例。
2.3 胸部CT表现
27例患者的胸部CT表现均为双肺多发病变,病变的部位、分布特点、密度及特点表现多样(表3),其中6例表现为典型新冠病毒感染的胸部影像学特点(1例存活,5例死亡):病变位于双肺外周或胸膜下,病灶多呈磨玻璃密度影,部分伴实变,小叶间隔增厚呈“铺路石征”,肺内血管穿行于磨玻璃影病灶内表现为“血管增粗征”(图1)。
表 3 新冠病毒感染重症患者合并其他感染的胸部CT表现特征情况Table 3. Chest CT features of patients with severe COVID-19 complicated with other infections影像表现 例数(n=27)
/例数(%)死亡(n=21)
/例数(%)存活(n=6)
/例数(%)P 病变部位 多位于肺外周或胸膜下 12(44.4) 11(52.4) 1(16.7) 0.121 节段性或肺叶性 11(40.7) 8(38.1) 3(50.0) 0.601 肺门为中心 0(0.0) 0(0.0) 0(0.0) — 病变分布 病变散在分布 20(74.1) 15(71.4) 5(83.3) 0.557 病变弥漫性分布 12(44.4) 11(52.4) 1(16.7) 0.121 病变密度 磨玻璃影 19(70.4) 17(81.0) 2(33.3) 0.024 磨玻璃伴实变影 20(74.1) 18(85.7) 2(33.3) 0.01 实变影 21(77.8) 15(71.4) 6(100.0) 0.711 病变征象 铺路石征 13(48.1) 11(52.4) 2(33.3) 0.410 血管增粗征 15(55.6) 13(61.9) 2(33.3) 0.214 空气支气管征 18(66.7) 14(66.7) 4(66.7) 1.000 结节 16(59.3) 11(52.4) 5(83.3) 0.174 空洞 0(0.0) 0(0.0) 0(0.0) — 肺气囊 6(22.2) 4(19.4) 2(33.3) 0.458 肺外表现 淋巴结肿大 9(33.3) 5(23.8) 4(66.7) 0.051 胸腔积液 16(59.3) 11(52.4) 5(83.3) 0.174 心包积液 1(3.7) 1(4.8) 0.00 0.586 其他情况(单纯表现为新冠肺炎改变) 6(22.2) 5(23.8) 1(16.7) 0.711 图 1 男,81岁,死亡患者,病原学检查为屎肠球菌、少量似平滑念珠菌及鲍曼氏不动杆菌,肺部CT显示双肺多发磨玻璃影,小叶间隔增厚呈“铺路石征”(白色箭号)(a),血管穿行于病灶内呈“血管增强征”(白色三角形)(a),5天后病变进展(b),右肺新发肺气囊(b),双下肺新发片状实变影伴双侧胸腔少量积液(c)Figure 1. The CT images of an 81-year-old man who died. Etiological examination revealed Enterococcus faecium, a small amount of Candida plaliformis, and Acinetobacter baumannii. Pulmonary CT images show multiple ground-glass shadows in both lungs and thickened interlobular septa with "paving stone sign" (white arrow) (a). Blood vessels passing through the lesion presented a "vascular enhancement sign" (white triangle) (a), and the lesion progressed in five days (b) with new lamellar consolidation shadow in the lower lungs accompanied by a small amount of bilateral pleural effusion (c)其余21例多表现为散在或弥漫性分布的磨玻璃影(图2)、以肺段或肺叶分布的片状及斑片状实变影(图2和图3),或者磨玻璃及实变混合影(图3),部分病例可见散在结节影或小叶中心结节(图3~图6),磨玻璃影内可见小叶间隔增厚呈“铺路石征”和“血管增粗征”,实变影内可见空气支气管气像,多伴有胸腔积液(图4和图6),少数病例可见肺气囊(图7),散在病例可见淋巴结轻度肿大(图6),未见空洞病变。
图 2 男,72岁,死亡患者,病原学检查为嗜麦芽寡养单胞菌,CT表现为胸膜下斑片状磨玻璃密度影,以肺段分布的片状实变影,病变内可见空气支气管征象Figure 2. The CT images of a 72-year-old man who died. Etiological examination revealed Oligotrophomonas maltophila. The CT images show subpleural patellar ground glass density shadow and patellar solid shadow distributed in the lung segments; air bronchial signs are seen in the consolidated lesion图 3 女,90岁,死亡患者,病原学检查为克雷伯氏菌。肺内多发片状混合磨玻璃影、大片状实变影及散在多发结节影,实变病变内可见空气支气管征象Figure 3. The CT images of a 90-year-old women who died. Etiological examination revealed Klebsiella bacteria. Multiple large-flake solid shadows, mixed ground glass shadows, and scattered multiple nodules are seen in the lung CT images. Air bronchial signs are seen in the consolidated lesion图 4 男,57岁,死亡患者,可溶性曲霉菌抗原阳性,病原学检查提示有少量白色念珠菌,肺内见片状实变影及散在小结节影,双侧胸腔有少量积液Figure 4. The CT images of a 57-year-old man who died. The soluble aspergillus antigen test was positive. Etiological examination revealed a small amount of Candida albicans. Patchy solid shadows and scattered nodules are observed in the lung CT images, and a small amount of fluid is found in the bilateral pleural cavity图 5 男,77岁,死亡患者,病原学检查提示有鲍曼氏不动杆菌、铜绿假单胞菌、丝带棒状杆菌、白色念珠菌、光滑念珠菌、少量屎肠球菌及表皮葡萄球菌。肺内见片状实变影及多发小叶中心结节影Figure 5. The CT images of a 77-year-old man who died. Etiological examination revealed Acinetobacter baumannii, Pseudomonas aeruginosa, Corynebacterium rhizome, Candida albicans, Candida glabris, and a small amount of Enterococcus faecium and Staphylococcus epidermidis. The lung CT images show lamellar consolidation shadows and multiple central lobular nodules图 7 男,90岁,死亡患者,病原学检查为鲍曼氏不动杆菌、金黄色葡萄球菌、表皮葡萄球菌,肺内见片状实变影伴肺气囊Figure 7. The CT images of a 90-year-old man who survived. Etiological examination revealed Acinetobacter baumannii, Staphylococcus aureus, and Staphylococcus epidermidis. The lung CT images show lamellar consolidation shadows with pulmonary air sacs27例重型及危重型患者中存活6例,死亡21例,死亡患者的肺部磨玻璃影、磨玻璃影伴实变影比例高于生存患者,其余影像学征象无明显统计学差异。生存组和死亡组患者中单纯表现为典型新冠肺炎特点的比例无明显统计学差异(表3)。
3. 讨论
新冠病毒感染继发细菌感染的肺炎使病情复杂、病程延长且治疗效果不佳。本研究继发感染27例患者中21例死亡,患者多表现为白细胞及中性粒细胞升高、淋巴细胞下降、炎性反应物指标明显升高(表2),表现患者存在严重的炎症反应及免疫损伤。因此对于继发感染患者的关注尤为重要。
研究表明氧合指数、低蛋白血症、激素治疗及基础疾病与继发感染密切相关[2],纳入患者中多为老年男性,红细胞及血红蛋白指标下降,基础疾病多伴有高血压,与相关研究基本一致,但未发现明确激素用药患者。
本研究患者继发感染表现为细菌和真菌感染,主要为鲍曼氏不动杆菌和白色念珠菌。鲍曼氏不动杆菌在医院的环境中分布很广,耐药性日益增加[3],对危重患者威胁很大,有研究将高龄、机械通气、肾功能衰竭和住院时间延长作为医院内鲍曼氏杆菌感染发展的重要危险因素[4-5]。白色念珠菌是一种机会性致病真菌,细胞免疫可以阻断真菌感染[6],本研究患者中淋巴细胞计数多为减低,有研究显示重型新冠感染患者淋巴细胞计数明显低于普通新冠感染患者[7],免疫损伤极大提高了重症患者的机会性感染。
肺部的气道上皮细胞、肺泡上皮细胞、血管内皮细胞和巨噬细胞是病毒的主要细胞靶点[8-10],病毒通过受体识别被肺泡巨噬细胞和上皮细胞发现,肺内招募免疫细胞,淋巴细胞向气道浸润,大多数患者免疫细胞清除了感染,随着免疫反应的降低而康复,但一些患者出现免疫反应失调,随后细胞因子风暴导致广泛的肺部炎症。这些因素共同导致弥漫性肺泡损伤、肺泡细胞脱落、透明膜形成,可发生微血管血栓栓塞、毛细血管充血、炎性细胞浸润及间质水肿[11-12]。
相应的在胸部CT上特征性表现为双肺外周及弥漫分布的磨玻璃密度影,可伴有不同密度的实变影[13],小叶间隔增厚呈铺路石征,病灶内血管走行呈血管增粗征[12]。肺部病变降低了气体交换的效率,导致呼吸困难和血氧水平减低,肺部变得更容易继发感染[14]。与单纯新冠感染表现不同的是,本研究大部分患者病变部位无特定分布特点,病变形态不限于磨玻璃及混合磨玻璃影,存在大片状以肺段或肺叶分布的实变影、部分可伴有散在结节影、小叶中心结节及肺气囊,实变影内可见支气管征,多数伴有胸腔积液,少数还可见淋巴结增大及心包积液,磨玻璃影内仍可见“铺路石征”及“血管增粗征”,患者CT表现更为多样性改变。
研究表明细菌性肺炎患者常以肺实变影多见,以小叶或大叶分布并伴有胸腔积液[15-16],患者病原菌的感染类型与肺部表现可无明显相关性[17]。真菌性肺炎可表现为曲菌球的“空气半月征”、结节状及肿块状实变样,可伴晕征[18]。
本次入组患者大部分继发细菌感染或混合感染,与以往研究一致,多数为大片状实变影,部分伴有散在结节影或小叶中心结节,表现出细菌性和/或真菌性肺炎的部分特点,但未发现真菌感染的空气半月征典型征象,且继发单纯细菌感染、真菌感染或混合感染的患者上述CT表现特点并无对应关系,这可能是由于入组患者单纯为真菌感染者较少(仅2例),且病原学检查易受样本采集影响,患者可能存在继发其他未检测到的病原菌感染。由于重症患者继发多发感染,患者胸腔积液比例较多,这与单纯新冠感染患者胸腔积液较少不同。
不同预后患者中,死亡患者表现磨玻璃影及混合密度影比例均高于存活者,死亡组中存在典型新冠感染征象的比例虽然高于存活组,但不是仅表现为新冠感染改变,大部分仍伴发其他非新冠感染征象,肺部影像更为多样性,推测死亡患者肺部受新冠病毒损伤较大,疾病发展迅速,继发感染情况复杂,最后结果不良。影像学表现不是提示预后结果的独立因素,对于不同预后的患者,还需要结合病变进展情况、临床及相关实验室检查、治疗情况等综合分析。
本研究患者样本量较少,有一定局限性,且有6例患者表现为单纯新冠感染典型特征,但痰液检查存在其他病原菌感染,推测可能由于痰液标本受口腔或上呼吸道定植菌影响的缘故,不过患者的复查CT均可发现伴发其他感染的特点(图1),因此有待于以后大样本量且更为严谨的实验设计进行深入研究分析。
新冠肺炎继发感染主要包括细菌和真菌感染,多为混合感染。胸部CT表现多样,主要表现为无特定部位分布的磨玻璃及混合密度影、实变影、结节影,多伴有胸腔积液,少部分可见肺气囊、胸部淋巴结轻度肿大,仍可见铺路石征及血管增粗征,表现新冠病毒、细菌及真菌感染的多样性、混合性影像学特点。
新冠感染的诊断并不困难,但病原学检查时间较长且存在误差,临床通常先基于症状、临床检查和胸部影像学检查结果进行肺部感染的诊断、评估及相关治疗。胸部CT是新冠感染诊断和随访的重要决定因素[19],继发其他感染的重症患者CT表现具有一定的特征性,有助于早期诊断和适当管理,以提高患者的生存率。
-
表 1 动脉粥样硬化斑块的HR-VWI信号特征
Table 1 HR-VWI signal characteristics of atherosclerotic plaque
成分 T1WI T2WI 增强T1WI PDWI 3D-TOF 急性出血 高 等/低 无强化 等/高 高 钙化 低 低 无强化 低 低 脂质核心 等/高 等/高 无强化 等/高 等 疏松的间质 低/等 高 有强化 低/等 等 纤维化组织 等 等/高 有强化 等/高 等 纤维帽 等/高 等/高 无强化 等/高 等 -
[1] PAN Y, WAN W, XIANG M, et al. Transcranial Doppler ultrasonography as a diagnostic tool for cerebrovascular disorders[J/OL]. Front Hum Neurosci, 2022, 16: 841809. [2022-04-29]. https://www. ncbi.nlm.nih.gov/pmc/articles/PMC9101315/pdf/fnhum-16-841809.pdf.
[2] MALIKOVA H, WEICHET J. Diagnosis of ischemic stroke: As simple as possible[J/OL]. Diagnostics (Basel), 2022, 12(6): 1452. [2022-06-13]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9221735/pdf/ diagnostics-12-01452.pdf.
[3] ZHANG F, RAN Y, ZHU M, et al. The use of pointwise encoding time reduction with radial acquisition MRA to assess middle cerebral artery stenosis pre- and post-stent angioplasty: Comparison with 3D time-of-flight MRA and DSA[J/OL]. Frontiers in Cardiovascular Medicine, 2021, 8: 739332. [2021-09-09]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8458737/pdf/fcvm-08-739332.pdf.
[4] ZHU X J, WANG W, LIU Z J. High-resolution magnetic resonance vessel wall imaging for intracranial arterial stenosis[J]. Chinese Medical Journal, 2016, 129(11): 1363−1370. doi: 10.4103/0366-6999.182826
[5] SHAO X, YAN L, MA S J, et al. High-resolution neurovascular imaging at 7T: Arterial spin labeling perfusion, 4-Dimensional MR angiography, and black blood MR imaging[J]. Magnetic Resonance Imaging Clinics of North America, 2021, 29(1): 53−65. doi: 10.1016/j.mric.2020.09.003
[6] XIE Y, YANG Q, XIE G, et al. Improved black-blood imaging using DANTE-SPACE for simultaneous carotid and intracranial vessel wall evaluation[J]. Magnetic Resonance Medicine, 2016, 75(6): 2286−2294. doi: 10.1002/mrm.25785
[7] LI R, JIN S, WU T, et al. Usefulness of silent magnetic resonance angiography (MRA) for the diagnosis of atherosclerosis of the internal carotid artery siphon in comparison with time-of-flight MRA[J/OL]. European Journal of Medical Research, 2022, 27(1): 44. [2022-03-21]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8935786/pdf/40001_2022_Article_673.pdf.
[8] CHAGANTI J, WOODFORD H, TOMLINSON S, et al. Black blood imaging of intracranial vessel walls[J/OL]. Practical Neurology. [2020-12-29]. https://pn.bmj.com/lookup/pmidlookup?view=long&pmid=33376151.
[9] YANG H, ZHANG X, QIN Q, et al. Improved cerebrospinal fluid suppression for intracranial vessel wall MRI[J]. Journal of Magnetic Resonance Imaging, 2016, 44(3): 665−672. doi: 10.1002/jmri.25211
[10] LI F, WANG Y, HU T, et al. Application and interpretation of vessel wall magnetic resonance imaging for intracranial atherosclerosis: A narrative review[J/OL]. Annals of Translation Medicine, 2022, 10(12): 714. [2022-06-30]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9279807/pdf/atm-10-12-714.pdf.
[11] ZHU X, SHAN Y, GUO R, et al. Three-dimensional high-resolution magnetic resonance imaging for the assessment of cervical artery dissection[J/OL]. Front Aging Neurosci, 2022, 14: 785661. [2022-07-05]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9295408/pdf/fnagi-14-785661.pdf.
[12] ZHU C, TIAN B, CHEN L, et al. Accelerated whole brain intracranial vessel wall imaging using black blood fast spin echo with compressed sensing (CS-SPACE)[J]. Magnetic Resonance Materials in Physics, Biology and Medicine, 2017, 31(3): 457−467.
[13] BALU N, ZHOU Z, HIPPE D S, et al. Accelerated multi-contrast high isotropic resolution 3D intracranial vessel wall MRI using a tailored k-space undersampling and partially parallel reconstruction strategy[J]. Magnetic Resonance Materials in Physics, Biology and Medicine, 2019, 32(3): 343−357.
[14] OKUCHI S, FUSHIMI Y, OKADA T, et al. Visualization of carotid vessel wall and atherosclerotic plaque: T1-SPACE vs. compressed sensing T1-SPACE[J]. European Radiology, 2019, 29(8): 4114−4122. doi: 10.1007/s00330-018-5862-8
[15] ZHOU H, XIAO J, GANESH S, et al. VWI-APP: Vessel wall imaging-dedicated automated processing pipeline for intracranial atherosclerotic plaque quantification[J/OL]. Medical Physics, 2022: 1-11. [2022-11-07]. https://pubmed.ncbi.nlm.nih.gov/36345580.
[16] GONG Y, CAO C, GUO Y, et al. Quantification of intracranial arterial stenotic degree evaluated by high-resolution vessel wall imaging and time-of-flight MR angiography: Reproducibility, and diagnostic agreement with DSA[J]. European Radiology, 2021, 31(8): 5479−5489. doi: 10.1007/s00330-021-07719-x
[17] ZHAO D L, LI C, CHEN X H, et al. Reproducibility of 3.0 T high-resolution magnetic resonance imaging for the identification and quantification of middle cerebral arterial atherosclerotic plaques[J]. Journal of Stroke and Cerebrovascular Diseases, 2019, 28(7): 1824−1831. doi: 10.1016/j.jstrokecerebrovasdis.2019.04.020
[18] GUTIERREZ J, TURAN T N, HOH B L, et al. Intracranial atherosclerotic stenosis: Risk factors, diagnosis, and treatment[J]. Lancet Neurology, 2022, 21(4): 355−368. doi: 10.1016/S1474-4422(21)00376-8
[19] KAMTCHUM-TATUENE J, NOMANI A Z, Falcione S, et al. Non-stenotic carotid plaques in embolic stroke of unknown source[J/OL]. Frontiers in Neurology, 2021, 12: 719329. [2021-09-21]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8492999/pdf/fneur-12-719329.pdf.
[20] SABA L, SAAM T, JÄGER H R, et al. Imaging biomarkers of vulnerable carotid plaques for stroke risk prediction and their potential clinical implications[J]. Lancet Neurology, 2019, 18(6): 559−572. doi: 10.1016/S1474-4422(19)30035-3
[21] PARK J E, JUNG S C, LEE S H, et al. Comparison of 3D magnetic resonance imaging and digital subtraction angiography for intracranial artery stenosis[J]. European Radiology, 2017, 27(11): 4737−4746. doi: 10.1007/s00330-017-4860-6
[22] SUN J, FENG X R, FENG P Y, et al. HR-MRI findings of intracranial artery stenosis and distribution of atherosclerotic plaques caused by different etiologies[J]. Neurological Sciences, 2022, 43(9): 5421−5430. doi: 10.1007/s10072-022-06132-6
[23] MANDELL D M, MOSSA-BASHA M, QIAO Y, et al. Intracranial vessel wall MRI: Principles and expert consensus recommendations of the American society of neuroradiology[J]. American Journal of Neuroradiology, 2017, 38(2): 218−229. doi: 10.3174/ajnr.A4893
[24] SONG J W, PAVLOU A, XIAO J, et al. Vessel wall magnetic resonance imaging biomarkers of symptomatic intracranial atherosclerosis: A Meta-analysis[J]. Stroke, 2021, 52(1): 193−202. doi: 10.1161/STROKEAHA.120.031480
[25] ZHAO J J, LU Y, CUI J Y, et al. Characteristics of symptomatic plaque on high-resolution magnetic resonance imaging and its relationship with the occurrence and recurrence of ischemic stroke[J]. Neurological Sciences, 2021, 42(9): 3605−3613. doi: 10.1007/s10072-021-05457-y
[26] LIU Z, ZHONG F, XIE Y, et al. A predictive model for the risk of posterior circulation stroke in patients with intracranial atherosclerosis based on high resolution MRI[J/OL]. Diagnostics (Basel), 2022, 12(4): 812. [2022-08-29]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9497493/pdf/diagnostics-12-02088.pdf.
[27] RAN Y, WANG Y, ZHU M, et al. Higher plaque burden of middle cerebral artery is associated with recurrent ischemic stroke: A quantitative magnetic resonance imaging study[J]. Stroke, 2020, 51(2): 659−662. doi: 10.1161/STROKEAHA.119.028405
[28] SHEN Z Z, REN S J, WU R R, et al. Temporal changes in plaque characteristics after treatment and their relationship with stroke recurrence: A quantitative study using magnetic resonance imaging[J]. Quantitative Imaging in Medicine and Surgery, 2022, 12(9): 4559−4569. doi: 10.21037/qims-22-210
[29] GEIGER M A, FLUMIGNAN R L G, SOBREIRA M L, et al. Carotid plaque composition and the importance of non-invasive in imaging stroke prevention[J/OL]. Frontiers Cardiovascular Medicine, 2022, 9: 885483. [2022-05-16]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9149096/pdf/fcvm-09-885483.pdf.
[30] DENG F, MU C, YANG L, et al. Carotid plaque magnetic resonance imaging and recurrent stroke risk: A systematic review and meta-analysis[J/OL]. Medicine (Baltimore), 2020, 99(13): e19377. [2020-03-30]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7220511/pdf/medi-99-e19377.pdf.
[31] SCHINDLER A, SCHINNER R, Altaf N, et al. Prediction of stroke risk by detection of hemorrhage in carotid plaques: Meta-analysis of individual patient data[J]. JACC. Cardiovasc Imaging, 2020, 13(2 Pt 1): 395-406.
[32] QIAO H, LI D, CAO J, et al. Quantitative evaluation of carotid atherosclerotic vulnerable plaques using in vivo T1 mapping cardiovascular magnetic resonaonce: Validation by histology[J/OL]. Journal Cardiovascular Magnetic Resonance, 2020, 22(1): 38. [2020-05-21]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7240932/.
[33] MAZZACANE F, MAZZOLENI V, SCOLA E, et al. Vessel wall magnetic resonance imaging in cerebrovascular diseases[J/OL]. Diagnostics (Basel), 2022, 12(2): 258. [2022-01-20]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8871392/pdf/diagnostics-12-00258.pdf.
[34] SAKAI Y, LEHMAN V T, EISENMENGER L B, et al. Vessel wall MR imaging of aortic arch, cervical carotid and intracranial arteries in patients with embolic stroke of undetermined source: A narrative review[J/OL]. Frontiers in Neurology, 2022, 13: 968390. [2022-07-28]. https://pubmed.ncbi.nlm.nih.gov/35968273.
[35] WATASE H, SHEN M, SUI B, et al. Differences in atheroma between Caucasian and Asian subjects with anterior stroke: A vessel wall MRI study[J]. Stroke and Vascular Neurology, 2021, 6(1): 25−32. doi: 10.1136/svn-2020-000370
[36] IKEBE Y, ISHIMARU H, IMAI H, et al. Quantitative susceptibility mapping for carotid atherosclerotic plaques: A pilot study[J]. Magnetic Resonance in Medical Sciences, 2020, 19(2): 135−140. doi: 10.2463/mrms.mp.2018-0077
[37] ALKHALIL M, BIASIOLLI L, CHAI J T, et al. Quantification of carotid plaque lipid content with magnetic resonance T2 mapping in patients undergoing carotid endarterectomy[J/OL]. Public Library of Science One, 2017, 12(7): e0181668. [2017-07-26]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5528883/.
[38] JIANG Y, ZHU C, PENG W, et al. Ex-vivo imaging and plaque type classification of intracranial atherosclerotic plaque using high resolution MRI[J/OL]. Atherosclerosis, 2016, 249: 10-16. [2016-03-30]. https://pubmed.ncbi.nlm.nih.gov/27062404.
[39] FOX B M, DORSCHEL K B, LAWTON M T, et al. Pathophysiology of vascular stenosis and remodeling in moyamoya disease[J/OL]. Frontiers in Neurology, 2021, 12: 661578. [2021-11-26]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8663087/pdf/fneur-12-812027.pdf.
[40] DU L, JIANG H, LI J, et al. Imaging methods for surgical revascularization in patients with moyamoya disease: An updated review[J]. Neurosurgical Review, 2022, 45(1): 343−356. doi: 10.1007/s10143-021-01596-0
[41] MURAOKA S, ARAKI Y, TAOKA T, et al. Prediction of intracranial arterial stenosis progression in patients with moyamoya vasculopathy: Contrast-enhanced high-resolution magnetic resonance vessel wall imaging[J/OL]. World Neurosurgery, 2018, 116: e1114-e1121. [2018-06-01]. https://www.sciencedirect.com/science/article/abs/pii/S1878875018311355?via%3Dihub.
[42] HAN C, LI M L, XU Y Y, et al. Adult moyamoya-atherosclerosis syndrome: Clinical and vessel wall imaging features[J]. Journal of the Neurological Sciences, 2016, 369: 181−184. doi: 10.1016/j.jns.2016.08.020
[43] RYU J, LEE K M, KIM H G, et al. Diagnostic performance of high-resolution vessel wall magnetic resonance imaging and digital subtraction angiography in intracranial vertebral artery dissection[J/OL]. Diagnostics (Basel), 2022, 12(2): 432. [2022-02-08]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8871073/pdf/diagnostics-12-00432.pdf.
[44] SUNDARAM S, KUMAR P N, SHARMA D P, et al. High-resolution vessel wall imaging in primary angiitis of central nervous system[J]. Annals of Indian Academy of Neurology, 2021, 24(4): 524−530.
[45] PADRICK M M, MAYA M M, FAN Z, et al. Magnetic resonance vessel wall imaging in central nervous system vasculitides: A case series[J]. Neurologist, 2020, 25(6): 174−177. doi: 10.1097/NRL.0000000000000298
[46] SHIMOYAMA T, UCHINO K, CALABRESE L H, et al. Serial vessel wall enhancement pattern on high-resolution vessel wall magnetic resonance imaging and clinical implications in patients with central nervous system vasculitis[J]. Clinical and Experimental Rheumatology, 2022, 40(4): 811−818.
[47] NARVAEZ E O, RAMOS M C, FARIA DO AMARAL L L, et al. Neurosyphilis and high-resolution vessel wall imaging: A powerful tool to detect vasculitis and neuritis[J]. Neurology India, 2022, 70(1): 160−161.
[48] SPADARO A, SCOTT K R, KOYFMAN A, et al. Reversible cerebral vasoconstriction syndrome: A narrative review for emergency clinicians[J]. The American Journal of Emergency Medicine, 2021, 50: 765−772. doi: 10.1016/j.ajem.2021.09.072
[49] EDJLALI M, QIAO Y, BOULOUIS G, et al. Vessel wall MR imaging for the detection of intracranial inflammatory vasculopathies[J]. Cardiovascular Diagnosis and Therapy, 2020, 10(4): 1108−1119. doi: 10.21037/cdt-20-324
[50] DINÇ Y, ÖZPAR R, EMIR B, et al. Vertebral artery hypoplasia as an independent risk factor of posterior circulation atherosclerosis and ischemic stroke[J/OL]. Medicine (Baltimore), 2021, 100(38): e27280. [2021-09-24]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8462547/pdf/medi-100-e27280.pdf.
[51] ZHU X J, WANG W, DU B, et al. Wall imaging for unilateral intracranial vertebral artery hypoplasia with three-dimensional high-isotropic resolution magnetic resonance images[J]. Chinese Medical Journal, 2015, 128(12): 1601−1606. doi: 10.4103/0366-6999.158314
-
期刊类型引用(2)
1. 向国华,李占结. 某三甲医院2013-2023年真菌检出与感染的流行病学变化趋势. 中华医院感染学杂志. 2025(03): 446-450 . 百度学术
2. 沈龙,邓彦民,周乐,李勇刚. 基于临床及影像特征多元Logistic回归模型在肺部新型冠状病毒Omicron变异株合并细菌感染诊断中的应用. 临床肺科杂志. 2024(10): 1468-1474 . 百度学术
其他类型引用(0)
计量
- 文章访问数: 321
- HTML全文浏览量: 94
- PDF下载量: 27
- 被引次数: 2