ISSN 1004-4140
CN 11-3017/P
DONG Xiaoying, CHEN Ping. Segmentation of Liver Tumors Based on Bottleneck Residual Attention Mechanism U-net[J]. CT Theory and Applications, 2021, 30(6): 661-670. DOI: 10.15953/j.1004-4140.2021.30.06.01
Citation: DONG Xiaoying, CHEN Ping. Segmentation of Liver Tumors Based on Bottleneck Residual Attention Mechanism U-net[J]. CT Theory and Applications, 2021, 30(6): 661-670. DOI: 10.15953/j.1004-4140.2021.30.06.01

Segmentation of Liver Tumors Based on Bottleneck Residual Attention Mechanism U-net

More Information
  • Received Date: July 26, 2021
  • Available Online: November 03, 2021
  • The segmentation of liver tumors is difficult due to the large amount of noise contained in medical CT images and the uneven size, location and tissue density of liver tumors similar to adjacent organs. The existing traditional full-convolutional neural network (FCN) method can achieve liver tumor segmentation by assigning category labels to each pixel in the input CT image, but the problems of small target missing or fuzzy target boundary segmentation still occur in the segmentation accuracy. In order to solve these problems, we propose a bottleneck residual attention mechanism U-net (BRA U-net) segmentation method for liver tumors. By introducing bottleneck residual modules, we can greatly reduce the computational load in very deep networks while solving the gradient disappearance problem. In addition, stacked attention modules can increase the proportion of effective features. In this paper, the proposed framework was tested on the public MICCAI2017 liver tumor segmentation dataset, and the dice similarity coefficient value reached 0.788, higher than other comparative segmentation networks. The generality of the proposed method was verified by using the 3D-IRCADb dataset. The results show that the proposed method has good segmentation effect and can provide a reliable basis for clinical diagnosis.
  • [1]
    CHRIST P F, ETTLINGER F, GRUN F, et al. Automatic liver and tumor segmentation of CT and MRI volumes using cascaded fully convolutional Neural Networks[J]. Computer Vision and Pattern Recognition, 2017, (2):1-20.
    [2]
    LI X M, CHEN H, QI X J, et al. H-DenseUNet:Hybrid densely connected unet for liver and tumor segmentation from CT volumes[J]. IEEE Transactions on Medical Imaging, 2018, 37(12):2663-2674.
    [3]
    BORLU M. Accurate segmentation of dermoscopic images by image thresholding based on type-2 fuzzy logic[M]. IEEE Transactions on Fuzzy Systems, 2009, 17(4):976-982.
    [4]
    OSUNA-ENCISO V, CUEVAS E, SOSSA H. A comparison of nature inspired algorithms for multi-threshold image segmentation[J]. Expert Systems with Applications, 2013, 40(4):1213-1219.
    [5]
    SHUAI Y, HONG S, GE X. SAR image segmentation based on level set with stationary global minimum[J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(4):644-648.
    [6]
    VESE L A, CHAN T F. A multiphase level set framework for image segmentation using the Mumford and Shah model[J]. International Journal of Computer Vision, 2002, 50(3):271-293.
    [7]
    ROUHI R, JAFARI M, KASAEI S, et al. Benign and malignant breast tumors classification based on region growing and CNN segmentation[J]. Expert Systems with Applications an International Journal, 2015, 42(3):990-1002.
    [8]
    ADAMS R, BISHOF L. Seeded region growing[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1994, 16:641-647.
    [9]
    LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 39(4):640-651.
    [10]
    BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet:A deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12):2481-2495.
    [11]
    CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab:Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4):834-848.
    [12]
    CHEN L C, YANG Y, WANG J, et al. Attention to scale:Scale-aware semantic image segmentation[J]. IEEE Conference on Computer Vision and Pattern Recognition, 2015, 29:3640-3649.
    [13]
    OKTAY O, SCHLEMPER J, FOLGOC L L, et al. Attention U-net:Learning where to look for the pancreas[J]. Computer Vision and Pattern Recognition, 2018, 3:1-10.
    [14]
    SCHLEMPER J, OKTAY O, CHEN L, et al. Attention-gated networks for improving ultrasound scan plane detection[J]. Computer Vision and Pattern Recognition, 2018, (4):1-12.
    [15]
    RONNEBERGER O, FISCHER P, BROX T. U-net:Convolutional networks for biomedical image segmentation[J]. Lecture Notes in Computer Science, 2015, 9351:234-241.
    [16]
    HE K, ZHANG X, REN S, et al. Identity mappings in deep residual networks[J]. Computer VISION-ECCV 2016, PT IV, 2016, 9908:630-645.
    [17]
    IOFFE S, SZEGEDY C. Batch normalization:Accelerating deep network training by reducing internal covariate shift[J]. Computer Science, 2015, 37:448-456.
    [18]
    FEI W, JIANG M, CHEN Q, et al. Residual attention network for image classification[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2017.
    [19]
    闫谙, 王卫卫. 基于条件能量对抗网络的肝脏和肝肿瘤分割[J]. 计算机工程与应用, 2021, 57(11):179-184.

    DOI:10.3778/j.issn.1002-8331.2003-0370. YAN A, WANG W W. Segmentation of liver and liver tumor based on conditional energy-based GAN[J]. Computer Engineering and Applications, 2021, 57(11):179-184. DOI:10.3778/j.issn. 1002-8331.2003-0370.
    [20]
    LIU T Y, LIU J C, MA Y, et al. Spatial feature fusion convolutional network for liver and liver tumor segmentation from CT images[J]. Medical Physics, 2020, 48(1):264-272.
    [21]
    Alirr O I. Deep learning and level set approach for liver and tumor segmentation from CT scans[J]. Journal of Applied Clinical Medical Physics, 2020, 21(10):200-209. DOI: 10.1002/acm2.13003.
  • Cited by

    Periodical cited type(6)

    1. 谢玮,夏勇,杨骞,毕臣臣,吕慧,雷朝阳. 基于绕射波的地震属性研究进展. 石化技术. 2024(04): 216-218 .
    2. 梁瑶,霍守东,李学良,舒梦珵,杨晓,石太昆. 利用绕射信息在裂缝型地层中进行钻前风险评估. 地球物理学报. 2023(01): 46-53 .
    3. 肖广锐,李尧,张羽茹,徐德奎. 绕射波成像在潜山裂缝储层预测中的应用——以渤中A气田为例. 石油物探. 2022(05): 812-820+829 .
    4. 田涛,李少轩,高阳,韦红. 变质岩潜山裂缝型储层精细预测技术——以渤海海域A油田为例. 石油地质与工程. 2022(06): 8-13 .
    5. 张志军,肖广锐,李尧. 渤中19-6油田变质岩潜山内幕裂缝地震响应特征及预测技术. 石油地球物理勘探. 2021(04): 845-852+675 .
    6. 周鹏,肖曦,陶杰,刘方,梁瑶,霍守东,舒梦珵. 绕射信息提取技术及其在致密砂岩断裂系统识别中的应用. 石油物探. 2020(02): 276-282 .

    Other cited types(0)

Catalog

    Article views (744) PDF downloads (110) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return