Innovative Application-Specific All-Digital PET Systems
-
摘要:
基于多电压阈值方法的全数字正电子发射断层成像(PET)技术以“全数字”和“精确采样”为两个本质特点,实现软硬件解耦、系统“乐高”化搭建,打破了传统PET系统架构固定的限制,为更多创新应用的开展提供了可能。本文介绍了近年来应用专用型全数字PET系统的研究进展,阐述其在质子治疗监测、脑科学临床与基础研究、植物代谢研究等领域中的应用及其优势。面对前沿应用对PET成像系统提出的更高要求,进一步探讨全数字PET技术的发展趋势。
Abstract:Utilizing the Multi-Voltage Threshold method, All-Digital PET technology, characterized by "All-Digital" and "accurate sampling," facilitates hardware and software decoupling and modular "LEGO-like" system construction. This innovation addresses the limitations of traditional PET system architectures, enabling a broader range of innovative applications. This paper reviews recent advancements in application-specific All-Digital PET systems, highlighting their applications and advantages in proton therapy monitoring, clinical and basic brain science research, and plant metabolism studies. Furthermore, we explore the development trends of All-Digital PET technology to meet the increasing demands of PET imaging applications.
-
-
图 2 质子束辐照水假体及动物的活度分布图,第1行为在束成像结果,第2行为离束成像结果,第3行为图中黑色虚线范围内沿束流方向的平均一维活度分布,红色曲线代表在束一维活度分布,蓝色曲线代表离束一维活度分布,束流在图中从右向左入射[17]
Figure 2. Induced activity reconstruction irradiating a phantom (uniformly filled with water), mice, and rats. The first, second, and third rows present the beam-on imaging results, beam-off imaging results, and average one-dimensional activity distribution along the beam direction within the black dashed line in the figures, respectively. The red and blue lines represent the beam-on and beam-off settings. The beam was irradiated from right to left in the figures[17]
-
[1] XIE Q, XI D, ZHU J, et al. LEGO for kids, trans-PET for scientists[C/OL]//2014 International Symposium on Next-Generation Electronics (ISNE). KWEI S TAO Y, Taiwan: IEEE, 2014: 1-3. [2023-07-11].
[2] XIE Q, KAO C M, HSIAU Z, et al. A new approach for pulse processing in positron emission tomography[J]. IEEE Transactions on Nuclear Science, 2005, 52(4): 988−995. DOI: 10.1109/TNS.2005.852966.
[3] 邱奥, 张博, 肖鹏, 等. 数字PET二十年[J]. 中国体视学与图像分析, 2022, 27(4): 323−333. QIU A, ZHANG B, XIAO P, et al. Digital PET for twenty years[J]. Chinese Journal of Stereology and Image Analysis, 2022, 27(4): 323−333. (in Chinese).
[4] D’ASCENZO N, ANTONECCHIA E, BENDER V, et al. Recent advances in digital positron emission tomography[J]. Journal of Instrumentation, 2020, 15(10): C10029−C10029. DOI: 10.1088/1748-0221/15/10/C10029.
[5] GAO M, KAO C M, CHEN H H, et al. Feasibility study of all-digital PET monitoring proton therapy[C/OL]//2017 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC). Atlanta, GA: IEEE, 2017: 1-3. [2023-07-11].
[6] ENGHARDT W, DEBUS J, HABERER T, et al. Positron emission tomography for quality assurance of cancer therapy with light ion beams[J]. Nuclear Physics A, 1999, 654(1): 1047c−1050c. DOI: 10.1016/S0375-9474(00)88597-8.
[7] YAMAYA T, INANIWA T, MINOHARA S, et al. A proposal of an open PET geometry[J]. Physics in Medicine and Biology, 2008, 53(3): 757−773. DOI: 10.1088/0031-9155/53/3/015.
[8] CRESPO P, SHAKIRIN G, FIEDLER F, et al. Direct time-of-flight for quantitative, real-time in-beam PET: A concept and feasibility study[J]. Physics in Medicine and Biology, 2007, 52(23): 6795−6811. DOI: 10.1088/0031-9155/52/23/002.
[9] TASHIMA H, YAMAYA T, YOSHIDA E, et al. A single-ring OpenPET enabling PET imaging during radiotherapy[J]. Physics in Medicine and Biology, 2012, 57(14): 4705−4718. DOI: 10.1088/0031-9155/57/14/4705.
[10] CATANA C. Development of dedicated brain PET imaging devices: Recent advances and future perspectives[J]. Journal of Nuclear Medicine, 2019, 60(8): 1044−1052. DOI: 10.2967/jnumed.118.217901.
[11] ANTONECCHIA E, BÄCKER M, CAFOLLA D, et al. Design study of a novel positron emission tomography system for plant imaging[J]. Frontiers in Plant Science, 2022, 12: 736221. DOI: 10.3389/fpls.2021.736221.
[12] SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA: A Cancer Journal for Clinicians, 2021, 71(3): 209−249. DOI: 10.3322/caac.21660.
[13] JONES B, MCMAHON S J, PRISE K M. The radiobiology of proton therapy: Challenges and opportunities around relative biological effectiveness[J]. Clinical Oncology, 2018, 30(5): 285−292. DOI: 10.1016/j.clon.2018.01.010.
[14] PATERA V, SARTI A. Recent advances in detector technologies for particle therapy beam monitoring and dosimetry[J]. IEEE Transactions on Radiation and Plasma Medical Sciences, 2020, 4(2): 133−146. DOI: 10.1109/TRPMS.2019.2951848.
[15] PAGANETTI H, BELTRAN C, BOTH S, et al. Roadmap: Proton therapy physics and biology[J]. Physics in Medicine & Biology, 2021, 66(5): 05RM01.
[16] PETERS N, WOHLFAHRT P, HOFMANN C, et al. Reduction of clinical safety margins in proton therapy enabled by the clinical implementation of dual-energy CT for direct stopping-power prediction[J]. Radiotherapy and Oncology, 2022, 166: 71−78. DOI: 10.1016/j.radonc.2021.11.002.
[17] GAO M, CHEN H H, CHEN F H, et al. First results from all-digital PET dual heads for in-beam beam-on proton therapy monitoring[J]. IEEE Transactions on Radiation and Plasma Medical Sciences, 2021, 5(6): 775−782. DOI: 10.1109/TRPMS.2020.3041857.
[18] ZHU X, FAKHRI G E. Proton therapy verification with PET imaging[J]. Theranostics, 2013, 3(10): 731−740. DOI: 10.7150/thno.5162.
[19] SHAKIRIN G, BRAESS H, FIEDLER F, et al. Implementation and workflow for PET monitoring of therapeutic ion irradiation: A comparison of in-beam, in-room, and off-line techniques[J]. Physics in Medicine and Biology, 2011, 56(5): 1281−1298. DOI: 10.1088/0031-9155/56/5/004.
[20] 高敏. 面向质子治疗射程在束监测的数字PET仪器研制[D]. 武汉: 华中科技大学, 2022. GAO M. All-digital PET device for in-beam beam-on range monitoring in proton therapy[D/OL]. Wuhan: Huazhong University of Science and Technology, 2022. (in Chinese).
[21] D’ASCENZO N, GAO M, CHEN H H, et al. A new in-beam proton therapy monitoring system based on digital MVT readout[C/OL]//2018 IEEE Nuclear Science Symposium and Medical Imaging Conference Proceedings (NSS/MIC). Sydney, Australia: IEEE, 2018: 1-2. [2023-10-19].
[22] D’ASCENZO N, GAO M, ANTONECCHIA E, et al. New digital plug and imaging sensor for a proton therapy monitoring system based on positron emission tomography[J]. Sensors, 2018, 18(9): 3006. DOI: 10.3390/s18093006.
[23] CUMMINGS J, AISEN P S, DUBOIS B, et al. Drug development in Alzheimer’s disease: The path to 2025[J]. Alzheimer’s Research & Therapy, 2016, 8(1): 39.
[24] ALZHEIMER'S ASSOCIATION. 2023 Alzheimer’s disease facts and figures[R]. Alzheimer’s Dementia, 2023, 19(4): 1598-1695.
[25] WONG D F, ROSENBERG P B, ZHOU Y, et al. In vivo imaging of amyloid deposition in alzheimer disease using the radioligand 18F-AV-45 (Flobetapir F 18)[J]. Journal of Nuclear Medicine, 2010, 51(6): 913−920. DOI: 10.2967/jnumed.109.069088.
[26] XIA C, ARTEAGA J, CHEN G, et al. [18F]T807, a novel tau positron emission tomography imaging agent for Alzheimer’s disease[J]. Alzheimer’s & Dementia, 2013, 9(6): 666−676.
[27] NAKAMURA A, KANEKO N, VILLEMAGNE V L, et al. High performance plasma amyloid-β biomarkers for Alzheimer’s disease[J]. Nature, 2018, 554(7691): 249−254. DOI: 10.1038/nature25456.
[28] GONG K, MAJEWSKI S, KINAHAN P E, et al. Designing a compact high performance brain PET scanner-simulation study[J]. Physics in Medicine and Biology, 2016, 61(10): 3681−3697. DOI: 10.1088/0031-9155/61/10/3681.
[29] D’ASCENZO N, ANTONECCHIA E, GAO M, et al. Evaluation of a digital brain positron emission tomography scanner based on the plug & Imaging sensor technology[J]. IEEE Transactions on Radiation and Plasma Medical Sciences, 2020, 4(3): 327−334. DOI: 10.1109/TRPMS.2019.2937681.
[30] MORIMOTO Y, UENO Y, TAKEUCHI W, et al. Development of a 3D brain PET scanner using cdTe semiconductor detectors and its first clinical application[J]. IEEE Transactions on Nuclear Science, 2011, 58(5): 2181−2189. DOI: 10.1109/TNS.2011.2146790.
[31] TEIMOORISICHANI M, GOERTZEN A L. Count rate performance of brain-dedicated PET scanners: A Monte Carlo simulation study[J]. Physics in Medicine & Biology, 2019, 64(21): 215013.
[32] TASHIMA H, YOSHIDA E, IWAO Y, et al. First prototyping of a dedicated PET system with the hemisphere detector arrangement[J]. Physics in Medicine & Biology, 2019, 64(6): 065004.
[33] SHI H, DU D, XU J, et al. PengAssessment of dedicated brain PET designs with different geometries[C/OL]//2013 IEEE Nuclear Science Symposium and Medical Imaging Conference (2013 NSS/MIC). Seoul, Korea (South): IEEE, 2013: 1-4. [2022-10-25].
[34] WANG T, NIU M, HUANG C, et al. Design and simulation of a helmet brain PET system[J/OL]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020, 978: 164470.
[35] CHERRY S R, JONES T, KARP J S, et al. Total-body PET: Maximizing sensitivity to create new opportunities for clinical research and patient care[J/OL]. Journal of Nuclear Medicine, 2018, 59(1): 3-12.
[36] 张春. 头盔式数字PET灵敏度和计数率性能研究[D/OL]. 武汉: 华中科技大学, 2022. ZHANG C. Study on sensitivity and count rate performance of helmet digital PET[D/OL]. Wuhan: Huazhong University of Science and Technology, 2022. (in Chinese).
[37] National Electrical Manufacturers Association. Performance measurements of positron emission tomographs[S]. NEMA Standards Publication, NU2-2001, 2001.
[38] National Electrical Manufacturers Association. Performance measurements of small animal positron emission tomographs[S]. NEMA Standards Publication, NU4-2008, 2008: 1-23.
[39] 中国日报湖北站. 全球首台脑数字PET完成两百多例脑病成像[EB/OL]. (2019-11-21)[2024-05-10]. https://hb.chinadaily.com.cn/a/201911/21/WS5dd6693aa31099ab995ed5e3.html. [40] 黎静. 脑部专用全数字PET定量分析[D/OL]. 武汉: 华中科技大学, 2021. LI J. Quantitative analysis of brain-dedicated All-digital PET[D/OL]. Wuhan: Huazhong University of Science and Technology, 2021. (in Chinese).
[41] 中华医学会核医学分会, 北京认知神经科学学会. 淀粉样蛋白PET脑显像技术规范专家共识[J/OL]. 中华核医学与分子影像杂志, 2020, 40(12): 736-742. [42] 新华社. 中国的粮食安全[EB/OL]. (2019-10-14)[2024-05-10]. https://www.gov.cn/zhengce/2019-10/14/content_5439410.htm. [43] GALIENI A, D’ASCENZO N, STAGNARI F, et al. Past and future of plant stress detection: An overview from remote sensing to positron emission tomography[J]. Frontiers in Plant Science, 2021, 11: 609155. DOI: 10.3389/fpls.2020.609155.
[44] TOYOTA M, SPENCER D, SAWAI-TOYOTA S, et al. Glutamate triggers long-distance, calcium-based plant defense signaling[J]. Science, 2018, 361(6407): 1112−1115. DOI: 10.1126/science.aat7744.
[45] KUCHENBROD E, KAHLER E, THÜRMER F, et al. Functional magnetic resonance imaging in intact plants-quantitative observation of flow in plant vessels[J]. Magnetic Resonance Imaging, 1998, 16(3): 331−338. DOI: 10.1016/S0730-725X(97)00307-X.
[46] DU J, JONES T. Technical opportunities and challenges in developing total-body PET scanners for mice and rats[J]. EJNMMI Physics, 2023, 10(1): 2. DOI: 10.1186/s40658-022-00523-6.
[47] MIRANDA A, GLORIE D, BERTOGLIO D, et al. Awake 18F-FDG PET imaging of memantine-induced brain activation and test-retest in freely running mice[J]. Journal of Nuclear Medicine, 2019, 60(6): 844−850. DOI: 10.2967/jnumed.118.218669.
[48] CHENG R, WANG F, LI S, et al. Single-ended readout depth-of-interaction measurements based on random forest algorithm[J]. IEEE Transactions on Radiation and Plasma Medical Sciences, 2023, 7(2): 105−112. DOI: 10.1109/TRPMS.2022.3218401.
[49] LIU Y, LI A, CHENG R, et al. A depth-of-interaction rebinning method based on both geometric and activity weights[J]. Computer Methods and Programs in Biomedicine, 2023, 240: 107703. DOI: 10.1016/j.cmpb.2023.107703.
[50] KYME A, SE S, MEIKLE S, et al. Markerless motion tracking of awake animals in positron emission tomography[J]. IEEE Transactions on Medical Imaging, 2014, 33(11): 2180−2190. DOI: 10.1109/TMI.2014.2332821.
[51] BUHLER P, JUST U, WILL E, et al. An accurate method for correction of head movement in PET[J/OL]. IEEE Transactions on Medical Imaging, 2004, 23(9): 1176-1185.
[52] RAHMIM A, DINELLE K, CHENG J C, et al. Accurate event-driven motion compensation in high-resolution PET incorporating scattered and random events[J/OL]. IEEE Transactions on Medical Imaging, 2008, 27(8): 1018-1033.
[53] 董超群. 面向运动目标的PET成像运动校正研究[D/OL]. 武汉: 华中科技大学, 2021. DONG C. A research about motion correction of PET imaging for moving objects[D/OL]. Wuhan: Huazhong University of Science and Technology, 2021. (in Chinese).
-
期刊类型引用(3)
1. 陈乃刚,李忱,杨强,尹丹,张媛,魏淑凤,张士朋. CT韧带骨赘评分在SAPHO综合征中的应用. 临床放射学杂志. 2024(01): 116-119 . 百度学术
2. 崔璨,李俊秋,于梅艳,温庆祥. SAPHO综合征的全身骨显像及SPECT/CT影像分析. 分子影像学杂志. 2024(09): 941-945 . 百度学术
3. 谭华清,鲍海华,曹云太,夏弘婧,付诗晗. MRI与CT在SAPHO综合征诊断中的应用分析. 磁共振成像. 2023(11): 108-112 . 百度学术
其他类型引用(0)