ISSN 1004-4140
CN 11-3017/P

面波勘探技术研究进展

陈宣凝, 韩复兴, 高正辉, 孙章庆

陈宣凝, 韩复兴, 高正辉, 等. 面波勘探技术研究进展[J]. CT理论与应用研究, 2023, 32(6): 815-835. DOI: 10.15953/j.ctta.2023.089.
引用本文: 陈宣凝, 韩复兴, 高正辉, 等. 面波勘探技术研究进展[J]. CT理论与应用研究, 2023, 32(6): 815-835. DOI: 10.15953/j.ctta.2023.089.
CHEN X N, HAN F X, GAO Z H, et al. Research Advancements in Surface Wave Exploration[J]. CT Theory and Applications, 2023, 32(6): 815-835. DOI: 10.15953/j.ctta.2023.089. (in Chinese).
Citation: CHEN X N, HAN F X, GAO Z H, et al. Research Advancements in Surface Wave Exploration[J]. CT Theory and Applications, 2023, 32(6): 815-835. DOI: 10.15953/j.ctta.2023.089. (in Chinese).

面波勘探技术研究进展

基金项目: 国家自然科学基金面上项目(海洋非均匀性地震波场特征与成像分析(42074150));中国石油集团科学技术研究院有限公司项目(稀疏束分解及全方位角道集提取模块开发(RIPED.CN-2022-JS-488));福田区地面坍塌综合监测和预警系统建设项目(FTCG2023000209)。
详细信息
    作者简介:

    陈宣凝: 女,吉林大学地球探测与信息技术学专业硕士研究生,研究方向为面波勘探技术,E-mail:chenxn21@mails.jlu.edu.cn

    通讯作者:

    高正辉: 男,吉林大学地球探测科学与技术学院讲师、硕士生导师,主要从事地球物理数值模拟计算,储层预测、反演、偏移成像问题及岩石物理学等方面的研究,E-mail:gaozh2020@jlu.edu.cn

  • 中图分类号: P  631;P  315

Research Advancements in Surface Wave Exploration

  • 摘要:

    面波勘探通过对提取面波的频散曲线等观测进而反演获得探测目标信息。面波勘探技术始于20世纪60年代,但近几十年来迅猛发展,已经被广泛应用在地震灾害及火山活动预测、深部地质结构、工程施工、矿区采空区、塌陷区探测以及星体近地表结构探测等方面。为了更全面了解面波勘探技术,本文从面波勘探技术的主动震源和被动震源这两种数据类型开始,回顾基于频散曲线和水平垂直振幅谱比观测的面波勘探技术基本理论,简要介绍面波反演方法,并介绍面波勘探技术的应用领域和发展趋势和前景。

    Abstract:

    Surface wave exploration plays a vital role in obtaining target detection information by analyzing and retrieving the dispersion curve of surface waves. Although surface wave exploration technology originated in the 1960s, it has experienced significant advancements in recent decades and has found widespread applications in earthquake disaster and volcanic activity prediction, deep geological structure analysis, engineering construction, mining area and goaf assessment, subsidence area detection, and near-surface structure investigation, including celestial bodies such as stars. This paper aims to provide a comprehensive overview of surface wave exploration technology. It begins by discussing two types of data sources, namely active source and passive source, and proceeds to review the fundamental theory of surface wave exploration based on dispersion curve analysis and observations of horizontal and vertical amplitude ratios. This paper also provides a brief introduction to the surface wave inversion method. Additionally, it highlights the various application domains of surface wave exploration, outlines the current development trend, and presents future prospects for this technology.

  • 近年来CT设备快速发展,探测器覆盖范围增大、扫描速度变快,使其在临床实践中得到广泛的应用[1-3],然而新型设备中扫描机架能够实施角度倾斜的越来越少。

    CT检查技术专家共识中颅脑的推荐扫描基线为听眶上线或听眦线[4],此基线可以获得较好的诊断层面以及较低的眼晶状体辐射剂量。如果CT机架无法倾斜角度,只能通过摆位使受检者尽量低头来调整扫描角度,但是一些特殊患者(如外伤、镇静、颈部僵直等)可能无法很好地配合,只能采用近似听眶下线为基线进行扫描。对于诊断层面可以通过对所得原始影像进行层面重组来实现基线纠正,然而眼晶状体作为辐射敏感器官位于扫描野内,势必会使得其器官剂量升高[5-6]

    器官剂量调制(organ dose modulation,ODM)技术是根据X射线管的角度调制管电流(mA),降低受检者辐射敏感器官前方扇形区域的管电流,同时保证总体CT扫描剂量水平和诊断图像的质量[7-8]。铋屏蔽材料可有效降低体表辐射敏感器官的辐射剂量[9-10]

    本研究探讨采用铋屏蔽联合器官剂量调制技术在颅脑CT检查中应用价值。

    GE Revolution螺旋CT;离体头颅标本一个;厚度为0.1 cm眼晶状体铋屏蔽眼罩一个(F&L MedicalProducts,规格13.80 cm×3.10 cm,含铋0.0085 g/mm,相当于0.015 mm厚度的铅);PTW公司30013 Farmer 空气电离室剂量计;IBM SPSS Statistics 24.0软件。

    CT机进行校正后,将离体头颅标本放置在扫描床的头托上,保证对称且位置居中,使其听眶上线垂直于检查床。PTW UNIDOS E剂量计测量端置于标本右侧眼眶处。

    扫描分为4组:常规固定mA序列、ODM序列、固定mA联合铋屏蔽序列、ODM联合铋屏蔽序列。

    扫描参数:逐层扫描模式(Axial),管电压120 kV,焦点为S,扫描视野(scanning field of view,SFOV)为Head,旋转时间1 s/r,重建层厚、间距均为5 mm,前置迭代ASiR-V 50%,矩阵512×512,扫描长度160 mm,软组织窗重建核为Stnd#,骨窗重建核为Bone Plus,容积CT剂量指数(volume CT dose index,CTDIvol)为44.75 mGy。

    所有扫描均以此CTDIvol为基准保持一致,固定mA序列和固定mA联合铋屏蔽序列管电流为315 mA,ODM序列和ODM联合铋屏蔽序列噪声指数(noise index)设置为推荐值2.1,使用铋屏蔽时将其置于双侧眼眶正上方,由于右眼眶上有剂量计,故铋屏蔽距右眼较远(约2.0 cm),距左眼较近(约0.5 cm)。每组扫描9次,记录扫描后生成的CTDIvol,读取剂量计读数作为眼晶状体吸收剂量。然后将离体头颅标本调整至听眶下线垂直于检查床,重复以上4组扫描序列。

    分别测量左侧小脑半球、左侧颞叶脑组织、左侧眶脂体CT值和标准差SD,感兴趣区(region of interest,ROI)面积为20.99 mm2。由两名放射科医生对影像进行评价,采用软组织窗(窗宽80 HU,窗位30 HU)和骨窗(窗宽4000 HU,窗位700 HU)分别观察眼睑、眶内软组织、脑组织以及额骨、颞骨,并采用3分法进行评分,如评分不一致则通过协商达成一致。

    Ⅰ级图像为质量很好,噪声小,组织结构显示清晰,对比良好,可以满足诊断需求;Ⅱ级图像为质量一般,图像噪声较大,部分组织结构显示欠佳,基本可满足诊断需求;Ⅲ 级图像为质量很低,噪声较大,伪影较重,组织结构显示不清,完全不能满足诊断需求。其中,Ⅰ级和Ⅱ级为符合诊断要求的图像。

    采用SPSS 24.0统计软件进行统计学分析,数据均符合正态分布,以$ ({\bar{x}}\pm {s}) $表示,且通过方差齐性检验,对眼晶状体辐射剂量、CT值差异、SD差异的多组比较均利用ANOVA方差分析,并采取Turkey法进一步两两比较。

    P < 0.05表示差异有统计学意义。

    颅脑扫描中不同基线、扫描以及屏蔽方式对眼晶状体辐射剂量的影响:在相同CTDIvol下,扫描基线相同时,固定mA序列晶状体辐射剂量最高,ODM联合铋屏蔽晶状体辐射剂量最低。其中采用听眶下线为扫描基线,固定mA序列时,晶状体剂量为43.49 mGy,采用听眶上线为扫描基线,ODM联合铋屏蔽序列时,晶状体剂量为14.81 mGy(表1)。

    表  1  颅脑扫描在采用不同基线、扫描以及屏蔽方式时眼晶状体的辐射剂量
    Table  1.  Radiation dose of the eye lens with different scanning and shielding methods under different baselines in brain scanning
    扫描及
    屏蔽方式
    听眶下线 听眶上线 统计检验
    固定mA ODM 固定mA
    联合铋屏蔽
    ODM联合
    铋屏蔽
    固定mA ODM 固定mA
    联合铋屏蔽
    ODM联合
    铋屏蔽
    F P
    容积CT剂量
    指数/mGy
    44.75 44.61 44.75 44.89 44.75 44.61 44.75 44.87
    眼晶状体
    剂量/mGy
    43.49±0.07 40.31±0.03 32.31±0.03 30.31±0.03 20.64±0.05 19.56±0.03 15.01±0.12 14.81±0.07 70.148 <0.001
    下载: 导出CSV 
    | 显示表格

    采用听眶下线为扫描基线时眼晶状体的辐射剂量均高于听眶上线为基线时的剂量,差异有统计学意义;组间两两比较差异均有统计学意义。

    不同扫描及屏蔽方式对影像CT值的影响。不论何种扫描及屏蔽方式,小脑半球及颞叶脑组织处CT值差异均无统计学意义。眼眶内CT值差异有统计学意义,其中采用听眶下线为扫描基线时,软组织窗:F=2899.595P<0.001;骨窗:F=2114.957P<0.001(表2)。采用听眶上线为扫描基线时,软组织窗:F=489.883,P<0.001;骨窗:F=575.869,P<0.001(表3)。

    表  2  采用听眶下线为基线时不同扫描及屏蔽方法的影像CT值
    Table  2.  The CT values of images with the orbitomeatal line under different scanning and shielding methods
    扫描及屏蔽方式 听眶下线 统计检验
    固定mA ODM 固定mA联合铋屏蔽 ODM联合铋屏蔽 F P
    软组织窗CT值/HU 小脑    43.36±0.52 42.94±0.59 43.19±0.74 43.07±0.79 0.619 0.608
    颞叶脑组织 40.09±0.48 39.76±0.27 39.72±0.53 39.82±0.53 1.142 0.347
    左眼    42.20±0.34 42.50±0.33 54.20±0.36 53.99±0.47 2899.595 <0.001
    骨窗CT值/HU   小脑    48.58±0.93 48.66±0.57 48.03±1.25 48.75±1.30 0.831 0.487
    颞叶脑组织 48.30±0.54 48.28±0.58 48.77±0.58 48.89±0.61 2.664 0.065
    左眼    46.50±0.34 46.31±0.53 59.93±0.44 59.43±0.65 2114.957 <0.001
    下载: 导出CSV 
    | 显示表格
    表  3  采用听眶上线为基线时不同扫描及屏蔽方法的影像CT值
    Table  3.  The CT values of images with the glabellomeatal line under different scanning and shielding methods
    扫描及屏蔽方式 听眶上线 统计检验
    固定mA ODM 固定mA联合铋屏蔽 ODM联合铋屏蔽 F P
    软组织窗CT值/HU 小脑    47.93±0.69 47.41±0.62 47.59±0.87 47.12±0.92 1.688 0.189
    颞叶脑组织 40.02±0.56 40.42±1.06 40.60±0.99 40.07±0.93 0.839 0.483
    左眼    43.41±1.29 43.98±0.39 54.13±1.13 55.82±0.24 489.883 <0.001
    骨窗CT值/HU   小脑    50.10±0.69 50.13±0.76 50.07±0.97 49.86±1.24 0.160 0.923
    颞叶脑组织 50.31±0.73 50.01±0.86 50.93±1.18 50.87±0.63 2.323 0.094
    左眼    50.93±0.88 50.34±0.95 62.21±0.78 62.59±0.78 575.869 <0.001
    下载: 导出CSV 
    | 显示表格

    使用铋屏蔽后眶脂体的CT值有所增加,两两比较显示固定mA与固定mA联合铋屏蔽序列、ODM与ODM联合铋屏蔽序列差异有统计学意义,而固定mA与ODM序列、固定mA联合铋屏蔽与ODM联合铋屏蔽序列差异均无统计学意义。

    不同扫描及屏蔽方式对影像SD影响。不论何种扫描及屏蔽方式,小脑半球及颞叶脑组织处SD差异均无统计学意义。眼眶内眶脂体SD差异有统计学差异,其中采用听眶下线为扫描基线时,软组织窗:F=102.243,P<0.001;骨窗:F=283.130,P<0.001(表4)。采用听眶上线为扫描基线时,软组织窗:F=43.269,P<0.001;骨窗:F=173.846,P<0.001(表5)。

    表  4  采用听眶下线为基线时不同扫描及屏蔽方法的图像噪声
    Table  4.  The noise levels of images with the orbitomeatal line under different scanning and shielding methods
    扫描及屏蔽方式 听眶下线 统计检验
    固定mA ODM 固定mA联合铋屏蔽 ODM联合铋屏蔽 F P
    软组织窗噪声 小脑    3.47±0.40 3.69±0.78 3.63±0.29 3.59±0.20 0.361 0.781
    颞叶脑组织 3.38±0.73 3.52±0.45 3.27±0.39 4.03±0.84 2.576 0.071
    左眼    3.90±0.30 4.08±0.38 7.10±0.75 6.93±0.53 102.243 <0.001
    骨窗噪声    小脑    21.82±1.81 22.23±0.76 21.93±2.55 22.28±1.65 0.138 0.937
    颞叶脑组织 23.21±1.27 24.17±1.59 24.81±2.19 24.62±1.47 1.658 0.196
    左眼    24.73±1.00 24.88±0.97 34.02±0.74 34.32±1.10 283.130 <0.001
    下载: 导出CSV 
    | 显示表格
    表  5  采用听眶上线为基线时不同扫描及屏蔽方法的图像噪声值
    Table  5.  The noise levels of images with the glabellomeatal line under different scanning and shielding methods
    扫描及屏蔽方式 听眶上线 统计检验
    固定mA ODM 固定mA联合铋屏蔽 ODM联合铋屏蔽 F P
    软组织窗噪声 小脑    2.87±0.47 3.23±0.42 2.92±0.37 3.21±0.46 1.770 0.173
    颞叶脑组织 3.97±0.37 3.64±0.46 3.81±0.43 3.96±0.62 0.890 0.457
    左眼    3.42±0.51 3.74±0.24 5.36±0.54 4.93±0.32 43.269 <0.001
    骨窗噪声    小脑    29.38±2.46 29.43±1.57 29.54±1.53 31.20±2.21 1.764 0.174
    颞叶脑组织 21.21±1.39 21.52±1.71 22.50±1.13 22.40±2.32 1.276 0.299
    左眼    24.76±1.31 24.23±1.66 35.00±1.38 34.54±0.97 173.846 <0.001
    下载: 导出CSV 
    | 显示表格

    使用铋屏蔽后眶脂体SD有所增加。两两比较显示固定mA与固定mA联合铋屏蔽序列,ODM与ODM联合铋屏蔽序列差异有统计学意义,而固定mA与ODM序列、固定mA联合铋屏蔽与ODM联合铋屏蔽序列差异均无统计学意义。

    结果显示,不论采用哪种扫描基线,固定mA序列与ODM序列所得影像质量均为Ⅰ级;当使用固定mA联合铋屏蔽和ODM联合铋屏蔽时对颅内影像诊断评分为Ⅰ级,但对于软组织窗铋屏蔽所在层面的眶内结构评分为 Ⅲ 级,骨窗铋屏蔽附近的骨质结构评分为Ⅱ级(图1)。

    图  1  不同基线、扫描及屏蔽方式下所得颅脑图像
    注:(a)~(d)扫描基线为听眶上线。(a)为固定mA序列软组织窗图像,(b)为固定mA联合铋屏蔽序列软组织窗图像,(c)为ODM序列骨窗图像,(d)为ODM联合铋屏蔽序列骨窗图像;(e)~(h)扫描基线为听眶下线,(e)为固定mA序列软组织窗图像,(f)为固定mA联合铋屏蔽序列软组织窗图像,(g)为ODM序列骨窗图像,(h)为ODM联合铋屏蔽序列骨窗图像。
    Figure  1.  Images with different scanning and shielding methods under different baselines in brain scanning

    近年来CT设备的一个发展方向为探测器宽度越来越宽、转速越来越快,为临床应用提供了极大的便利,特别是对婴幼儿患者[11]、急性脑血管病患者[12-13]等进行检查时,可使扫描尽快完成。但是此类患者往往难以进行体位配合,同时大部分新型CT机架无法倾斜角度,只能以听眶下线为基线进行扫描,此结果必然导致眼晶状体暴露于扫描范围之内,接受X射线的直接照射,使得眼晶状体受到的辐射剂量增加。

    本研究分别采用听眶上线和听眶下线为扫描基线作比较。在相同扫描参数及屏蔽方法下,采用听眶上线进行扫描时辐射剂量均低于采用听眶下线,可降低46.49%~48.86%。由此可见,眼晶状体是否处于扫描野内对其所接受的辐射照射影响较大。

    近年来,在CT扫描检查过程中是否需要使用屏蔽防护收到了很多关注,例如国际放射防护委员会(International Commission on Radiological Protection,ICRP)和国际原子能机构(International Atomic Energy Agency,IAEA)支持使用[14-15],而美国医学物理师协会(American Association of Physicist in Medicine,AAPM)发表声明:应停止在X射线诊断成像过程中对患者的性腺和胎儿进行屏蔽防护[16]。欧洲对患者辐射防护的共识[17]中指出,在使用成像平面内屏蔽防护时需要考虑以下因素。

    ①由于患者解剖结构存在差异,操作人员在正确放置屏蔽物以遮盖辐射敏感器官时可能会遇到挑战;②屏蔽的高衰减材料可能会干扰自动曝光控制系统的正常工作,反而可能导致患者收到更高的辐射剂量;③所用的屏蔽物可能会引起硬化伪影降低图像质量。

    本研究眼晶状体作为被屏蔽的对象,操作上容易实现,不存在如甲状腺或性腺等由于解剖结构的差异而无法正确放置的现象。

    实验中采用固定CTDIvol,在应用相同基线时与常规固定mA序列相比,ODM、铋屏蔽和ODM联合铋屏蔽序列均能有效降低眼晶状体的辐射剂量,其中ODM联合铋屏蔽的效果最好。孙静坤等[18]研究表明采用X-care联合铋屏蔽可有效降低眼晶状体的辐射剂量,与本研究结论一致。

    采用铋屏蔽后,虽然小脑半球以及颞叶脑组织的CT值和噪声与未使用铋屏蔽相比没有明显变化。但是对于眶内组织,CT值和噪声均有所增加,主要是由于靠近铋屏蔽附近产生线束硬化伪影导致CT值升高,同时X光子数减少使得噪声增加,特别是左眼,由于其更靠近铋,CT值和噪声增加明显。医师的主观评价也显示使用铋屏蔽后对于眼眶内以及周围骨组织的诊断信心不足。Di Rosso等[19]通过模体研究得出铋屏蔽会导致眼眶内噪声增加,对颅内噪声却没有影响,可以考虑与其他降低剂量的方法结合使用。在临床应用中,如诊断要点包括眼眶时需谨慎使用铋屏蔽,或者采用在铋与眼表面之间添加海绵垫以减小线束硬化伪影对组织的影响[20]

    不过,采用听眶下线为基线时,即使使用ODM联合铋屏蔽方法,眼晶状体的辐射剂量依然高于听眶上线为基线时的常规序列扫描,由此可见选择正确的扫描基线对于晶状体的保护要优于ODM技术及铋屏蔽防护。

    本研究只是采用离体头颅标本作为对象,旨在对方法的可行性进行研究,与人体存在一定差异,实验结果还有待于进一步收集临床病例进行验证。此外,不同的扫描基线会可能对图像层面的诊断要点显示有所影响,本实验中未对此进行研究,后期可通过薄层图像进行多平面重组来纠正此影响。

    总之,进行颅脑CT扫描时,采用听眶上线作为基线时眼晶状体可比听眶下线降低近一半的辐射剂量,因此临床操作中当CT机架无法倾斜角度时,应尽量通过摆位、垫头枕等方式使受检者低头,使用听眶上线作为扫描基线。如患者确实无法进行体位配合时,在明确诊断要点为非眼眶附近时,可采用ODM联合铋屏蔽方法来进一步降低眼晶状体的辐射剂量。

  • 图  1   主动源数据采集图

    Figure  1.   Diagram illustrating artificial source data acquisition

    图  2   常用面波单点观测台阵示意图

    Figure  2.   Schematic representations of common surface wave single-point observation arrays

    图  3   三层速度递增水平层状介质模型地震记录及合成面波频散能量谱[24]

    (a)合成Rayleigh波地震记录。频散能量谱:(b)$\tau-p $变换法(c)相移法(d)$f-k $变换法

    Figure  3.   Seismic record and synthetic surface wave dispersion energy spectrum of a three-layer horizontal layered media model with increasing velocity

    图  4   实验数据频散能量图[28]

    Figure  4.   Dispersion energy diagrams of Rayleigh wave data from the Changzhou suburb

    图  5   SPAC法提取频散曲线流程图[30]

    Figure  5.   Flow chart outlining the SPAC method for extractingdispersion curve

    图  6   折射微动法用于研究南加州纽霍尔消防站得到的结果图[31]

    Figure  6.   Application of the refraction micromotion method to study the Newhall Fire Station in Southern California

    图  7   模型不含噪声数据ACMPA与多种优化算法收敛曲线对比[75]

    Figure  7.   Comparison of convergence curves of ACMPA with those of other optimization algorithms; noise-free data from the model are used

    图  8   系统操作流程图[7]

    Figure  8.   Flow chart showing the system operation process

    图  9   HVSR等值线图[81]

    Figure  9.   HVSR contour map

  • [1] 陈宏林, 丰继林. 工程地质勘察方法[M]. 北京: 地震出版社, 1998: 139-171.

    CHEN H L, FENG J L. Engineering geological investigation method[M]. Beijing: Seismological Press, 1998: 139-171.

    [2]

    NAZARIAN S, STOKOE K H. Evaluation of moduli and thicknesses of pavement systems by spectral-analysis-of-surface-waves method[R]. Centre for Transportation Research, 1983.

    [3]

    PARK C B. Multi-channel analysis of surface waves using vibroseis (MASWV)[C]//1996 SEG Annual Meeting, 1996.

    [4]

    NAKAMURA Y. Method for dynamic characteristics estimation of subsurface using microtremor on the ground surface[J]. Railway Technical Research Institute, 1989, 30(1): 25−33.

    [5]

    DERODE A, LAROSE E, TANTER M, et al. Recovering the Green's function from field-field correlations in an open scattering medium[J]. The Journal of the Acoustical Society of America, 2003, 113(6): 2973−2976. doi: 10.1121/1.1570436

    [6]

    CAMPILLO M, PAUL A. Long-range correlations in the diffuse seismic coda[J]. Sciences, 2003, 299(5606): 547−549.

    [7]

    HUTAPEA F L, TSUJI T, IKEDA T. Real-time crustal monitoring system of Japanese Islands based on spatio-temporal seismic velocity variation[J]. Earth Planets Space, 2020, 72(1): 1−16. doi: 10.1186/s40623-019-1127-2

    [8]

    YANG Y J, RITZWOLLER M H. Characteristics of ambient seismic noise as a source for surface wave tomography[J]. G-Cubed: Geochemistry, Geophysics, Geosystems, 2008, 9(2): Q02008.

    [9]

    LONGUET-HIGGINS M S. A theory of the origin of microseisms[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1950, 243(243): 1−35.

    [10]

    XIA J, MILLER R D, PARK C B, et al. Utilization of high-frequency Rayleigh waves in near-surface geophysics[J]. Leading Edge (Tulsa, OK), 2004, 23(8): 753−759. doi: 10.1190/1.1786895

    [11] 李欣欣. 面波成像技术[M]. 北京: 中国石化出版社出版社, 2019.

    LI X X. Surface wave imaging technology[M]. Beijing: China Petrochemical Press, 2019.

    [12]

    HILDEBRAND J A. Anthropogenic and natural sources of ambient noise in the ocean[J]. Marine Ecology Progress, 2009, 395: 5−20. DOI: 10.3354/meps08353.

    [13]

    OKADA H. Theory of efficient array observations of microtremors with special reference to the SPAC method[J]. Exploration Geophysics, 2006, 37(1): 73−85. doi: 10.1071/EG06073

    [14]

    CHO I, TADA T, SHINOZAKI Y. A new method to determine phase velocities of Rayleigh waves from microseisms[J]. Geophysics, 2004, 69(6): 1535−1551. doi: 10.1190/1.1836827

    [15] 王建楠. 背景噪音提取高阶频散曲线的矢量波数变换方法[D]. 合肥: 中国科学技术大学, 2019.

    WANG J N. A vector wavenumber transforms method for background noise extraction of high-order dispersion curves[D]. Hefei: University of Science and Technology of China, 2019. (in Chinese).

    [16]

    PARK C B, MILLER R D, RYDEN N, et al. Combined use of active and passive surface waves[J]. Journal of Environmental and Engineering Geophysics, 2005, 10(3): 323−334. doi: 10.2113/JEEG10.3.323

    [17]

    XIA J H, XU Y X, MILLER R D. Generating an image of dispersive energy by frequency decomposition and slant stacking[J]. Pure and Applied Geophysics, 2007, 164(5): 941−956. doi: 10.1007/s00024-007-0204-9

    [18]

    CAPON J, M. I. T. LINCOLN LABORATORY L, MASS. High-resolution frequency-wavenumber spectrum analysis[J]. Proceedings of the IEEE, 1969, 57(8): 1408−1418. doi: 10.1109/PROC.1969.7278

    [19]

    AKI K. Space and time spectra of stationary stochastic waves, with special reference to microtremors[J]. Bulletin, Earthquake Research Institute, 1957, 35: 415−456.

    [20]

    CLAERBOUT J F. Synthesis of a layered medium from its acoustic transmission response[J]. Geophysics, 1968, 33(2): 264. doi: 10.1190/1.1439927

    [21]

    WANG J N, WU G X, CHEN X F. Frequency-bessel transform method for effective imaging of higher-mode rayleigh dispersion curves from ambient seismic noise data[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(4): 3708−3723. doi: 10.1029/2018JB016595

    [22]

    YOUNG C N. Automation in ambient vibration analysis for soil characterisation[D]. Sydney: University of Western Sydney, 2014.

    [23]

    BOORE D M, BROWN L T. Comparing shear-wave velocity profiles from inversion of surface-wave phase velocities with downhole measurements: Systematic differences between the CXW method and downhole measurements at six USC strong-motion sites[J]. Seismological Research Letters, 1998, 69(3): 222−229. doi: 10.1785/gssrl.69.3.222

    [24] 于涵, 刘财, 王典, 等. 面波频散能量谱计算方法[J]. 吉林大学学报(地球科学版), 2022,52(2): 602−612.

    YU H, LIU C, WANG D, et al. Calculation method of surface wave dispersion energy spectrum[J]. Journal of Jilin University (Earth Science Edition), 2022, 52(2): 602−612. (in Chinese).

    [25]

    Dal MORO G, PIPAN M, FORTE E, et al. Determination of Rayleigh wave dispersion curves for near surface applications in unconsolidated sediments[C]//The 2003 SEG Annual Meeting, Seg Technical Program Expanded Abstracts, Dallas, Texas, 2003: 1247-1250.

    [26]

    LUO Y, XIA J, MILLER R D, et al. Rayleigh-wave mode separation by high-resolution linear Radon transform[J]. Geophysical Journal International, 2009, 179(1): 254−264. doi: 10.1111/j.1365-246X.2009.04277.x

    [27] 杨振涛, 陈晓非, 潘磊, 等. 基于矢量波数变换法(VWTM)的多道Rayleigh波分析方法[J]. 地球物理学报, 2019,62(1): 298−301, 303-305.

    YANG Z T, CHEN X F, PAN L, et al. Multichannel Rayleigh wave analysis method based on vector wave-number transformation method[J]. Journal of Geophysics, 2019, 62(1): 298−301, 303-305. (in Chinese).

    [28] 苏悦, 杨振涛, 杨博, 等. 基于矢量波数变换法的主动源瑞雷波多模式提取方法在近地表地层结构探测中的应用研究[J]. 北京大学学报(自然科学版), 2020,56(3): 427−435.

    SU Y, YANG Z T, YANG B, et al. Application of active source rayleigh wave multi-mode extraction method based on vector wavenumber transform in near-surface formation structure detection[J]. Journal of Peking University (Natural Science), 2020, 56(3): 427−435. (in Chinese).

    [29] 杨振涛. 被动源面波勘探高阶频散曲线的提取和应用[D]. 合肥: 中国科学技术大学, 2017.

    YANG Z T. Extraction and application of high order dispersion curve in passive surface wave exploration[D]. Hefei: University of Science and Technology of China, 2017. (in Chinese).

    [30]

    LING S. Research on the estimation of phase velocities of surface waves in microtremors[D]. Hokkaido: Hokkaido University, 1994.

    [31]

    LOUIE J N. Faster, better: Shear-wave velocity to 100 meters depth from refraction microtremor arrays[J]. Bulletin of the Seismological Society of America, 2001, 91(2): 347−364. doi: 10.1785/0120000098

    [32]

    YOKOI T, MARGARYAN S. Consistency of the spatial autocorrelation method with seismic interferometry and its consequence[J]. Geophysical Prospecting, 2008, 56(3): 435−451. doi: 10.1111/j.1365-2478.2008.00709.x

    [33] 牟新刚, 周奇, 周晓, 等. 一种高频拓展的改进地震干涉算法研究[J]. 仪器仪表学报, 2021,42(4): 59−66.

    MOU X G, ZHOU Q, ZHOU X, et al. Research on an improved seismic interference algorithm based on high frequency expansion[J]. Chinese Journal of Instrument, 2021, 42(4): 59−66. (in Chinese).

    [34] 李正波. 频率贝塞尔变换法提取地震记录中的频散信息[D]. 合肥: 中国科学技术大学, 2020.

    LI Z B. Extraction of dispersion information from seismic records using frequency bessel transform[D]. Hefei: University of Science and Technology of China, 2020. (in Chinese).

    [35] 黎汉民. 矢量波数变换法在浅层勘探中的应用[D]. 合肥: 中国科学技术大学, 2018.

    LI H M. Application of vector wavnumber transformation method in shallow exploration[D]. Hefei: University of Science and Technology of China, 2018. (in Chinese).

    [36]

    MA Q, PAN L, CHEN X. Utilizing vector wavenumber transform method to extract multi-mode dispersion curves of Rayleigh waves from ambient seismic noise and the application to structure inversion in Bohemian Massif[J]. Geophysical Research Abstracts, 2019, 21: 1.

    [37]

    ZHANG X T, JIA Z, ROSS Z E, et al. Extracting dispersion curves from ambient noise correlations using deep learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(12): 8932−8939. doi: 10.1109/TGRS.2020.2992043

    [38]

    WANG Z N, SUN C Y, WU D S. Automatic picking of multi-mode surface-wave dispersion curves based on machine learning clustering methods[J]. Computational Geosciences, 2021, 153: 104809.

    [39]

    DAI T Y, XIA J H, NING L, et al. Deep learning for extracting dispersion curves[J]. Surveys in Geophysics, 2021, 42(1): 69−95. doi: 10.1007/s10712-020-09615-3

    [40]

    YANG T W, XU Y, CAO D P, et al. SDCnet: An Unet with residual blocks for extracting dispersion curves from seismic data[J]. Computational Geosciences, 2022, 166: 105183. doi: 10.1016/j.cageo.2022.105183

    [41] 周旭彤, 胡进军, 谭景阳, 等. 基于HVSR的DONET1海底地震动场地效应研究[J]. 震灾防御技术, 2021,16(1): 105−115.

    ZHOU X T, HU J J, TAN J Y, et al. Study on-site effect of DONET1 seabed ground motion based on HVSR[J]. Earthquake Prevention Technology, 2021, 16(1): 105−115. (in Chinese).

    [42] 阮明明, 王帅军, 田晓峰, 等. 利用HVSR法探测渭河盆地浅部构造[J]. 大地测量与地球动力学, 2022,42(6): 584−587, 621.

    RUAN M M, WANG S J, TIAN X F, et al. Exploration of shallow structures in Weihe Basin by HVSR method[J]. Geodesy and Geodynamics, 2022, 42(6): 584−587, 621. (in Chinese).

    [43]

    NAKAMURA Y. Clear identification of fundamental idea of Nakamura's technique and its applications[C]//12th World Conference on Earthquake Engineering (12 WCEE 2000) v.5: Engineering Seismology, 2001.

    [44] 张立, 刘争平. 水平层状介质中基阶瑞利面波椭圆极化特征数值分析与研究[J]. 地球物理学报, 2013,(5): 1686−1695.

    ZHANG L, LIU Z P. Numerical analysis and study on elliptic polarization characteristics of fundamental Rayleigh surface waves in horizontal layered media[J]. Journal of Geophysics, 2013, (5): 1686−1695. (in Chinese).

    [45]

    OUBAICHE E, CHATELAIN J L, BOUGUERN A, et al. Experimental relationship between ambient vibration H/V peak amplitude and shear-wave velocity contrast[J]. Seismological Research Letters, 2012, 83(6): 1038−1046. doi: 10.1785/0220120004

    [46]

    PICOZZI M, ALBARELLO D. Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations measurements, processing and interpretation[J]. Geophysical Journal International, 2004, 169(1): 189−200.

    [47]

    HERAK M. ModelHVSR—A Matlab® tool to model horizontal-to-vertical spectral ratio of ambient noise[J]. Computational Geosciences, 2008, 34(11): 1514−1526. doi: 10.1016/j.cageo.2007.07.009

    [48]

    BIGNARDI S, MANTOVANI A, ZEID N A. OpenHVSR: Imaging the subsurface 2D/3D elastic properties through multiple HVSR modeling and inversion[J]. Computational Geosciences, 2016, 93(1): 103−113.

    [49]

    BIGNARDI S, YEZZI A J, FIUSSELLO S, et al. OpenHVSR-processing toolkit: Enhanced HVSR processing of distributed microtremor measurements and spatial variation of their informative content[J]. Computational Geosciences, 2018, 120: 10−20. doi: 10.1016/j.cageo.2018.07.006

    [50] 宓彬彬. 复杂浅地表弹性介质面波分析方法研究[D]. 武汉: 中国地质大学, 2018.

    MI B B. Study on surface wave analysis method of complex shallow surface elastic medium[D]. Wuhan: China University of Geosciences, 2018. (in Chinese).

    [51]

    DAL MORO G, PANZA G F. Multiple-peak HVSR curves: Management and statistical assessment[J]. Engineering Geology, 2022, 297: 106500. doi: 10.1016/j.enggeo.2021.106500

    [52]

    CAPIZZI P, MARTORANA R. Analysis of HVSR data using a modified centroid-based algorithm for near-surface geological reconstruction[J]. Geosciences, 2022, 12(4): 147. doi: 10.3390/geosciences12040147

    [53]

    ALONSO-PANDAVENES O, TORRES G, TORRIJO F J, et al. Basement tectonic structure and sediment thickness of a valley defined using HVSR geophysical investigation, Azuela valley, Ecuador[J]. Bulletin of Engineering Geology and the Environment, 2022, 81(5): 1−14.

    [54] 林国良, 张潜, 崔建文, 等. 利用地脉动HVSR研究2014年鲁甸6.5级地震场地效应[J]. 地震研究, 2019,42(4): 531−537, 650.

    LIN G L, ZHANG Q, CUI J W, et al. Study on the side effect of the 2014 Ludian M6.5 earthquake using ground pulsation HVSR[J]. Seismological Research, 2019, 42(4): 531−537, 650. (in Chinese).

    [55]

    FAH D, WATHELET M, KRISTEKOVA M, et al. Using ellipticity information for site characterization[M]. NERIES JRA4 "Geotechnical Site Characterisation", 2009.

    [56]

    ENDRUN B. Love wave contribution to the ambient vibration H/V amplitude peak observed with array measurements[J]. Journal of Seismology, 2011, 15(3): 443−472. doi: 10.1007/s10950-010-9191-x

    [57]

    POGGI V, FAH D. Estimating Rayleigh wave particle motion from three-component array analysis of ambient vibrations[J]. Geophysical Journal International, 2010, 180(1): 251−267. doi: 10.1111/j.1365-246X.2009.04402.x

    [58]

    FERREIRA A M G, MARIGNIER A, ATTANAYAKE J, et al. Crustal structure of the Azores Archipelago from Rayleigh wave ellipticity data[J]. Geophysical Journal International, 2020, 221(2): 1232−1247. doi: 10.1093/gji/ggaa076

    [59] 杜亚楠. 基于多阶瑞雷波视频散曲线和椭圆率曲线联合反演的微动探测方法研究[D]. 北京: 中国科学院大学, 2019.

    DU Y N. Research on fretting detection method based on multi-order Rayleigh wave video dispersion curve and ellipticity curve inversion[D]. Beijing: University of Chinese Academy of Sciences, 2019. (in Chinese).

    [60]

    SOCCO L V, BOIERO D. Improved Monte Carlo inversion of surface wave data[J]. Geophysical Prospecting, 2008, 56(3): 357−371. doi: 10.1111/j.1365-2478.2007.00678.x

    [61]

    DAL MORO G, PIPAN M. Joint inversion of surface wave dispersion curves and reflection travel times via multi-objective evolutionary algorithms[J]. Journal of Applied Geophysics, 2007, 61(1): 56−81. doi: 10.1016/j.jappgeo.2006.04.001

    [62]

    SONG X H, GU H M, ZHANG X Q, et al. Pattern search algorithms for nonlinear inversion of high-frequency Rayleigh-wave dispersion curves[J]. Computational Geosciences, 2008, 34(6): 611−624. doi: 10.1016/j.cageo.2007.05.019

    [63]

    SAMBRIDGE M. Geophysical inversion with a neighbourhood algorithm-I. Searching a parameter space[J]. Geophysical Journal International, 1999, 138(2): 479−494. doi: 10.1046/j.1365-246X.1999.00876.x

    [64]

    SONG X H, TANG L, LV X C, et al. Shuffled complex evolution approach for effective and efficient surface wave analysis[J]. Computational Geosciences, 2012, 42: 7−17.

    [65]

    SONG X H, TANG L, LV X C, et al. Application of particle swarm optimization to interpret Rayleigh wave dispersion curves[J]. Journal of Applied Geophysics, 2012, (84): 1−13.

    [66]

    SONG X H, LI L, ZHANG X Q, et al. An implementation of differential search algorithm (DSA) for inversion of surface wave data[J]. Journal of Applied Geophysics, 2014, 111: 334−345. doi: 10.1016/j.jappgeo.2014.10.017

    [67]

    SONG X H, LI L, ZHANG X Q, et al. Differential evolution algorithm for nonlinear inversion of high-frequency Rayleigh wave dispersion curves[J]. Journal of Applied Geophysics, 2014, 109: 47−61. doi: 10.1016/j.jappgeo.2014.07.014

    [68]

    SONG X H, GU H M, TANG L, et al. Application of artificial bee colony algorithm on surface wave data[J]. Computational Geosciences, 2015, 83: 219−230.

    [69]

    SONG X H, TANG L, ZHAO S T, et al. Grey wolf optimizer for parameter estimation in surface waves[J]. Soil Dynamics and Earthquake Engineering, 2015, 75: 147−157.

    [70]

    LU Y X, PENG S P, DU W F, et al. Rayleigh wave inversion using heat-bath simulated annealing algorithm[J]. Journal of Applied Geophysics, 2016, 134: 267−280. doi: 10.1016/j.jappgeo.2016.09.008

    [71]

    SAIFUDDIN, YAMANAKA H, CHIMOTO K. Variability of shallow soil amplification from surface-wave inversion using the Markov-chain Monte Carlo method[J]. Soil Dynamics and Earthquake Engineering, 2018, 107: 141−151.

    [72]

    MIRJALILI S. SCA: A sine cosine algorithm for solving optimization problems[J]. Knowledge-Based Systems, 2016, 96(0): 120−133.

    [73] 高旭, 于静, 李学良, 等. 自适应权重蜻蜓算法及其在瑞雷波频散曲线反演中的应用[J]. 石油地球物理勘探, 2021,56(4): 745−757, 671-672.

    GAO X, YU J, LI X L, et al. Adaptive weighted Dragonfly algorithm and its application in Rayleigh wave dispersion curve inversion[J]. Petroleum geophysical exploration, 2021, 56(4): 745−757, 671-672. (in Chinese).

    [74]

    FARAMARZI A, HEIDARINEJAD M, MIRJALILI S, et al. Marine Predators Algorithm: A nature-inspired metaheuristic[J]. Expert Systems with Applications, 2020, 152: 113377. doi: 10.1016/j.eswa.2020.113377

    [75] 于涵, 刘财, 王典, 等. 基于改进海洋捕食者优化算法和瑞雷波频散曲线的近地表地层参数反演[J]. 地球物理学报, 2023,66(2): 796−809.

    YU H, LIU C, WANG D, et al. Inversion of near-surface formation parameters based on improved marine predator optimization algorithm and Rayleigh wave dispersion curve[J]. Chinese Journal of Geophysics, 2023, 66(2): 796−809. (in Chinese).

    [76]

    MATASSONI L, FIASCHI A. Assessment of seismic ground motion amplification and liquefaction at a volcanic area characterized by residual soils[J]. Journal of Mountain Science, 2020, 17(3): 740−752. doi: 10.1007/s11629-019-5753-8

    [77]

    OBERMANN A, PLANES T, LAROSE E, et al. Imaging preeruptive and coeruptive structural and mechanical changes of a volcano with ambient seismic noise[J]. Journal of Geophysical Research: Solid Earth, 2013, 118(12): 6285−6294. doi: 10.1002/2013JB010399

    [78]

    BENNINGTON N, HANEY M, THURBER C, et al. Inferring magma dynamics at Veniaminof Volcano via application of ambient noise[J]. Geophysical Research Letters, 2018, 45(21): 11.

    [79]

    MELE M, BERSEZIO R, BINI A, et al. Subsurface profiling of buried valleys in central alps (northern Italy) using HVSR single-station passive seismic[J]. Journal of Applied Geophysics, 2021, 193: 104407. doi: 10.1016/j.jappgeo.2021.104407

    [80]

    KANG S Y, KIM K H. Bedrock depth variations and their applications to identify Blind faults in the Pohang area using the horizontal-to-vertical spectral ratio (HVSR)[J]. Journal of the Korean earth science society, 2022, 43(1): 188−198. doi: 10.5467/JKESS.2022.43.1.188

    [81]

    SGATTONI G, CASTELLARO S. Detecting 1-D and 2-D ground resonances with a single-station approach[J]. Geophysical Journal International, 2020, 223(1): 471−487. doi: 10.1093/gji/ggaa325

    [82]

    MANZO R, NARDONE L, GAUDIOSI G, et al. A first 3-D shear wave velocity model of the Ischia Island (Italy) by HVSR inversion[J]. Geophysical Journal International, 2022, 230(3): 2056−2072. doi: 10.1093/gji/ggac157

    [83] 叶咸, 余相贵, 李果, 等. 瞬态瑞雷面波勘探技术在公路边坡注浆加固效果检测中的应用[J]. 公路交通科技(应用技术版), 2016,(2): 89−91, 94.

    YE X, YU X G, LI G, et al. Application of transient Rayleigh surface wave exploration technology in Detection of reinforcement effect of highway slope grouting[J]. Highway Traffic Technology (Applied Technology Edition), 2016, (2): 89−91, 94. (in Chinese).

    [84] 徐佩芬, 李传金, 凌甦群, 等. 利用微动勘察方法探测煤矿陷落柱[J]. 地球物理学报, 2009,52(7): 1923−1930. doi: 10.3969/j.issn.0001-5733.2009.07.028

    XU P F, LI C J, LING S Q, et al. Detection of collapse column in coal mine by microdynamic prospecting method[J]. Chinese Journal of Geophysics, 2009, 52(7): 1923−1930. (in Chinese). doi: 10.3969/j.issn.0001-5733.2009.07.028

    [85] 刘艳秋, 徐洪苗, 王小勇, 等. 面波勘探在工程勘察中的应用[J]. 安徽地质, 2019,29(1): 40−44. doi: 10.3969/j.issn.1005-6157.2019.01.008

    LIU Y Q, XU H M, WANG X Y, et al. Application of surface wave exploration in engineering investigation[J]. Anhui Geology, 2019, 29(1): 40−44. (in Chinese). doi: 10.3969/j.issn.1005-6157.2019.01.008

    [86] 吴曲波, 潘自强, 陈金勇, 等. 利用瞬态瑞雷面波法探测浅层玄武岩三维分布−以沙特Sabkhah Ad Dumathah地区为例[J]. 地球物理学进展, 2019,34(5): 1938−1944. doi: 10.6038/pg2019CC0401

    WU Q B, PAN Z Q, CHEN J Y, et al. Detection of three-dimensional distribution of shallow basalts by transient Rayleigh surface wave method: A case study of Sabkhah Ad Dumathah area, Saudi Arabia[J]. Progress in Geophysics, 2019, 34(5): 1938−1944. (in Chinese). doi: 10.6038/pg2019CC0401

    [87] 周荣亮, 刘彦华, 徐睿知. 多道瞬态面波在LNG罐区地基勘察中的应用[J]. 工程地球物理学报, 2022,19(2): 162−167. doi: 10.3969/j.issn.1672-7940.2022.02.005

    ZHOU R L, LIU Y H, XU R Z. Application of multi-channel transient surface waves in the ground investigation of LNG tank area[J]. Chinese Journal of Engineering Geophysics, 2022, 19(2): 162−167. (in Chinese). doi: 10.3969/j.issn.1672-7940.2022.02.005

    [88] 李圣林, 胡泽安, 吴海波. 瞬态瑞雷面波勘探中隐伏溶洞的响应特征研究[J]. 物探化探计算技术, 2019,41(4): 541−546. doi: 10.3969/j.issn.1001-1749.2019.04.15

    LI S L, HU Z A, WU H B. Study on response characteristics of a hidden cave in transient Rayleigh surface wave exploration[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2019, 41(4): 541−546. (in Chinese). doi: 10.3969/j.issn.1001-1749.2019.04.15

    [89] 熊友亮, 高建华, 彭军. 天然源面波法在堰塞体上的研究及应用[J]. 工程地球物理学报, 2022,19(2): 149−154.

    XIONG Y L, GAO J H, PENG J. Research and application of natural source surface wave method on barrier body[J]. Chinese Journal of Engineering Geophysics, 2022, 19(2): 149−154. (in Chinese).

    [90]

    RUDENKO D, SHARIF M, JUBRAN R, et al. Use of surface wave testing to develop pile driving vibration criteria in a coastal environment[C]//GSP 334·Geo-Congress 2022, 2022.

    [91]

    IVANOV J, LEITNER B, SHEFCHIK W, et al. Evaluating hazards at salt cavern sites using multichannel analysis of surface waves[J]. The Leading Edge, 2013, 32(3): 298−305. doi: 10.1190/tle32030298.1

    [92]

    LEWIŃSKA P, MATUŁA R, DYCZKO A. Integration of thermal digital 3D model and a MASW (Multichannel Analysis of Surface Wave) as a means of improving monitoring of spoil tip stability[J]. Seminary on Geomatics, Civil and Environmental Engineering (2017BGC) E3S Web of Conferences, 2018, 26: 8.

    [93]

    KNAPMEYER-ENDRUN B, GOLOMBEK M P, OHRNBERGER M. Rayleigh wave ellipticity modeling and inversion for shallow structure at the proposed insight landing site in elysium planitia, Mars[J]. Space Science Reviews, 2017, 211(1/4): 339−382. doi: 10.1007/s11214-016-0300-1

    [94]

    MAHVELATI S, COE J T. Horizontal-to-vertical spectral ratio (HVSR) analysis of the Martian Passive seismic data from the Insight mission[J]. Earth and Space 2021: Space Exploration, Utilization, Engineering, and Construction in Extreme Environments, 2021: 108-115.

    [95]

    LAROSE E, KHAN A, NAKAMURA Y, et al. Lunar subsurface investigated from correlation of seismic noise[J]. Geophys Res Lett, 2005, 32(16).

    [96]

    LAROSE C S-S N E. Lunar noise correlation, imaging and monitoring[J]. Earthquake Science, 2010, 23(5): 519−530. doi: 10.1007/s11589-010-0750-6

    [97]

    NISHITSUJI Y, ROWE C A, WAPENAAR K, et al. Reflection imaging of the Moon's interior using deep-moonquake seismic interferometry[J]. Journal of Geophysical Research E:Planets, 2016, 121(4): 695−713. doi: 10.1002/2015JE004975

    [98]

    NISHITSUJI Y, RUIGROK E, DRAGANOV D. Azimuthal anisotropy of the megaregolith at the apollo 14 Landing Site[J]. Journal of Geophysical Research-Planets Section, 2020, 125(5): e2019JE006126.

    [99]

    IKEDA T, MATSUOKA T, TSUJI T, et al. Characteristics of the horizontal component of Rayleigh waves in multimode analysis of surface waves[J]. Geophysics, 2015, 80(1): En1−En11.

    [100]

    BUDI A P, GINTING R A, SUNARDI B, et al. Combination of passive seismic (HVSR) and active seismic (MASW) methods to obtain shear wave velocity model of subsurface in Majalengka[J]. Journal of Physics: Conference Series, 2021, 1805(1): 012002. doi: 10.1088/1742-6596/1805/1/012002

    [101]

    ABDIALIM S, HAKIMOV F, KIM J, et al. Seismic site classification from HVSR data using the Rayleigh wave ellipticity inversion: A case study in Singapore[J]. Earthquakes and Structures, 2021, 21(3): 231−238.

    [102] 李巧灵, 张辉, 雷晓东, 等. 综合利用多道瞬态面波和微动探测分析斜坡内部结构[J]. 物探与化探, 2022,46(1): 258−267.

    LI Q L, ZHANG H, LEI X D, et al. Analysis of slope internal structure by multi-channel transient surface wave and fretting detection[J]. Geophysical and Geochemical Exploration, 2022, 46(1): 258−267. (in Chinese).

    [103] 刘道涵, 徐俊杰, 刘磊, 等. 地球物理联合探测在识别岩溶地面塌陷精细结构中的应用−以武汉市为例[J]. 地质与勘探, 2022,58(4): 865−874.

    LIU D H, XU J J, LIU L, et al. Application of geophysical joint detection in identifying fine structure of Karst ground collapse: A case study of Wuhan city[J]. Geology and exploration, 2022, 58(4): 865−874. (in Chinese).

    [104] 徐吉祥, 张晓亮, 李潇, 等. 地表浅部地震勘探方法在城市隐伏活动断裂调查中的应用[J]. 城市地质, 2022,17(1): 79−84. doi: 10.3969/j.issn.1007-1903.2022.01.012

    XU J X, ZHANG X L, LI X, et al. Application of shallow surface seismic exploration method in urban hidden active fault investigation[J]. Urban Geology, 2022, 17(1): 79−84. (in Chinese). doi: 10.3969/j.issn.1007-1903.2022.01.012

    [105]

    PERTON M, SPICA Z J, CLAYTON R W, et al. Shear wave structure of a transect of the Los Angeles basin from multimode surface waves and H/V spectral ratio analysis[J]. Geophysical Journal International, 2020, 220(1): 415−427. doi: 10.1093/gji/ggz458

    [106]

    LONTSI A M, GARCIA-JEREZ A, MOLINA-VILLEGAS J C, et al. A generalized theory for full microtremor horizontal-to-vertical $[H/V(z,f)] $ spectral ratio interpretation in offshore and onshore environments[J]. Geophysical Journal International, 2019, 218(2): 1276−1297. doi: 10.1093/gji/ggz223

  • 期刊类型引用(16)

    1. 刘荫荣,任伟霞,姜惠,李曼曼,张怡婧. 80岁以上老年结直肠肿瘤患者腹部增强CT检查的护理干预. 医学影像学杂志. 2021(06): 1035-1037 . 百度学术
    2. 鲁达,杨金生. 64排螺旋CT扫描在胃间质瘤诊断中的价值. 中国现代医生. 2021(35): 126-129 . 百度学术
    3. 秦秀. 胃间质瘤64排螺旋CT图像表现特征及诊断价值研究. 中国CT和MRI杂志. 2020(04): 120-122 . 百度学术
    4. 张运刚. 螺旋CT在胃肠道穿孔中的应用及诊断价值评价. 中国社区医师. 2020(14): 106+108 . 百度学术
    5. 尹悦. 全肠造影CT检查对肠道肿瘤诊断价值的研究. 结直肠肛门外科. 2020(S2): 38-39 . 百度学术
    6. 唐艳军. 64-MSCT联合腹部X线平片在肠梗阻患者诊断中的应用观察. 现代医用影像学. 2019(02): 343-344 . 百度学术
    7. 姚鹏鹏,李润涛. 64排螺旋CT扫描在肠道肿瘤术前诊断中的应用价值分析. 中国肛肠病杂志. 2019(02): 6-7 . 百度学术
    8. 齐辉. 64排CT用于颅脑肿瘤患者中的效果. 影像研究与医学应用. 2019(12): 165-166 . 百度学术
    9. 陈涛,赵艳玲,陈晓荣. 多层螺旋CT低剂量扫描对小肠原发性肿瘤的定位诊断意义. 现代肿瘤医学. 2019(11): 2001-2004 . 百度学术
    10. 徐兴明,滕红,谢英,赵张平,陈建勋. 螺旋CT与数字胃肠造影技术对胃癌患者的诊断价值. 中国医学装备. 2019(09): 64-67 . 百度学术
    11. 张世衡,曹文广,张宇,苏宝珠,盖福. 腹部增强CT扫描对结肠肿瘤性肠梗阻的诊断价值. 中国肿瘤临床与康复. 2019(12): 1464-1466 . 百度学术
    12. 黄腾飞. 64排螺旋CT诊断胃肠道间质瘤的应用价值分析. 中国实用医药. 2018(20): 45-46 . 百度学术
    13. 欧剑扬,马关华,梁宇豪,梁洪生. 64排螺旋CT在胃肠道穿孔中的诊断及应用价值分析. 黑龙江医药. 2018(05): 1123-1124 . 百度学术
    14. 唐艳军. 64-MSCT联合腹部X线平片在肠梗阻患者诊断中的应用观察. 现代医用影像学. 2018(08): 2798-2799 . 百度学术
    15. 乔磊,祁晓,徐后莹. 多层螺旋CT在肠道肿瘤诊断中的价值. 中外女性健康研究. 2018(14): 172+184 . 百度学术
    16. 冯庆瑜. 结肠腺癌CT强化程度的影响因素分析. 广州医科大学学报. 2017(04): 43-45 . 百度学术

    其他类型引用(0)

图(9)
计量
  • 文章访问数:  552
  • HTML全文浏览量:  260
  • PDF下载量:  152
  • 被引次数: 16
出版历程
  • 收稿日期:  2023-04-16
  • 录用日期:  2023-06-24
  • 网络出版日期:  2023-07-02
  • 刊出日期:  2023-10-31

目录

/

返回文章
返回
x 关闭 永久关闭