ISSN 1004-4140
CN 11-3017/P

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

X射线衍射技术在安检领域的研究进展

黄清萍 金鑫 许晓飞 朱国曦 张丽

黄清萍, 金鑫, 许晓飞, 等. X射线衍射技术在安检领域的研究进展[J]. CT理论与应用研究, 2023, 32(0): 1-14. DOI: 10.15953/j.ctta.2023.158
引用本文: 黄清萍, 金鑫, 许晓飞, 等. X射线衍射技术在安检领域的研究进展[J]. CT理论与应用研究, 2023, 32(0): 1-14. DOI: 10.15953/j.ctta.2023.158
HUANG Q P, JIN X, XU X F, et al. Research Progress of X-Ray Diffraction Technology in Security Inspection[J]. CT Theory and Applications, 2023, 32(0): 1-14. DOI: 10.15953/j.ctta.2023.158. (in Chinese)
Citation: HUANG Q P, JIN X, XU X F, et al. Research Progress of X-Ray Diffraction Technology in Security Inspection[J]. CT Theory and Applications, 2023, 32(0): 1-14. DOI: 10.15953/j.ctta.2023.158. (in Chinese)

X射线衍射技术在安检领域的研究进展

doi: 10.15953/j.ctta.2023.158
基金项目: 中核集团青年英才计划。
详细信息
    作者简介:

    黄清萍:女,清华大学工程物理系能源动力专业创新领军工程博士研究生,主要从事辐射成像理论与应用研究,E-mail:huangqingping@nuctech.com

    通讯作者:

    女,清华大学工程物理系研究员,博士生导师,主要从事核技术理论与应用研究,以及人工智能理论与应用研究,E-mail:zli@mail.tsinghua.edu.cn

  • 中图分类号: TL81

Research Progress of X-Ray Diffraction Technology in Security Inspection

  • 摘要: 暴恐事件的频发严重影响了国际社会的安全和秩序,给客运、货运安全带来了前所未有的挑战。有效打击恐怖活动,保障人身、财产安全,是国内乃至全球公共安全领域的重要诉求。因此,如何通过高技术手段提升安全检查能力,成为人们关注的重要问题和研究热点。X射线衍射(XRD)技术能在分子层面上识别违禁品,具有较高的区分度,在安全检查领域有着广阔的应用前景。本文从衍射的基础理论出发,简述目前能量色散X射线衍射(EDXRD)检测方案与识别算法的研究进展,既而分析EDXRD技术的优势并搭建系统验证有效性,最后对XRD的发展方向作展望,以期进一步推动此技术在公共安全领域发挥更加重要的作用。

     

  • 图  1  相干散射示意图

    Figure  1.  Schematic diagram of coherent scattering

    图  2  晶体衍射原理图与衍射谱线

    Figure  2.  Crystal diffraction principle diagram and diffraction spectral lines

    图  3  ADXRD与EDXRD原理示意图

    Figure  3.  Schematic diagram of ADXRD and EDXRD system

    图  4  一些材料的衍射谱

    Figure  4.  Diffraction spectrum of some materials

    图  5  第一代EDXRD系统结构[11]

    Figure  5.  The architecture of first generation EDXRD system[11]

    图  6  第二代EDXRD系统结构[11]

    Figure  6.  The architecture of second generation EDXRD system[11]

    图  7  XRD3500爆炸物探测器系统

    Figure  7.  XRD3500 Explosive Detector System

    图  8  扇形束EDXRD系统结构:a)为侧视,b)为俯视[12]

    Figure  8.  Fan-shaped beam EDXRD system structure: a) for side view, b) for top view[12]

    图  9  逆扇形束XRD结构示意图与XDi系统

    Figure  9.  Structural diagram of multiple inverse fan beam XRD and XDi system

    图  10  环形束结构XRD原理示意图

    Figure  10.  Schematic diagram of the circular beam structure XRD system

    图  11  编码孔成像方法示意图

    Figure  11.  Schematic diagram of encoding aperture imaging

    图  12  编码孔径系统应用于EDXRD系统[22]

    Figure  12.  Encoded Aperture System in EDXRD System[22]

    图  13  计算机模拟的SiO2和扑热息痛能谱与ICDD数据值、实验值的对比[19]

    Figure  13.  Comparison of Simulated Spectrum, ICDD Data and Experimental Values of SiO2 and Paracetamol[19]

    图  14  分类算法的效果对比

    Figure  14.  Comparison of the effectiveness of classification algorithms

    图  15  混合系统和单独CT检测对同一物体的识别(实际上被标识区域为安全)[34]

    Figure  15.  Identification of the same object using only CT system and hybrid systems[34]

    图  16  复合式安检方案[35]

    Figure  16.  Hybrid security inspection plan[35]

    图  17  同方威视技术有限公司开发的XRD产品样机渲染图与实际图片[40]

    Figure  17.  XRD product developed by NUCTECH[40]

    图  18  CT与XRD两级安检系统[35]

    Figure  18.  CT and XRD two-level security inspection system[35]

    图  19  违禁品原材料与安全品的特征能谱[41]

    Figure  19.  XRD spectrum of prohibited materials and safety materials[41]

    图  20  衍射特征谱两两皮尔逊相关系数,其中材料1到6分别是高氯酸钾、硝酸钾、氯化铵、蜂蜜、沐浴乳、巧克力

    Figure  20.  The Pearson correlation coefficient between KClO4, KNO3, NH4Cl, Honey, shower gel and chocolate

    表  1  X射线安检技术的特点

    Table  1.   Characteristics of X-ray security inspection technology

    检测技术X射线衍射X射线背散射X射线透射CT相衬成像
     检查效率 较慢 一般 很快 较快 很慢
     技术是否成
     熟
     不成熟 成熟 成熟 成熟 不成熟
     空间分辨率 较差 较差 良好 良好 良好
     违禁品查验
     能力
     衍射谱区分,灵敏
     度很高
     背散射强度区分 投影的有效原子序
     数、电子密度区分
     切片的有效原子序
     数、电子密度区分
     透射、相衬与暗场
     区分,灵敏度较高
     可检测违禁
     品种类
     含晶体结构的材料,
     如爆炸物、毒品等
     低原子序数的有机
     物,如有机炸药、
     毒品等
     区分金属、无机物、
     有机物
     区分金属、有机物、
     无机物
     弱吸收低对比度物
     质,如高分子材料、
     生物体组织
     成像区域 较小 较大 较大 较大 较小
     成像原理 小角散射 大角度康普顿散射 X射线在介质中衰减
     规律
     X射线在介质中衰减
     规律
     X射线的相位变化
     备注 针对晶体结构效果
     明显
     探测器和光源处于
     同侧
     原理简单造价低 能够获得被检物的
     3D图像
     对低原子序数的物
     体成像效果较好
    下载: 导出CSV

    表  2  高氯酸钾、硝酸钾、氯化铵、蜂蜜、沐浴乳、巧克力特的主要衍射峰

    Table  2.   The diffraction peak position of KClO4, KNO3, NH4Cl, Honey, shower gel and chocolate

    第一衍射峰/keV第二衍射峰/keV第三衍射峰/keV
    高氯酸钾52.2571.2582.75
    硝酸钾56.2539.7577.50
    氯化铵55.25
    蜂蜜
    沐浴乳
    巧克力38.75
    下载: 导出CSV
  • [1] Global Terrorism Index 2022[EB/OL]. (2022-03-31)[2023-08-04]. https://www.economicsandpeace.org/wp-content/uploads/2022/03/GTI-2022-web-09062022.pdf.
    [2] RYZHIKOV V D, GRINYOV B V, OPOLONIN O D, et al. Capabilities of dual-energy X-ray imaging in medicine and security[J]. Proceedings of SPIE - The International Society for Optical Engineering, 2012, 8509(4): 644−663.
    [3] 潘峰, 王英华, 陈超. X射线衍射技术[M]. 北京: 化学工业出版社, 2016.

    PAN F, WANG Y H, CHEN C. X-ray diffraction technology[M]. Beijing: Chemical Industry Press, 2016. (in Chinese).
    [4] DICKEN A, ROGERS K, EVANS P, et al. The separation of X-ray diffraction patterns for threat detection[J]. Applied Radiation and Isotopes:Including Data, Instrumentation and Methods for Use in Agriculture, Industry and Medicine, 2010, 68(3): 439−443.
    [5] WELLS K, BRADLEY D A. A review of X-ray explosives detection techniques for checked baggage[J]. Applied Radiation & Isotopes Including Data Instrumentation & Methods for Use in Agriculture Industry & Medicine, 2012, 70(8): 1729−1746.
    [6] 王新, 徐捷, 穆宝忠. 晶体的X射线衍射物相分析方法研究[J]. 实验技术与管理, 2021,38(3): 29−33. doi: 10.16791/j.cnki.sjg.2021.03.007

    WANG X, XU J, MU B Z. Study on phase analysis method of X-ray diffraction of crystals[J]. Experimental Technology and Management, 2021, 38(3): 29−33. (in Chinese). doi: 10.16791/j.cnki.sjg.2021.03.007
    [7] YU Z, BAI S, YU D, et al. Identification of liquid materials using energy dispersive X-ray scattering[J]. Procedia Engineering, 2010, 7(none): 135−142.
    [8] HARDING G, DELFS J. Liquids identification with x-ray diffraction[C]//Penetrating Radiation Systems & Applications Ⅷ. Penetrating Radiation Systems and Applications Ⅷ, 2007.
    [9] HARDING G, FLECKENSTEIN H, OLESINSKI S, et al. Liquid detection trial with X-ray diffraction[C]//SPIE Conference on Penetrating Radiation Systems and Applications. 2010.
    [10] HARDING G. X-ray diffraction imaging-A multi-generational perspective[J]. Applied radiation and Isotopes:Including Data, Instrumentation and Methods for Use in Agriculture, Industry and Medicine, 2008, 67(2): 287−295.
    [11] SRIDHAR V, KISNER S J, SKATTER S, et al. Model-based reconstruction for X-ray diffraction imaging[C]//SPIE Defense + Security. International Society for Optics and Photonics, 2016.
    [12] GREENBERG J A, STRYKER S, CARPENTER J, et al. Concealed drug detection via fan beam coded-aperture X-ray diffraction imaging[C]//Conference on Anomaly Detection and Imaging with X-Rays. 2021.
    [13] 王新, 李明涛, 杨宝璐, 等. X射线衍射在安检技术领域的研究进展[J]. 物理实验, 2020,40(10): 11. doi: 10.19655/j.cnki.1005-4642.2020.10.001

    WANG X, LI M T, YANG B L, et al. Research progress of X-ray diffraction in the field of security inspection[J]. Physics Experimentation, 2020, 40(10): 11. (in Chinese). doi: 10.19655/j.cnki.1005-4642.2020.10.001
    [14] HARDING G, FLECKENSTEIN H, KOSCIESZA D, et al. X-ray diffraction imaging with the multiple inverse Fan Beam topology: Principles, performance and potential for security screening[J]. Applied Radiation & Isotopes Including Data Instrumentation & Methods for Use in Agriculture Industry & Medicine, 2012, 70(7): 1228−1237.
    [15] ASHOK A, NEIFELD M A, GEHM M E, et al. Detecting liquid threats with X-ray diffraction imaging (XDi) using a hybrid approach to navigate trade-offs between photon count statistics and spatial resolution[C]//Anomaly Detection & Imaging with X-rays. International Society for Optics and Photonics, 2016: 984704.
    [16] KOSCIESZA D, SCHLOMKA J P, MEYER J, et al. X-ray diffraction imaging system for the detection of illicit substances using pixelated CZT-detectors[C]//Nuclear Science Symposium & Medical Imaging Conference. IEEE, 2014.
    [17] DICKEN A J, EVANS J P O, ROGERS K D, ET AL. Energy-dispersive X-ray diffraction using an annular beam[J]. Optics Express, 2015, 23(10): 13443−54. doi: 10.1364/OE.23.013443
    [18] EVANS P, ROGERS K, CHAN J, et al. High intensity X-ray diffraction in transmission mode employing an analog of Poisson's spot[J]. Applied Physics Letters, 2010, 97(20): 947.
    [19] 王丽晓, 陈异凡, 徐捷, 等. EDXRD安检系统衍射谱数据库的仿真研究[J]. 光学仪器, 2018,40(6): 29.

    WANG L X, CHEN Y F, XU J, et al. Simulation study of diffracted spectrum database for EDXRD security inspection system[J]. Optical Instruments, 2018, 40(6): 29. (in Chinese).
    [20] MARCIA R F, WILLETT R M. Compressive coded aperture superresolution image reconstruction[C]//Acoustics, Speech and Signal Processing, ICASSP 2008, IEEE International Conference on. IEEE, 2008.
    [21] 孙世峰. 基于可分离编码的高分辨X射线荧光成像技术研究[J]. 物理学报, 2020,69(19): 365−373. doi: 10.7498/aps.69.20200674

    SUN S F. High-resolution coded aperture X-ray fluorescence imaging with separable masks[J]. Acta Physica Sinica, 2020, 69(19): 365−373. (in Chinese). doi: 10.7498/aps.69.20200674
    [22] GREENBERG J A, HASSAN M, REGNERUS B, et al. Design and implementation of a fan beam coded aperture X-ray diffraction tomography system for checkpoint baggage scanning[C]//Society of Photo-optical Instrumentation Engineers. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 2017.
    [23] ASHOK A, NEIFELD M A, GEHM M E, et al. Multi-view coded aperture coherent scatter tomography[C]//Spie Defense+Security. 2016: 98470 A.
    [24] ASHOK A, NEIFELD M A, GEHM M E, et al. Snapshot full-volume coded aperture X-ray diffraction tomography[C]//Spie Defense + Security. 2016: 984706.
    [25] DIALLO S O, GREGORY C, ROE K, et al. Towards an X-ray-based coded aperture diffraction system for bulk material identification[C]//Anomaly Detection and Imaging with X-rays (ADIX) Ⅲ. 2018.
    [26] 王新, 徐捷, 穆宝忠. 晶体的X射线衍射谱仿真与实验研究[J]. 实验室研究与探索, 2021,40(2): 4. doi: 10.19927/j.cnki.syyt.2021.02.007

    WANG X, XU J, MU B Z. Simulation and experimental research on X-ray diffracted spectrum for crystal[J]. Research and Exploration in Laboratory, 2021, 40(2): 4. (in Chinese). doi: 10.19927/j.cnki.syyt.2021.02.007
    [27] YANGDAI T, ZHANG L. Liquid contrabands classification based on energy dispersive X-ray diffraction and hybrid discriminant analysis[J]. Nuclear Inst & Methods in Physics Research A, 2016, 808: 128−134.
    [28] DIALLO S O, GREGORY C, ROYSE C, et al. Material classification using Convolution Neural Network (CNN) for X-ray based coded aperture diffraction system (Conference Presentation)[C]//Anomaly Detection and Imaging with X-Rays (ADIX) Ⅳ. 2019.
    [29] ROYSE C, WOLTER S D, GREENBERG J A. Emergence and distinction of classes in XRD data via machine learning[C]//Anomaly Detection and Imaging with X-Rays (ADIX) Ⅳ. 2019.
    [30] ZHAO B, GREENBERG J A, WOLTER S. Application of machine learning to X-ray diffraction-based classification[C]//Anomaly Detection and Imaging with X-Rays (ADIX) Ⅲ. 2018.
    [31] YUAN S, WOLTER S, GREENBERG J A. Material-identification-free detection based on material-science-informed clustering[C]//Conference on anomaly detection and imaging with X-rays Ⅱ. Duke University, Dept. of Electrical and Computer Engineering, Durham, NC, USA; Elon University, Dept. of Physics, Elon, NC, USA; Duke University, Dept. of Electrical and Computer Engineering, Durham, NC, USA, 2017.
    [32] 陈志强, 张丽, 金鑫. X射线安全检查技术研究新进展[J]. 科学通报, 2017,62: 1350−1364. DOI: 10.1360/N972016-00698.

    CHEN Z Q, ZHANG L, JIN X. Recent progress on X-ray security inspection technologies[J]. Chin Sci Bull, 2017, 62: 1350−1364. DOI: 10.1360/N972016-00698. (in Chinese).
    [33] ZHANG L, YANGDAI T. Determination of liquid's molecular interference function based on X-ray diffraction and dual-energy CT in security screening[J]. Applied Radiation and Isotopes, 2016: 179-187.
    [34] GREENBERG J A, CARPENTER J H, COCCARELLI D, et al. Design and analysis of a hybrid X-ray transmission and diffraction system[C]//Anomaly Detection and Imaging with X-rays (ADIX) VI. 2021.
    [35] 张丽, 杨洪恺, 邢宇翔, 等. 行李物品智能安检系统和方法[P]: 中国, CN115793077A. 2023-03-14.

    ZHANG L, YANG H K, XING Y X, et al. Intelligent luggage item security inspection system and method[P]: China, CN115793077A. 2023-03-14.
    [36] Duke to Lead $5.83Million DHS Project to Reinvent Airport Screening [EB/OL]. [2023-08-31]. https://pratt.duke.edu/about/news/reinvent-airport-screening.
    [37] News Release: DHS S&T Awards $3.5 M to Improve X-Ray Detection Technology [EB/OL]. [2023-08-31]. https://www.dhs.gov/science-and-technology/news/2018/08/30/news-release-dhs-st-awards-35m-improve-X-ray-detection.
    [38] Integrated Defense and Security Solutions Awarded Contract to Advance Airport Screening [EB/OL]. [2023-08-31]. https://www.businesswire.com/news/home/20201109005629/en/Integrated-Defense-and-Security-Solutions-Awarded-Contract-to-Advance-Airport-Screening.
    [39] Integrated Defense And Security Solutions Awarded Contract To Develop An Integrated Detect™ 1000 with Halo X-ray Diffraction Technology [EB/OL]. [2023-08-31]. https://www.idsscorp.net/en/news/2020/11/9/integrated-defense-and-security-solutions-awarded-contract-to-develop-an-integrated-detect-1000-with-halo-X-ray-diffraction-technology
    [40] 张丽, 陈志强, 任远达, 等. 安检设备(XRD)[P]: 中国, CN307774841 S. 2023-01-06.

    ZHANG L, CHEN Z Q, REN Y S, et al. Security inspection device (XRD)[P]: China, CN307774841 S. 2023-01-06.
    [41] 许晓飞. 基于X射线光子计数探测器的成像方法与安检应用研究[D]. 北京: 清华大学, 2021.

    XU X F. Research on reconstruction algorithm and security application based on X-ray photon counting detectors[D]. Beijing: Tsinghua University, 2021. (in Chinese).
  • 加载中
图(20) / 表(2)
计量
  • 文章访问数:  24
  • HTML全文浏览量:  7
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-06
  • 修回日期:  2023-09-01
  • 录用日期:  2023-09-02
  • 网络出版日期:  2023-09-06

目录

    /

    返回文章
    返回