Citation: | CHEN X H, HUANG X Q, LI J L, et al. Evaluation of diagnostic value of pulmonary nodules based on two AI softwares[J]. CT Theory and Applications, 2023, 32(4): 493-499. DOI: 10.15953/j.ctta.2022.087. (in Chinese). |
[1] |
中华医学会肿瘤学分会, 中华医学会杂志社. 中华医学会肿瘤学分会肺癌临床诊疗指南(2021版)[J]. 中华医学杂志, 2021,101(23): 1725−1757. doi: 10.3760/cma.j.cn112137-20210207-00377
|
[2] |
LEIGH J, COLLABORATION G B O D C. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life years for 29 cancer groups, 1990 to 2017[J]. JAMA Oncology, 2019, 5(12): 1749−1768. DOI: 10.1001/jamaoncol.2019.2996.
|
[3] |
YUAN S, WEI Y, ZHAO D. Computer-aided lung nodule recognition by SVM classifier based on combination of random undersampling and SMOTE[J]. Computational and Mathematical Methods in Medicine, 2015: 1−13. DOI: 10.1155/2015/368674.
|
[4] |
AZUMA M, NAKADA H, TAKEI M, et al. Detection of acute rib fractures on CT images with convolutional neural networks: Effect of location and type of fracture and reader's experience[J]. Emergency Radiology, 2022, 29(2): 317−328. DOI: 10.1007/s10140-021-02000-6.
|
[5] |
MASSALHA S, CLARKIN O, THORNHILL R, et al. Decision support tools, systems, and artificial intelligence in cardiac imaging[J]. Canadian Journal of Cardiology, 2018, 34(7): 827−838. DOI: 10.1016/j.cjca.2018.04.032.
|
[6] |
SHAFFIE A, SOLIMAN A, FRAIWAN L, et al. A generalized deep learning-based diagnostic system for early diagnosis of various types of pulmonary nodules[J]. Technology in Cancer Research & Treatment, 2018, 17: 1533033818798800.
|
[7] |
中华医学会放射学分会, 中国食品药品检定研究院, 国家卫生健康委能力建设与继续教育中心, 等. 胸部CT肺结节数据集构建及质量控制专家共识[J]. 中华放射学杂志, 2021,55(2): 104−110. DOI: 10.3760/cma.j.cn112149-20200713-00915.
Chinese Society of Radiology Chinese Medical Association, National Institutes for Food and Drug Control, National Health Commission Capacity Building and Continuing Education Center, et al. Expert consensus on the construction and quality control of thoracic CT datasets for pulmonary nodules[J]. Chinese Journal of Radiology, 2021, 55(2): 104−110. DOI: 10.3760/cma.j.cn112149-20200713-00915. (in Chinese).
|
[8] |
HASSANZADEH T, ESSAM D, SARKER R. Evolutionary deep attention convolutional neural networks for 2D and 3D medical image segmentation[J]. Journal of Digital Imaging, 2021, 34(6): 1387−1404. DOI: 10.1007/s10278-021-00526-2.
|
[9] |
张正华, 蔡雅倩, 韩丹, 等. 人工智能与不同级别医师对肺结节检出效能的对照研究[J]. 中国医学影像学杂志, 2020,28(9): 662−665. DOI: 10.3969/j.issn.1005-5185.2020.09.005.
ZHANG Z H, CAI Y Q, HAN D, et al. Artificial intelligence and various levels of physicians in detection of pulmonary nodules: A comparative study[J]. Chinese Journal of Medical Imaging, 2020, 28(9): 662−665. DOI: 10.3969/j.issn.1005-5185.2020.09.005. (in Chinese).
|
[10] |
TSUTANI Y, MIYATA Y, NAKAYAMA H, et al. Prognostic significance of using solid versus whole tumor size on high-resolution computed tomography for predicting pathologic malignant grade of tumors in clinical stage IA lung adenocarcinoma: A multicenter study[J]. The Journal of Thoracic and Cardiovascular Surgery, 2012, 143(3): 607−612. DOI: 10.1016/j.jtcvs.2011.10.037.
|
[11] |
LEE H J, GOO J M, LEE C H, et al. Nodular ground-glass opacities on thin-section CT: Size change during follow-up and pathological results[J]. Korean Journal of Radiology, 2007, 8(1): 22−31. DOI: 10.3348/kjr.2007.8.1.22.
|
[12] |
KANG G X, LIU K, HOU B B, et al. 3D multi-view convolutional neural networks for lung nodule classification[J]. Plos One, 2017, 12(11): e0188290. DOI: 10.1371/journal.pone.0188290.
|
[13] |
SHIGEFUKU S, SHIMADA Y, HAGIWARA M, et al. Prognostic significance of ground-glass opacity components in 5-year survivors with resected lung adenocarcinoma[J]. Annals of Surgical Oncology, 2021, 28(1): 148−156. DOI: 10.1245/s10434-020-09125-x.
|
[14] |
MENG Y, LIU C L, CAI Q, et al. Contrast analysis of the relationship between the HRCT sign and new pathologic classification in small ground glass nodule-like lung adenocarcinoma[J]. Radiology Medical, 2019, 124(1): 8−13. DOI: 10.1007/s11547-018-0936-x.
|
[15] |
刘凯, 张荣国, 涂文婷, 等. 深度学习技术对胸部X线平片亚实性结节的检测效能初探[J]. 中华放射学杂志, 2017,51(12): 918−921. DOI: 10.3760/cma.j.issn.1005-1201.2017.12.006.
LIU K, ZHANG R G, TU W T, et al. A preliminary investigation on pulmonary subsolid nodule detection using deep learninb gmethods from chest X-rays[J]. Chinese Journal of Radiology, 2017, 51(12): 918−921. DOI: 10.3760/cma.j.issn.1005-1201.2017.12.006. (in Chinese).
|
[16] |
李欣菱, 郭芳芳, 周振, 等. 基于深度学习的人工智能胸部CT肺结节检测效能评估[J]. 中国肺癌杂志, 2019,22(6): 336−340. DOI: 10.3779/j.issn.1009-3419.2019.06.02.
LI X L, GUO F F, ZHOU Z, et al. Performance of deep-learning-based artificial intelligence on detection of pulmonary nodules in chest CT[J]. Chinese Journal of Lung Cancer, 2019, 22(6): 336−340. DOI: 10.3779/j.issn.1009-3419.2019.06.02. (in Chinese).
|
[17] |
刘娜, 赵正凯, 邹佳瑜, 等. 基于人工智能的胸部CT肺结节检出及良恶性诊断效能评估[J]. CT理论与应用研究, 2021,30(6): 709−715. DOI: 10.15953/j.1004-4140.2021.30.06.06.
LIU N, ZHAO Z K, ZOU J Y, et al. Evaluation of detection and diagnostic efficiency of pulmonary nodules by chest CT based on artificial intelligence[J]. CT Theory and Applications, 2021, 30(6): 709−715. DOI: 10.15953/j.1004-4140.2021.30.06.06. (in Chinese).
|
[18] |
王祥, 李清楚, 邵影, 等. 基于三维卷积神经网络肺结节深度学习算法模临床效能初步评估[J]. 放射学实践, 2019,34(9): 942−946. DOI: 10.13609/j.cnki.1000-0313.2019.09.002.
WANG X, LI Q C, SHAO Y, et al. A preliminary clinical evaluation of a 3D convolutional neural network based deep learning system[J]. Radiologic Practice, 2019, 34(9): 942−946. DOI: 10.13609/j.cnki.1000-0313.2019.09.002. (in Chinese).
|
[19] |
左玲子, 黄艳. 人工智能在体检肺CT中检出的假阳性结节研究[J]. 中国医疗设备, 2021,36(10): 177−180. DOI: 10.3969/j.issn.1674-1633.2021.10.041.
ZUO L Z, HUANG Y. Study of false positive nodules detected by artificial intelligence in lung CT examination[J]. China Medical Devices, 2021, 36(10): 177−180. DOI: 10.3969/j.issn.1674-1633.2021.10.041. (in Chinese).
|
1. |
万鑫龙,邓尚彪,高鹏. 基于深度学习的肺结节良恶性CT智能鉴别系统的构建及应用. 临床医学工程. 2025(01): 12-15 .
![]() | |
2. |
苏寅晨,张晓琴. 人工智能辅助诊断系统在肺结节检测及良恶性判断中的应用价值. CT理论与应用研究. 2024(03): 325-331 .
![]() |