Research Progress of X-Ray Diffraction Technology in Security Inspection
-
摘要: 暴恐事件的频发严重影响了国际社会的安全和秩序,给客运、货运安全带来了前所未有的挑战。有效打击恐怖活动,保障人身、财产安全,是国内乃至全球公共安全领域的重要诉求。因此,如何通过高技术手段提升安全检查能力,成为人们关注的重要问题和研究热点。X射线衍射(XRD)技术能在分子层面上识别违禁品,具有较高的区分度,在安全检查领域有着广阔的应用前景。本文从衍射的基础理论出发,简述目前能量色散X射线衍射(EDXRD)检测方案与识别算法的研究进展,既而分析EDXRD技术的优势并搭建系统验证有效性,最后对XRD的发展方向作展望,以期进一步推动此技术在公共安全领域发挥更加重要的作用。Abstract: The frequent occurrence of terrorist incidents has seriously affected the security and order of the international community, bringing unprecedented challenges to the safety of passenger and freight transportation. Effectively combating terrorist activities and ensuring personal and property safety are important demands in the field of public security both domestically and globally. Therefore, how to enhance security inspection capabilities through high-tech means has become an important issue and research hotspot of concern. X-ray diffraction (XRD) technology can identify prohibited substances at the molecular level, with high discrimination, and has broad application prospects in the field of safety inspection. Starting from the basic theory of diffraction, this article briefly describes the current research progress in the structure and recognition algorithms of XRD systems, as well as the advantages of XRD technology. An XRD system was built to verify its effectiveness. Finally, the development direction of XRD was prospected, with the aim of further promoting this technology to play a more important role in the field of public safety.
-
表 1 X射线安检技术的特点
Table 1. Characteristics of X-ray security inspection technology
检测技术 X射线衍射 X射线背散射 X射线透射 CT 相衬成像 检查效率 较慢 一般 很快 较快 很慢 技术是否成
熟不成熟 成熟 成熟 成熟 不成熟 空间分辨率 较差 较差 良好 良好 良好 违禁品查验
能力衍射谱区分,灵敏
度很高背散射强度区分 投影的有效原子序
数、电子密度区分切片的有效原子序
数、电子密度区分透射、相衬与暗场
区分,灵敏度较高可检测违禁
品种类含晶体结构的材料,
如爆炸物、毒品等低原子序数的有机
物,如有机炸药、
毒品等区分金属、无机物、
有机物区分金属、有机物、
无机物弱吸收低对比度物
质,如高分子材料、
生物体组织成像区域 较小 较大 较大 较大 较小 成像原理 小角散射 大角度康普顿散射 X射线在介质中衰减
规律X射线在介质中衰减
规律X射线的相位变化 备注 针对晶体结构效果
明显探测器和光源处于
同侧原理简单造价低 能够获得被检物的
3D图像对低原子序数的物
体成像效果较好表 2 高氯酸钾、硝酸钾、氯化铵、蜂蜜、沐浴乳、巧克力特的主要衍射峰
Table 2. The diffraction peak position of KClO4, KNO3, NH4Cl, Honey, shower gel and chocolate
第一衍射峰/keV 第二衍射峰/keV 第三衍射峰/keV 高氯酸钾 52.25 71.25 82.75 硝酸钾 56.25 39.75 77.50 氯化铵 55.25 — — 蜂蜜 — — — 沐浴乳 — — — 巧克力 38.75 — — -
[1] Global Terrorism Index 2022[EB/OL]. (2022-03-31)[2023-08-04]. https://www.economicsandpeace.org/wp-content/uploads/2022/03/GTI-2022-web-09062022.pdf. [2] RYZHIKOV V D, GRINYOV B V, OPOLONIN O D, et al. Capabilities of dual-energy X-ray imaging in medicine and security[J]. Proceedings of SPIE - The International Society for Optical Engineering, 2012, 8509(4): 644−663. [3] 潘峰, 王英华, 陈超. X射线衍射技术[M]. 北京: 化学工业出版社, 2016.PAN F, WANG Y H, CHEN C. X-ray diffraction technology[M]. Beijing: Chemical Industry Press, 2016. (in Chinese). [4] DICKEN A, ROGERS K, EVANS P, et al. The separation of X-ray diffraction patterns for threat detection[J]. Applied Radiation and Isotopes:Including Data, Instrumentation and Methods for Use in Agriculture, Industry and Medicine, 2010, 68(3): 439−443. [5] WELLS K, BRADLEY D A. A review of X-ray explosives detection techniques for checked baggage[J]. Applied Radiation & Isotopes Including Data Instrumentation & Methods for Use in Agriculture Industry & Medicine, 2012, 70(8): 1729−1746. [6] 王新, 徐捷, 穆宝忠. 晶体的X射线衍射物相分析方法研究[J]. 实验技术与管理, 2021,38(3): 29−33. doi: 10.16791/j.cnki.sjg.2021.03.007WANG X, XU J, MU B Z. Study on phase analysis method of X-ray diffraction of crystals[J]. Experimental Technology and Management, 2021, 38(3): 29−33. (in Chinese). doi: 10.16791/j.cnki.sjg.2021.03.007 [7] YU Z, BAI S, YU D, et al. Identification of liquid materials using energy dispersive X-ray scattering[J]. Procedia Engineering, 2010, 7(none): 135−142. [8] HARDING G, DELFS J. Liquids identification with x-ray diffraction[C]//Penetrating Radiation Systems & Applications Ⅷ. Penetrating Radiation Systems and Applications Ⅷ, 2007. [9] HARDING G, FLECKENSTEIN H, OLESINSKI S, et al. Liquid detection trial with X-ray diffraction[C]//SPIE Conference on Penetrating Radiation Systems and Applications. 2010. [10] HARDING G. X-ray diffraction imaging-A multi-generational perspective[J]. Applied radiation and Isotopes:Including Data, Instrumentation and Methods for Use in Agriculture, Industry and Medicine, 2008, 67(2): 287−295. [11] SRIDHAR V, KISNER S J, SKATTER S, et al. Model-based reconstruction for X-ray diffraction imaging[C]//SPIE Defense + Security. International Society for Optics and Photonics, 2016. [12] GREENBERG J A, STRYKER S, CARPENTER J, et al. Concealed drug detection via fan beam coded-aperture X-ray diffraction imaging[C]//Conference on Anomaly Detection and Imaging with X-Rays. 2021. [13] 王新, 李明涛, 杨宝璐, 等. X射线衍射在安检技术领域的研究进展[J]. 物理实验, 2020,40(10): 11. doi: 10.19655/j.cnki.1005-4642.2020.10.001WANG X, LI M T, YANG B L, et al. Research progress of X-ray diffraction in the field of security inspection[J]. Physics Experimentation, 2020, 40(10): 11. (in Chinese). doi: 10.19655/j.cnki.1005-4642.2020.10.001 [14] HARDING G, FLECKENSTEIN H, KOSCIESZA D, et al. X-ray diffraction imaging with the multiple inverse Fan Beam topology: Principles, performance and potential for security screening[J]. Applied Radiation & Isotopes Including Data Instrumentation & Methods for Use in Agriculture Industry & Medicine, 2012, 70(7): 1228−1237. [15] ASHOK A, NEIFELD M A, GEHM M E, et al. Detecting liquid threats with X-ray diffraction imaging (XDi) using a hybrid approach to navigate trade-offs between photon count statistics and spatial resolution[C]//Anomaly Detection & Imaging with X-rays. International Society for Optics and Photonics, 2016: 984704. [16] KOSCIESZA D, SCHLOMKA J P, MEYER J, et al. X-ray diffraction imaging system for the detection of illicit substances using pixelated CZT-detectors[C]//Nuclear Science Symposium & Medical Imaging Conference. IEEE, 2014. [17] DICKEN A J, EVANS J P O, ROGERS K D, ET AL. Energy-dispersive X-ray diffraction using an annular beam[J]. Optics Express, 2015, 23(10): 13443−54. doi: 10.1364/OE.23.013443 [18] EVANS P, ROGERS K, CHAN J, et al. High intensity X-ray diffraction in transmission mode employing an analog of Poisson's spot[J]. Applied Physics Letters, 2010, 97(20): 947. [19] 王丽晓, 陈异凡, 徐捷, 等. EDXRD安检系统衍射谱数据库的仿真研究[J]. 光学仪器, 2018,40(6): 29.WANG L X, CHEN Y F, XU J, et al. Simulation study of diffracted spectrum database for EDXRD security inspection system[J]. Optical Instruments, 2018, 40(6): 29. (in Chinese). [20] MARCIA R F, WILLETT R M. Compressive coded aperture superresolution image reconstruction[C]//Acoustics, Speech and Signal Processing, ICASSP 2008, IEEE International Conference on. IEEE, 2008. [21] 孙世峰. 基于可分离编码的高分辨X射线荧光成像技术研究[J]. 物理学报, 2020,69(19): 365−373. doi: 10.7498/aps.69.20200674SUN S F. High-resolution coded aperture X-ray fluorescence imaging with separable masks[J]. Acta Physica Sinica, 2020, 69(19): 365−373. (in Chinese). doi: 10.7498/aps.69.20200674 [22] GREENBERG J A, HASSAN M, REGNERUS B, et al. Design and implementation of a fan beam coded aperture X-ray diffraction tomography system for checkpoint baggage scanning[C]//Society of Photo-optical Instrumentation Engineers. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 2017. [23] ASHOK A, NEIFELD M A, GEHM M E, et al. Multi-view coded aperture coherent scatter tomography[C]//Spie Defense+Security. 2016: 98470 A. [24] ASHOK A, NEIFELD M A, GEHM M E, et al. Snapshot full-volume coded aperture X-ray diffraction tomography[C]//Spie Defense + Security. 2016: 984706. [25] DIALLO S O, GREGORY C, ROE K, et al. Towards an X-ray-based coded aperture diffraction system for bulk material identification[C]//Anomaly Detection and Imaging with X-rays (ADIX) Ⅲ. 2018. [26] 王新, 徐捷, 穆宝忠. 晶体的X射线衍射谱仿真与实验研究[J]. 实验室研究与探索, 2021,40(2): 4. doi: 10.19927/j.cnki.syyt.2021.02.007WANG X, XU J, MU B Z. Simulation and experimental research on X-ray diffracted spectrum for crystal[J]. Research and Exploration in Laboratory, 2021, 40(2): 4. (in Chinese). doi: 10.19927/j.cnki.syyt.2021.02.007 [27] YANGDAI T, ZHANG L. Liquid contrabands classification based on energy dispersive X-ray diffraction and hybrid discriminant analysis[J]. Nuclear Inst & Methods in Physics Research A, 2016, 808: 128−134. [28] DIALLO S O, GREGORY C, ROYSE C, et al. Material classification using Convolution Neural Network (CNN) for X-ray based coded aperture diffraction system (Conference Presentation)[C]//Anomaly Detection and Imaging with X-Rays (ADIX) Ⅳ. 2019. [29] ROYSE C, WOLTER S D, GREENBERG J A. Emergence and distinction of classes in XRD data via machine learning[C]//Anomaly Detection and Imaging with X-Rays (ADIX) Ⅳ. 2019. [30] ZHAO B, GREENBERG J A, WOLTER S. Application of machine learning to X-ray diffraction-based classification[C]//Anomaly Detection and Imaging with X-Rays (ADIX) Ⅲ. 2018. [31] YUAN S, WOLTER S, GREENBERG J A. Material-identification-free detection based on material-science-informed clustering[C]//Conference on anomaly detection and imaging with X-rays Ⅱ. Duke University, Dept. of Electrical and Computer Engineering, Durham, NC, USA; Elon University, Dept. of Physics, Elon, NC, USA; Duke University, Dept. of Electrical and Computer Engineering, Durham, NC, USA, 2017. [32] 陈志强, 张丽, 金鑫. X射线安全检查技术研究新进展[J]. 科学通报, 2017,62: 1350−1364. DOI: 10.1360/N972016-00698.CHEN Z Q, ZHANG L, JIN X. Recent progress on X-ray security inspection technologies[J]. Chin Sci Bull, 2017, 62: 1350−1364. DOI: 10.1360/N972016-00698. (in Chinese). [33] ZHANG L, YANGDAI T. Determination of liquid's molecular interference function based on X-ray diffraction and dual-energy CT in security screening[J]. Applied Radiation and Isotopes, 2016: 179-187. [34] GREENBERG J A, CARPENTER J H, COCCARELLI D, et al. Design and analysis of a hybrid X-ray transmission and diffraction system[C]//Anomaly Detection and Imaging with X-rays (ADIX) VI. 2021. [35] 张丽, 杨洪恺, 邢宇翔, 等. 行李物品智能安检系统和方法[P]: 中国, CN115793077A. 2023-03-14.ZHANG L, YANG H K, XING Y X, et al. Intelligent luggage item security inspection system and method[P]: China, CN115793077A. 2023-03-14. [36] Duke to Lead $5.83Million DHS Project to Reinvent Airport Screening [EB/OL]. [2023-08-31]. https://pratt.duke.edu/about/news/reinvent-airport-screening. [37] News Release: DHS S&T Awards $3.5 M to Improve X-Ray Detection Technology [EB/OL]. [2023-08-31]. https://www.dhs.gov/science-and-technology/news/2018/08/30/news-release-dhs-st-awards-35m-improve-X-ray-detection. [38] Integrated Defense and Security Solutions Awarded Contract to Advance Airport Screening [EB/OL]. [2023-08-31]. https://www.businesswire.com/news/home/20201109005629/en/Integrated-Defense-and-Security-Solutions-Awarded-Contract-to-Advance-Airport-Screening. [39] Integrated Defense And Security Solutions Awarded Contract To Develop An Integrated Detect™ 1000 with Halo X-ray Diffraction Technology [EB/OL]. [2023-08-31]. https://www.idsscorp.net/en/news/2020/11/9/integrated-defense-and-security-solutions-awarded-contract-to-develop-an-integrated-detect-1000-with-halo-X-ray-diffraction-technology [40] 张丽, 陈志强, 任远达, 等. 安检设备(XRD)[P]: 中国, CN307774841 S. 2023-01-06.ZHANG L, CHEN Z Q, REN Y S, et al. Security inspection device (XRD)[P]: China, CN307774841 S. 2023-01-06. [41] 许晓飞. 基于X射线光子计数探测器的成像方法与安检应用研究[D]. 北京: 清华大学, 2021.XU X F. Research on reconstruction algorithm and security application based on X-ray photon counting detectors[D]. Beijing: Tsinghua University, 2021. (in Chinese). -