Segmentation of Liver Tumors Based on Bottleneck Residual Attention Mechanism U-net
-
摘要: 医学CT图像中含有的大量噪声以及肝脏肿瘤大小不均一、位置因人而异且与相邻器官较相似的组织密度等都造成肝脏肿瘤分割困难。现有传统全卷积神经网络(FCN)方法,通过为输入CT图像中每个像素分配类别标签来实现肝脏肿瘤分割,但在分割精度上仍会出现小目标漏检或目标边界分割模糊的问题。针对这些问题,本文提出一种瓶颈残差注意力机制U-net(BRA U-net)的肝脏肿瘤分割方法,通过引入瓶颈残差模块可在非常深的网络中大幅减少计算量的同时解决梯度消失问题,此外堆叠的注意力模块可以增大有效特征的比重。本文在公共MICCAI2017肝肿瘤分割数据集上测试了该框架,戴斯相似性系数值达到0.788,高于其他对比分割网络,并利用3D-IRCADb数据集来验证该方法的一般性,结果表明本文方法分割效果良好,能够为临床诊断提供可靠依据。Abstract: The segmentation of liver tumors is difficult due to the large amount of noise contained in medical CT images and the uneven size, location and tissue density of liver tumors similar to adjacent organs. The existing traditional full-convolutional neural network (FCN) method can achieve liver tumor segmentation by assigning category labels to each pixel in the input CT image, but the problems of small target missing or fuzzy target boundary segmentation still occur in the segmentation accuracy. In order to solve these problems, we propose a bottleneck residual attention mechanism U-net (BRA U-net) segmentation method for liver tumors. By introducing bottleneck residual modules, we can greatly reduce the computational load in very deep networks while solving the gradient disappearance problem. In addition, stacked attention modules can increase the proportion of effective features. In this paper, the proposed framework was tested on the public MICCAI2017 liver tumor segmentation dataset, and the dice similarity coefficient value reached 0.788, higher than other comparative segmentation networks. The generality of the proposed method was verified by using the 3D-IRCADb dataset. The results show that the proposed method has good segmentation effect and can provide a reliable basis for clinical diagnosis.
-
Keywords:
- bottleneck residual /
- attention module /
- U-net /
- medical CT images /
- liver tumor segmentation
-
-
[1] CHRIST P F, ETTLINGER F, GRUN F, et al. Automatic liver and tumor segmentation of CT and MRI volumes using cascaded fully convolutional Neural Networks[J]. Computer Vision and Pattern Recognition, 2017, (2):1-20.
[2] LI X M, CHEN H, QI X J, et al. H-DenseUNet:Hybrid densely connected unet for liver and tumor segmentation from CT volumes[J]. IEEE Transactions on Medical Imaging, 2018, 37(12):2663-2674.
[3] BORLU M. Accurate segmentation of dermoscopic images by image thresholding based on type-2 fuzzy logic[M]. IEEE Transactions on Fuzzy Systems, 2009, 17(4):976-982.
[4] OSUNA-ENCISO V, CUEVAS E, SOSSA H. A comparison of nature inspired algorithms for multi-threshold image segmentation[J]. Expert Systems with Applications, 2013, 40(4):1213-1219.
[5] SHUAI Y, HONG S, GE X. SAR image segmentation based on level set with stationary global minimum[J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(4):644-648.
[6] VESE L A, CHAN T F. A multiphase level set framework for image segmentation using the Mumford and Shah model[J]. International Journal of Computer Vision, 2002, 50(3):271-293.
[7] ROUHI R, JAFARI M, KASAEI S, et al. Benign and malignant breast tumors classification based on region growing and CNN segmentation[J]. Expert Systems with Applications an International Journal, 2015, 42(3):990-1002.
[8] ADAMS R, BISHOF L. Seeded region growing[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1994, 16:641-647.
[9] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 39(4):640-651.
[10] BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet:A deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12):2481-2495.
[11] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab:Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4):834-848.
[12] CHEN L C, YANG Y, WANG J, et al. Attention to scale:Scale-aware semantic image segmentation[J]. IEEE Conference on Computer Vision and Pattern Recognition, 2015, 29:3640-3649.
[13] OKTAY O, SCHLEMPER J, FOLGOC L L, et al. Attention U-net:Learning where to look for the pancreas[J]. Computer Vision and Pattern Recognition, 2018, 3:1-10.
[14] SCHLEMPER J, OKTAY O, CHEN L, et al. Attention-gated networks for improving ultrasound scan plane detection[J]. Computer Vision and Pattern Recognition, 2018, (4):1-12.
[15] RONNEBERGER O, FISCHER P, BROX T. U-net:Convolutional networks for biomedical image segmentation[J]. Lecture Notes in Computer Science, 2015, 9351:234-241.
[16] HE K, ZHANG X, REN S, et al. Identity mappings in deep residual networks[J]. Computer VISION-ECCV 2016, PT IV, 2016, 9908:630-645.
[17] IOFFE S, SZEGEDY C. Batch normalization:Accelerating deep network training by reducing internal covariate shift[J]. Computer Science, 2015, 37:448-456.
[18] FEI W, JIANG M, CHEN Q, et al. Residual attention network for image classification[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2017.
[19] 闫谙, 王卫卫. 基于条件能量对抗网络的肝脏和肝肿瘤分割[J]. 计算机工程与应用, 2021, 57(11):179-184. DOI:10.3778/j.issn.1002-8331.2003-0370. YAN A, WANG W W. Segmentation of liver and liver tumor based on conditional energy-based GAN[J]. Computer Engineering and Applications, 2021, 57(11):179-184. DOI:10.3778/j.issn. 1002-8331.2003-0370.
[20] LIU T Y, LIU J C, MA Y, et al. Spatial feature fusion convolutional network for liver and liver tumor segmentation from CT images[J]. Medical Physics, 2020, 48(1):264-272.
[21] Alirr O I. Deep learning and level set approach for liver and tumor segmentation from CT scans[J]. Journal of Applied Clinical Medical Physics, 2020, 21(10):200-209. DOI: 10.1002/acm2.13003.
-
期刊类型引用(3)
1. 陈宗桂,陆思璇,董晓军,张英俊. 基于改进区域生长法分割CT图像肝肿瘤的研究. 电子设计工程. 2024(10): 180-185 . 百度学术
2. 李柯,刘文忠,秦镜淘. 改进TransUNet网络对肝脏肿瘤CT图像的级联分割. 宜宾学院学报. 2024(12): 12-20 . 百度学术
3. 张敏,朱雨涵,王承心,陈玮容,陈新房. 基于混合网络与数字高程模型的遥感图像滑坡识别. 电脑与电信. 2024(11): 12-16 . 百度学术
其他类型引用(3)
计量
- 文章访问数: 744
- HTML全文浏览量: 56
- PDF下载量: 110
- 被引次数: 6