ISSN 1004-4140
CN 11-3017/P
GUO Wei-ya, LIU Yi-jun, LIU Ai-lian. To Explore the Influence of GSI Data of Standard Model in Different Pitch of Single Source-dual Energy CT[J]. CT Theory and Applications, 2017, 26(3): 279-284. DOI: 10.15953/j.1004-4140.2017.26.03.03
Citation: GUO Wei-ya, LIU Yi-jun, LIU Ai-lian. To Explore the Influence of GSI Data of Standard Model in Different Pitch of Single Source-dual Energy CT[J]. CT Theory and Applications, 2017, 26(3): 279-284. DOI: 10.15953/j.1004-4140.2017.26.03.03

To Explore the Influence of GSI Data of Standard Model in Different Pitch of Single Source-dual Energy CT

More Information
  • Received Date: July 26, 2016
  • Available Online: November 27, 2022
  • Objective: To explore the influence of GSI data in different pitch of single source-dual energy CT. Method: AGE standard water model was imaged by different scanning pitch of single source-dual energy CT (Discovery CT 750 HD). Scanning parameter: 6 Scan Protocols with tube current form 180 to 192.5 mAs, medium FOV, thickness 5 mm, and two different pitch (1.375: 1 and 0.984: 1) for scanning. 6 slices of images was acquired in succession for each 12 groups of data and reconstructed 1.25 millimeter-thickness images. Using GSI general MD analysis software for image processing, 5 ROIs (3000 mm2) were putted in the middle and 3, 6, 9, 12 o'clock direction. CT value and CT SD value were measured on the 70 keV monochromatic image, water-iodine value and water-iodine SD value were measured on the water-iodine concentration image. Independent-samples t test were used for statistical analysis. Result: The CT value of 1.375: 1 group and 0.984: 1 group were (1.390±1.90) HU and (1.969±1.74) HU, SD value were (7.21±0.55) HU, (6.47±0.56) HU; 1.375:1 group were closer to the standard value. The water-iodine value of 1.375mm group were 1001.56±1.76, SD value were 4.95 ±0.43; the water-iodine value of 1.375: 1 group and 0.984: 1 group were 1001.95 ±1.47, 1002.19±1.34. Differences between the two groups have statistical significance (P〈0.05). Conclusion: Scanning pitch influenced GSI data. Using smaller pitch scanning condition, the reliability of diagnosis can be improved.
  • Related Articles

    [1]XIANG Ronglin, ZHANG Li. Suppression Method for Cone-Beam CT Artifact Based on FDK Compensation and Dual-Source Weighting[J]. CT Theory and Applications. DOI: 10.15953/j.ctta.2024.222
    [2]WANG Fengxian, WANG Shoufeng, CHANG Ying, ZHOU Jin, CHEN Jing, ZHOU Zhengyang, WANG Dongmei. The Feasibility of Texture-based Quantification for Evaluating Lumbar Intervertebral Disc Degeneration in Adolescent Idiopathic Scoliosis from Conventional T2-weighted Magnetic Resonance Imaging[J]. CT Theory and Applications, 2023, 32(6): 735-745. DOI: 10.15953/j.ctta.2022.225
    [3]LV Zhentao, GUI Zhiguo, LIU Yi, ZHANG Pengcheng. Industrial CT Rotation Center Calibration Method Based on Weighted Average[J]. CT Theory and Applications, 2021, 30(5): 539-546. DOI: 10.15953/j.1004-4140.2021.30.05.01
    [4]ZHANG Jing, CHEN Jun, LI Jun, SHAO Xianmin, WANG Wenxia. Imaging Value of Contrast-enhanced Susceptibility-weighted Imaging for Cerebral Cavernous Malformations[J]. CT Theory and Applications, 2021, 30(3): 371-378. DOI: 10.15953/j.1004-4140.2021.30.03.11
    [5]GONG Shu, REN Qin-qin, WANG Min-ling. Application of Parabolic Radon Transform in the Suppression of Multiple Seismic Wave[J]. CT Theory and Applications, 2017, 26(2): 165-176. DOI: 10.15953/j.1004-4140.2017.26.02.05
    [6]YUAN Ye, HUANG Xiao-han, WANG Zhong-gang, ZHANG Yu, JIANG Zheng. The Method of Inversion Imaging Based on Matrix Pretreatment and BPT-SIRT Nonlinear Weighted[J]. CT Theory and Applications, 2017, 26(1): 53-62. DOI: 10.15953/j.1004-4140.2017.26.01.07
    [7]XIE Wan-meng, CHEN Jun, WANG Jun, XIE Xin-jia. A Primary Study of Magnetic Resonance Imaging-diffusion Weighted Imaging of Pancreas in Type 2 Diabetic Mellitus Patients[J]. CT Theory and Applications, 2016, 25(5): 563-569. DOI: 10.15953/j.1004-4140.2016.25.05.08
    [8]HE Yun-fei, DU Li-yun, JIN Cang-zheng. The Value of Diffusion-weighted Imaging in Diagnosing the Metastatic Lymph Nodes of Rectal Carcinoma[J]. CT Theory and Applications, 2014, 23(2): 267-273.
    [9]YIN Xiao-ming, CHANG Xin, DENG Mao-song, DENG Gang, FENG Chen-lu, WANG Meng, ZENG Qing-yu. The Application of Whole Body Diffusion Weighted Imaging with Background Body Signal Suppression in the Diagnosis of Thoracic Tumorous Lesions[J]. CT Theory and Applications, 2012, 21(1): 105-118.
    [10]DAI Shi-peng, DAI Jing-ru, PANG Jun. MR Susceptibility Weighted Imaging in Study of Vena Encephali in Sheep[J]. CT Theory and Applications, 2010, 19(1): 111-115.
  • Cited by

    Periodical cited type(9)

    1. 周雨晴,张佳佳,张广智,蔺营. 致密砂岩储层岩石物理建模及“甜点”预测. 地球物理学进展. 2025(01): 255-265 .
    2. 马宝,邵彪,赵昊洋,赵艺,赵东山,武周杰,孙朗秋. 页岩气储层岩石背散射图像中多种组分的人工智能识别. 科技创新与应用. 2025(17): 10-13+19 .
    3. 汪锐,李芳,刘仕友,孙万元,李松龄,黄晟. 岩石物理建模引导的低渗储层参数预测方法. 煤田地质与勘探. 2024(08): 187-197 .
    4. 钱佩璋,乔志伟,杜聪聪. 基于3MNet去噪网络的快速EPRI成像. CT理论与应用研究. 2023(01): 55-66 . 本站查看
    5. 王迪,张益明,张繁昌,丁继才,牛聪. 利用先验信息约束的深度学习方法定量预测致密砂岩“甜点”. 石油地球物理勘探. 2023(01): 65-74 .
    6. 张傲,李宗杰,刘军,闫星宇,李伟,顾汉明. 基于Yolox算法的碳酸盐岩储层溶洞“串珠状”异常反射智能检测. 石油地球物理勘探. 2023(03): 540-549 .
    7. 杜聪聪,乔志伟. 基于对抗式残差密集深度神经网络的CT稀疏重建. CT理论与应用研究. 2022(02): 163-172 . 本站查看
    8. 刘仕友,曲福良,周凡,邓利峰. 基于地震属性约简的深度学习储层物性参数预测:以莺歌海盆地乐东区为例. CT理论与应用研究. 2022(05): 577-586 . 本站查看
    9. 郑琳. 基于物联网边缘计算的数据挖掘方法研究. 无线互联科技. 2022(15): 140-142 .

    Other cited types(23)

Catalog

    Article views PDF downloads Cited by(32)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return