ISSN 1004-4140
CN 11-3017/P

应用专用全数字PET创新系统

李鑫宇, 刘煜, 程冉, 谢庆国, 肖鹏

李鑫宇, 刘煜, 程冉, 等. 应用专用全数字PET创新系统[J]. CT理论与应用研究(中英文), 2024, 33(4): 448-458. DOI: 10.15953/j.ctta.2024.012.
引用本文: 李鑫宇, 刘煜, 程冉, 等. 应用专用全数字PET创新系统[J]. CT理论与应用研究(中英文), 2024, 33(4): 448-458. DOI: 10.15953/j.ctta.2024.012.
LI X Y, LIU Y, Cheng R, et al. Innovative Application-Specific All-Digital PET Systems [J]. CT Theory and Applications, 2024, 33(4): 448-458. DOI: 10.15953/j.ctta.2024.012. (in Chinese).
Citation: LI X Y, LIU Y, Cheng R, et al. Innovative Application-Specific All-Digital PET Systems [J]. CT Theory and Applications, 2024, 33(4): 448-458. DOI: 10.15953/j.ctta.2024.012. (in Chinese).

应用专用全数字PET创新系统

基金项目: 国家自然科学基金国家重大科研仪器研制项目(面向清醒活动目标的双动态成像小动物PET仪器(62027808))。
详细信息
    作者简介:

    李鑫宇: 女,华中科技大学生物医学工程系博士研究生,主要从事PET运动数据校正及新型系统研究,E-mail:li_xinyu@hust.edu.cn

    通讯作者:

    肖鹏: 男,华中科技大学生物医学工程系教授、中国科学技术大学电子工程与信息科学系教授,主要从事PET图像重建算法及新型系统研究,E-mail:xiaopeng@hust.edu.cn

  • 中图分类号: TP  391.41;R  817.4

Innovative Application-Specific All-Digital PET Systems

  • 摘要:

    基于多电压阈值方法的全数字正电子发射断层成像(PET)技术以“全数字”和“精确采样”为两个本质特点,实现软硬件解耦、系统“乐高”化搭建,打破了传统PET系统架构固定的限制,为更多创新应用的开展提供了可能。本文介绍了近年来应用专用型全数字PET系统的研究进展,阐述其在质子治疗监测、脑科学临床与基础研究、植物代谢研究等领域中的应用及其优势。面对前沿应用对PET成像系统提出的更高要求,进一步探讨全数字PET技术的发展趋势。

    Abstract:

    Utilizing the Multi-Voltage Threshold method, All-Digital PET technology, characterized by "All-Digital" and "accurate sampling," facilitates hardware and software decoupling and modular "LEGO-like" system construction. This innovation addresses the limitations of traditional PET system architectures, enabling a broader range of innovative applications. This paper reviews recent advancements in application-specific All-Digital PET systems, highlighting their applications and advantages in proton therapy monitoring, clinical and basic brain science research, and plant metabolism studies. Furthermore, we explore the development trends of All-Digital PET technology to meet the increasing demands of PET imaging applications.

  • 图  1   质子治疗专用全数字PET原型机[21]

    Figure  1.   All-Digital proton-therapy PET prototype[21]

    图  2   质子束辐照水假体及动物的活度分布图,第1行为在束成像结果,第2行为离束成像结果,第3行为图中黑色虚线范围内沿束流方向的平均一维活度分布,红色曲线代表在束一维活度分布,蓝色曲线代表离束一维活度分布,束流在图中从右向左入射[17]

    Figure  2.   Induced activity reconstruction irradiating a phantom (uniformly filled with water), mice, and rats. The first, second, and third rows present the beam-on imaging results, beam-off imaging results, and average one-dimensional activity distribution along the beam direction within the black dashed line in the figures, respectively. The red and blue lines represent the beam-on and beam-off settings. The beam was irradiated from right to left in the figures[17]

    图  3   脑部专用全数字PET探测器及原型机[29]

    Figure  3.   All-Digital PET detector for All-Digital brain PET and All-Digital brain PET prototype[29]

    图  4   FDG PET图像[40]

    Figure  4.   FDG PET images[40]

    图  5   头盔式全数字PET原型机

    Figure  5.   All-Digital helmet PET prototype

    图  6   68岁女性,采用AV-45示踪剂的脑内淀粉样蛋白的成像结果

    Figure  6.   Amyloid imaging in the brain using an AV-45 tracer in a 68-year-old woman

    图  7   植物全数字PET结构示意图[11]

    注:(a)PET在农业中的应用受实验、操作和技术的限制;(b)本团队提出的由两个可移动半圆柱组成的变结构、便携式植物全数字PET概念图;(c) b中结构的小型化设计。

    Figure  7.   Structure diagram of All-Digital plant PET[11]

    图  8   Derenzo假体及植物假体仿真成像结果[11]

    注: (a)~(c)Derenzo 假体沿系统径向偏移FOV中心 -4.5 mm、0 mm、+4.5 mm的成像结果;(d)植物假体茎部PET图像。

    Figure  8.   Simulation imaging results of Derenzo phantom and plant phantom[11]

    图  9   “双动态”全数字PET各部分测试原型机与DOI探测器数据采集及测试平台[48]

    Figure  9.   All-Digital bi-dynamic PET instrument prototype of each part and DOI detector data acquisition and test platform[48]

    图  10   重建图像对比

    Figure  10.   Comparison of reconstructed images

    图  11   静态成像、运动校正后的离散运动成像、运动校正后的连续运动成像的重建图像对比[53]

    Figure  11.   Comparison of reconstructed images: motion-free imaging, motion-corrected discrete motion imaging, and motion-corrected continuous motion imaging[53]

  • [1]

    XIE Q, XI D, ZHU J, et al. LEGO for kids, trans-PET for scientists[C/OL]//2014 International Symposium on Next-Generation Electronics (ISNE). KWEI S TAO Y, Taiwan: IEEE, 2014: 1-3. [2023-07-11].

    [2]

    XIE Q, KAO C M, HSIAU Z, et al. A new approach for pulse processing in positron emission tomography[J]. IEEE Transactions on Nuclear Science, 2005, 52(4): 988−995. DOI: 10.1109/TNS.2005.852966.

    [3] 邱奥, 张博, 肖鹏, 等. 数字PET二十年[J]. 中国体视学与图像分析, 2022, 27(4): 323−333.

    QIU A, ZHANG B, XIAO P, et al. Digital PET for twenty years[J]. Chinese Journal of Stereology and Image Analysis, 2022, 27(4): 323−333. (in Chinese).

    [4]

    D’ASCENZO N, ANTONECCHIA E, BENDER V, et al. Recent advances in digital positron emission tomography[J]. Journal of Instrumentation, 2020, 15(10): C10029−C10029. DOI: 10.1088/1748-0221/15/10/C10029.

    [5]

    GAO M, KAO C M, CHEN H H, et al. Feasibility study of all-digital PET monitoring proton therapy[C/OL]//2017 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC). Atlanta, GA: IEEE, 2017: 1-3. [2023-07-11].

    [6]

    ENGHARDT W, DEBUS J, HABERER T, et al. Positron emission tomography for quality assurance of cancer therapy with light ion beams[J]. Nuclear Physics A, 1999, 654(1): 1047c−1050c. DOI: 10.1016/S0375-9474(00)88597-8.

    [7]

    YAMAYA T, INANIWA T, MINOHARA S, et al. A proposal of an open PET geometry[J]. Physics in Medicine and Biology, 2008, 53(3): 757−773. DOI: 10.1088/0031-9155/53/3/015.

    [8]

    CRESPO P, SHAKIRIN G, FIEDLER F, et al. Direct time-of-flight for quantitative, real-time in-beam PET: A concept and feasibility study[J]. Physics in Medicine and Biology, 2007, 52(23): 6795−6811. DOI: 10.1088/0031-9155/52/23/002.

    [9]

    TASHIMA H, YAMAYA T, YOSHIDA E, et al. A single-ring OpenPET enabling PET imaging during radiotherapy[J]. Physics in Medicine and Biology, 2012, 57(14): 4705−4718. DOI: 10.1088/0031-9155/57/14/4705.

    [10]

    CATANA C. Development of dedicated brain PET imaging devices: Recent advances and future perspectives[J]. Journal of Nuclear Medicine, 2019, 60(8): 1044−1052. DOI: 10.2967/jnumed.118.217901.

    [11]

    ANTONECCHIA E, BÄCKER M, CAFOLLA D, et al. Design study of a novel positron emission tomography system for plant imaging[J]. Frontiers in Plant Science, 2022, 12: 736221. DOI: 10.3389/fpls.2021.736221.

    [12]

    SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA: A Cancer Journal for Clinicians, 2021, 71(3): 209−249. DOI: 10.3322/caac.21660.

    [13]

    JONES B, MCMAHON S J, PRISE K M. The radiobiology of proton therapy: Challenges and opportunities around relative biological effectiveness[J]. Clinical Oncology, 2018, 30(5): 285−292. DOI: 10.1016/j.clon.2018.01.010.

    [14]

    PATERA V, SARTI A. Recent advances in detector technologies for particle therapy beam monitoring and dosimetry[J]. IEEE Transactions on Radiation and Plasma Medical Sciences, 2020, 4(2): 133−146. DOI: 10.1109/TRPMS.2019.2951848.

    [15]

    PAGANETTI H, BELTRAN C, BOTH S, et al. Roadmap: Proton therapy physics and biology[J]. Physics in Medicine & Biology, 2021, 66(5): 05RM01.

    [16]

    PETERS N, WOHLFAHRT P, HOFMANN C, et al. Reduction of clinical safety margins in proton therapy enabled by the clinical implementation of dual-energy CT for direct stopping-power prediction[J]. Radiotherapy and Oncology, 2022, 166: 71−78. DOI: 10.1016/j.radonc.2021.11.002.

    [17]

    GAO M, CHEN H H, CHEN F H, et al. First results from all-digital PET dual heads for in-beam beam-on proton therapy monitoring[J]. IEEE Transactions on Radiation and Plasma Medical Sciences, 2021, 5(6): 775−782. DOI: 10.1109/TRPMS.2020.3041857.

    [18]

    ZHU X, FAKHRI G E. Proton therapy verification with PET imaging[J]. Theranostics, 2013, 3(10): 731−740. DOI: 10.7150/thno.5162.

    [19]

    SHAKIRIN G, BRAESS H, FIEDLER F, et al. Implementation and workflow for PET monitoring of therapeutic ion irradiation: A comparison of in-beam, in-room, and off-line techniques[J]. Physics in Medicine and Biology, 2011, 56(5): 1281−1298. DOI: 10.1088/0031-9155/56/5/004.

    [20] 高敏. 面向质子治疗射程在束监测的数字PET仪器研制[D]. 武汉: 华中科技大学, 2022.

    GAO M. All-digital PET device for in-beam beam-on range monitoring in proton therapy[D/OL]. Wuhan: Huazhong University of Science and Technology, 2022. (in Chinese).

    [21]

    D’ASCENZO N, GAO M, CHEN H H, et al. A new in-beam proton therapy monitoring system based on digital MVT readout[C/OL]//2018 IEEE Nuclear Science Symposium and Medical Imaging Conference Proceedings (NSS/MIC). Sydney, Australia: IEEE, 2018: 1-2. [2023-10-19].

    [22]

    D’ASCENZO N, GAO M, ANTONECCHIA E, et al. New digital plug and imaging sensor for a proton therapy monitoring system based on positron emission tomography[J]. Sensors, 2018, 18(9): 3006. DOI: 10.3390/s18093006.

    [23]

    CUMMINGS J, AISEN P S, DUBOIS B, et al. Drug development in Alzheimer’s disease: The path to 2025[J]. Alzheimer’s Research & Therapy, 2016, 8(1): 39.

    [24]

    ALZHEIMER'S ASSOCIATION. 2023 Alzheimer’s disease facts and figures[R]. Alzheimer’s Dementia, 2023, 19(4): 1598-1695.

    [25]

    WONG D F, ROSENBERG P B, ZHOU Y, et al. In vivo imaging of amyloid deposition in alzheimer disease using the radioligand 18F-AV-45 (Flobetapir F 18)[J]. Journal of Nuclear Medicine, 2010, 51(6): 913−920. DOI: 10.2967/jnumed.109.069088.

    [26]

    XIA C, ARTEAGA J, CHEN G, et al. [18F]T807, a novel tau positron emission tomography imaging agent for Alzheimer’s disease[J]. Alzheimer’s & Dementia, 2013, 9(6): 666−676.

    [27]

    NAKAMURA A, KANEKO N, VILLEMAGNE V L, et al. High performance plasma amyloid-β biomarkers for Alzheimer’s disease[J]. Nature, 2018, 554(7691): 249−254. DOI: 10.1038/nature25456.

    [28]

    GONG K, MAJEWSKI S, KINAHAN P E, et al. Designing a compact high performance brain PET scanner-simulation study[J]. Physics in Medicine and Biology, 2016, 61(10): 3681−3697. DOI: 10.1088/0031-9155/61/10/3681.

    [29]

    D’ASCENZO N, ANTONECCHIA E, GAO M, et al. Evaluation of a digital brain positron emission tomography scanner based on the plug & Imaging sensor technology[J]. IEEE Transactions on Radiation and Plasma Medical Sciences, 2020, 4(3): 327−334. DOI: 10.1109/TRPMS.2019.2937681.

    [30]

    MORIMOTO Y, UENO Y, TAKEUCHI W, et al. Development of a 3D brain PET scanner using cdTe semiconductor detectors and its first clinical application[J]. IEEE Transactions on Nuclear Science, 2011, 58(5): 2181−2189. DOI: 10.1109/TNS.2011.2146790.

    [31]

    TEIMOORISICHANI M, GOERTZEN A L. Count rate performance of brain-dedicated PET scanners: A Monte Carlo simulation study[J]. Physics in Medicine & Biology, 2019, 64(21): 215013.

    [32]

    TASHIMA H, YOSHIDA E, IWAO Y, et al. First prototyping of a dedicated PET system with the hemisphere detector arrangement[J]. Physics in Medicine & Biology, 2019, 64(6): 065004.

    [33]

    SHI H, DU D, XU J, et al. PengAssessment of dedicated brain PET designs with different geometries[C/OL]//2013 IEEE Nuclear Science Symposium and Medical Imaging Conference (2013 NSS/MIC). Seoul, Korea (South): IEEE, 2013: 1-4. [2022-10-25].

    [34]

    WANG T, NIU M, HUANG C, et al. Design and simulation of a helmet brain PET system[J/OL]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020, 978: 164470.

    [35]

    CHERRY S R, JONES T, KARP J S, et al. Total-body PET: Maximizing sensitivity to create new opportunities for clinical research and patient care[J/OL]. Journal of Nuclear Medicine, 2018, 59(1): 3-12.

    [36] 张春. 头盔式数字PET灵敏度和计数率性能研究[D/OL]. 武汉: 华中科技大学, 2022.

    ZHANG C. Study on sensitivity and count rate performance of helmet digital PET[D/OL]. Wuhan: Huazhong University of Science and Technology, 2022. (in Chinese).

    [37]

    National Electrical Manufacturers Association. Performance measurements of positron emission tomographs[S]. NEMA Standards Publication, NU2-2001, 2001.

    [38]

    National Electrical Manufacturers Association. Performance measurements of small animal positron emission tomographs[S]. NEMA Standards Publication, NU4-2008, 2008: 1-23.

    [39] 中国日报湖北站. 全球首台脑数字PET完成两百多例脑病成像[EB/OL]. (2019-11-21)[2024-05-10]. https://hb.chinadaily.com.cn/a/201911/21/WS5dd6693aa31099ab995ed5e3.html.
    [40] 黎静. 脑部专用全数字PET定量分析[D/OL]. 武汉: 华中科技大学, 2021.

    LI J. Quantitative analysis of brain-dedicated All-digital PET[D/OL]. Wuhan: Huazhong University of Science and Technology, 2021. (in Chinese).

    [41] 中华医学会核医学分会, 北京认知神经科学学会. 淀粉样蛋白PET脑显像技术规范专家共识[J/OL]. 中华核医学与分子影像杂志, 2020, 40(12): 736-742.
    [42] 新华社. 中国的粮食安全[EB/OL]. (2019-10-14)[2024-05-10]. https://www.gov.cn/zhengce/2019-10/14/content_5439410.htm.
    [43]

    GALIENI A, D’ASCENZO N, STAGNARI F, et al. Past and future of plant stress detection: An overview from remote sensing to positron emission tomography[J]. Frontiers in Plant Science, 2021, 11: 609155. DOI: 10.3389/fpls.2020.609155.

    [44]

    TOYOTA M, SPENCER D, SAWAI-TOYOTA S, et al. Glutamate triggers long-distance, calcium-based plant defense signaling[J]. Science, 2018, 361(6407): 1112−1115. DOI: 10.1126/science.aat7744.

    [45]

    KUCHENBROD E, KAHLER E, THÜRMER F, et al. Functional magnetic resonance imaging in intact plants-quantitative observation of flow in plant vessels[J]. Magnetic Resonance Imaging, 1998, 16(3): 331−338. DOI: 10.1016/S0730-725X(97)00307-X.

    [46]

    DU J, JONES T. Technical opportunities and challenges in developing total-body PET scanners for mice and rats[J]. EJNMMI Physics, 2023, 10(1): 2. DOI: 10.1186/s40658-022-00523-6.

    [47]

    MIRANDA A, GLORIE D, BERTOGLIO D, et al. Awake 18F-FDG PET imaging of memantine-induced brain activation and test-retest in freely running mice[J]. Journal of Nuclear Medicine, 2019, 60(6): 844−850. DOI: 10.2967/jnumed.118.218669.

    [48]

    CHENG R, WANG F, LI S, et al. Single-ended readout depth-of-interaction measurements based on random forest algorithm[J]. IEEE Transactions on Radiation and Plasma Medical Sciences, 2023, 7(2): 105−112. DOI: 10.1109/TRPMS.2022.3218401.

    [49]

    LIU Y, LI A, CHENG R, et al. A depth-of-interaction rebinning method based on both geometric and activity weights[J]. Computer Methods and Programs in Biomedicine, 2023, 240: 107703. DOI: 10.1016/j.cmpb.2023.107703.

    [50]

    KYME A, SE S, MEIKLE S, et al. Markerless motion tracking of awake animals in positron emission tomography[J]. IEEE Transactions on Medical Imaging, 2014, 33(11): 2180−2190. DOI: 10.1109/TMI.2014.2332821.

    [51]

    BUHLER P, JUST U, WILL E, et al. An accurate method for correction of head movement in PET[J/OL]. IEEE Transactions on Medical Imaging, 2004, 23(9): 1176-1185.

    [52]

    RAHMIM A, DINELLE K, CHENG J C, et al. Accurate event-driven motion compensation in high-resolution PET incorporating scattered and random events[J/OL]. IEEE Transactions on Medical Imaging, 2008, 27(8): 1018-1033.

    [53] 董超群. 面向运动目标的PET成像运动校正研究[D/OL]. 武汉: 华中科技大学, 2021.

    DONG C. A research about motion correction of PET imaging for moving objects[D/OL]. Wuhan: Huazhong University of Science and Technology, 2021. (in Chinese).

  • 期刊类型引用(3)

    1. 陈乃刚,李忱,杨强,尹丹,张媛,魏淑凤,张士朋. CT韧带骨赘评分在SAPHO综合征中的应用. 临床放射学杂志. 2024(01): 116-119 . 百度学术
    2. 崔璨,李俊秋,于梅艳,温庆祥. SAPHO综合征的全身骨显像及SPECT/CT影像分析. 分子影像学杂志. 2024(09): 941-945 . 百度学术
    3. 谭华清,鲍海华,曹云太,夏弘婧,付诗晗. MRI与CT在SAPHO综合征诊断中的应用分析. 磁共振成像. 2023(11): 108-112 . 百度学术

    其他类型引用(0)

图(11)
计量
  • 文章访问数:  293
  • HTML全文浏览量:  51
  • PDF下载量:  43
  • 被引次数: 3
出版历程
  • 收稿日期:  2023-12-04
  • 修回日期:  2024-03-13
  • 录用日期:  2024-03-28
  • 网络出版日期:  2024-04-20
  • 刊出日期:  2024-07-27

目录

    /

    返回文章
    返回
    x 关闭 永久关闭