ISSN 1004-4140
CN 11-3017/P
ZHOU Li-ping, SUN Yi, CHENG Kai, YU Jian-qiao. Deep Learning Based Beam Hardening Artifact Reduction in Industrial X-ray CT[J]. CT Theory and Applications, 2018, 27(2): 227-240. DOI: 10.15953/j.1004-4140.2018.27.02.11
Citation: ZHOU Li-ping, SUN Yi, CHENG Kai, YU Jian-qiao. Deep Learning Based Beam Hardening Artifact Reduction in Industrial X-ray CT[J]. CT Theory and Applications, 2018, 27(2): 227-240. DOI: 10.15953/j.1004-4140.2018.27.02.11

Deep Learning Based Beam Hardening Artifact Reduction in Industrial X-ray CT

Funds: 

National Key scientific Instrument and Equipment Development Projects (2014YQ240445).

More Information
  • Received Date: August 11, 2017
  • Available Online: November 07, 2021
  • In the nondestructive detection with industrial CT, due to the fact that the actual X-ray source has a wide spectrum, slices reconstructed by most existing reconstruction algorithms will suffer from beam hardening artifacts. It will degrade image quality greatly, affecting important CT image task such as CT diagnosis and so on. In this study, we propose a method to suppress beam hardening artifacts based on deep learning. We train a convolutional neural network using a large number of images with beam hardening artifacts as input and the corresponding artifact-free images reconstructed at a fixed energy as output to establish the mapping between image with beam hardening artifacts and artifact-free image for suppressing beam hardening artifacts. Experimental results show the effectiveness of the proposed method in the beam hardening artifact reduction of CT images.
  • Related Articles

    [1]ZHANG Ran, KONG Huihua, LI Jiaxin, SONG Yijiao. Dense Sandstone Material Decomposition Based on Improved Convolutional Neural Network[J]. CT Theory and Applications, 2025, 34(1): 117-128. DOI: 10.15953/j.ctta.2024.131
    [2]LIU Zhichao, XU Zhiwen, ZHAO Sai, ZHANG Youxin, NIE Cong, LEI Ziqiao. Deep Learning Computer-aided Diagnostic Model for Non-small Cell Lung Cancer Based on Convolutional Neural Network and Attention Mechanism[J]. CT Theory and Applications. DOI: 10.15953/j.ctta.2025.020
    [3]QIAN Peizhang, QIAO Zhiwei, DU Congcong. Fast EPRI Imaging Based on 3MNet Denoising Network[J]. CT Theory and Applications, 2023, 32(1): 55-66. DOI: 10.15953/j.ctta.2022.065
    [4]QIAO Yiyu, QIAO Zhiwei. Low-dose CT Image Reconstruction Method Based on CNN and Transformer Coupling Network[J]. CT Theory and Applications, 2022, 31(6): 697-707. DOI: 10.15953/j.ctta.2022.114
    [5]XIONG Shan, CHEN Bo, MAO Jie, LIU Sibin, HUANG Yuanyi, CHENG Jianmin. Application of Computer-aided Diagnosis System Based on Deep Learning in Rib Fracture Diagnosis[J]. CT Theory and Applications, 2022, 31(5): 617-622. DOI: 10.15953/j.1004-4140.2022.31.05.08
    [6]DU Congcong, QIAO Zhiwei. Sparse CT Reconstruction Based on Adversarial Residual Dense Deep Neural Network[J]. CT Theory and Applications, 2022, 31(2): 163-172. DOI: 10.15953/j.ctta.2021.032
    [7]HUANG Dongyun, XIA Jun, LIN Yuwen, CHEN Jiakuan, CHEN Haibin. The Application Value of Accurate Diagnosis of CT Image of Skull Base Fractures based on Convolutional Neural Network[J]. CT Theory and Applications, 2021, 30(6): 769-776. DOI: 10.15953/j.1004-4140.2021.30.06.13
    [8]CHEN Kang, DI Guidong, ZHANG Jiajia, ZHOU You, WU Yao, ZHANG Guangzhi. Reservoir Prediction Based on Improved U-Net Convolutional Neural Network[J]. CT Theory and Applications, 2021, 30(4): 403-416. DOI: 10.15953/j.1004-4140.2021.30.04.01
    [9]LIU Jiang, TU Qicui, LI Bingying, HUANG Xin, ZHANG Guangzhi, ZHANG Jiajia, WU Yao, ZHU Shengwei. Fault Prediction Method Based on Convolutional Neural Network[J]. CT Theory and Applications, 2020, 29(5): 522-533. DOI: 10.15953/j.1004-4140.2020.29.05.02
    [10]CAI Ning, WANG Shijie, CHEN Lujie, ZHANG Yikun, CHEN Yang, LUO Shouhua, GU Ning. Low-dose Micro-CT Imaging Method Based on Progressive Network Processing[J]. CT Theory and Applications, 2020, 29(4): 435-446. DOI: 10.15953/j.1004-4140.2020.29.04.06
  • Cited by

    Periodical cited type(8)

    1. 陈军. CT检查技术在肺结核临床诊断中的应用进展. 影像研究与医学应用. 2024(21): 11-13+17 .
    2. 闫坤,任立军,刘薇,杨媛媛,张欣. 结核性浆膜炎患者应用T细胞斑点试验、腺苷脱氨酶检测的诊断价值. 现代医学与健康研究电子杂志. 2023(15): 97-99 .
    3. 赵莹莹,王二君. 活动性肺结核抗结核治疗后高分辨率CT评分、IL-34、ESR水平变化及预后价值. 青岛医药卫生. 2023(05): 342-345 .
    4. 徐积兰,阳名华,唐涌通,章俊,戴犹峰. 探索呼吸介入诊疗技术对胸部CT拟诊肺结核且痰检阴性的诊断价值. 基层医学论坛. 2023(32): 64-66+69 .
    5. 牛思田,刘歆. 结核抗体结核感染T细胞斑点试验及痰涂片痰培养联合应用对活动性肺结核的诊断效能. 实用医技杂志. 2023(06): 434-438 .
    6. 熊艳. CT在活动性菌阳肺结核与菌阴肺结核鉴别诊断中的应用价值. 现代医学与健康研究电子杂志. 2022(09): 98-101 .
    7. 张进谷. 外周血单核细胞联合T-SPOT.TB检测在涂阴肺结核诊断中的应用. 现代诊断与治疗. 2022(15): 2299-2301 .
    8. 黎惠如,谢智恩,任会丽,刘曾维,梁瑞云,周辉林,方伟军. 多层螺旋CT与γ干扰素释放试验诊断活动性肺结核的效能比较. 中国医学影像学杂志. 2022(12): 1247-1251 .

    Other cited types(0)

Catalog

    Article views (1378) PDF downloads (127) Cited by(8)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return