Citation: | DONG Xiaoying, CHEN Ping. Segmentation of Liver Tumors Based on Bottleneck Residual Attention Mechanism U-net[J]. CT Theory and Applications, 2021, 30(6): 661-670. DOI: 10.15953/j.1004-4140.2021.30.06.01 |
[1] |
CHRIST P F, ETTLINGER F, GRUN F, et al. Automatic liver and tumor segmentation of CT and MRI volumes using cascaded fully convolutional Neural Networks[J]. Computer Vision and Pattern Recognition, 2017, (2):1-20.
|
[2] |
LI X M, CHEN H, QI X J, et al. H-DenseUNet:Hybrid densely connected unet for liver and tumor segmentation from CT volumes[J]. IEEE Transactions on Medical Imaging, 2018, 37(12):2663-2674.
|
[3] |
BORLU M. Accurate segmentation of dermoscopic images by image thresholding based on type-2 fuzzy logic[M]. IEEE Transactions on Fuzzy Systems, 2009, 17(4):976-982.
|
[4] |
OSUNA-ENCISO V, CUEVAS E, SOSSA H. A comparison of nature inspired algorithms for multi-threshold image segmentation[J]. Expert Systems with Applications, 2013, 40(4):1213-1219.
|
[5] |
SHUAI Y, HONG S, GE X. SAR image segmentation based on level set with stationary global minimum[J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(4):644-648.
|
[6] |
VESE L A, CHAN T F. A multiphase level set framework for image segmentation using the Mumford and Shah model[J]. International Journal of Computer Vision, 2002, 50(3):271-293.
|
[7] |
ROUHI R, JAFARI M, KASAEI S, et al. Benign and malignant breast tumors classification based on region growing and CNN segmentation[J]. Expert Systems with Applications an International Journal, 2015, 42(3):990-1002.
|
[8] |
ADAMS R, BISHOF L. Seeded region growing[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1994, 16:641-647.
|
[9] |
LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 39(4):640-651.
|
[10] |
BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet:A deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12):2481-2495.
|
[11] |
CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab:Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4):834-848.
|
[12] |
CHEN L C, YANG Y, WANG J, et al. Attention to scale:Scale-aware semantic image segmentation[J]. IEEE Conference on Computer Vision and Pattern Recognition, 2015, 29:3640-3649.
|
[13] |
OKTAY O, SCHLEMPER J, FOLGOC L L, et al. Attention U-net:Learning where to look for the pancreas[J]. Computer Vision and Pattern Recognition, 2018, 3:1-10.
|
[14] |
SCHLEMPER J, OKTAY O, CHEN L, et al. Attention-gated networks for improving ultrasound scan plane detection[J]. Computer Vision and Pattern Recognition, 2018, (4):1-12.
|
[15] |
RONNEBERGER O, FISCHER P, BROX T. U-net:Convolutional networks for biomedical image segmentation[J]. Lecture Notes in Computer Science, 2015, 9351:234-241.
|
[16] |
HE K, ZHANG X, REN S, et al. Identity mappings in deep residual networks[J]. Computer VISION-ECCV 2016, PT IV, 2016, 9908:630-645.
|
[17] |
IOFFE S, SZEGEDY C. Batch normalization:Accelerating deep network training by reducing internal covariate shift[J]. Computer Science, 2015, 37:448-456.
|
[18] |
FEI W, JIANG M, CHEN Q, et al. Residual attention network for image classification[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2017.
|
[19] |
闫谙, 王卫卫. 基于条件能量对抗网络的肝脏和肝肿瘤分割[J]. 计算机工程与应用, 2021, 57(11):179-184.
DOI:10.3778/j.issn.1002-8331.2003-0370. YAN A, WANG W W. Segmentation of liver and liver tumor based on conditional energy-based GAN[J]. Computer Engineering and Applications, 2021, 57(11):179-184. DOI:10.3778/j.issn. 1002-8331.2003-0370.
|
[20] |
LIU T Y, LIU J C, MA Y, et al. Spatial feature fusion convolutional network for liver and liver tumor segmentation from CT images[J]. Medical Physics, 2020, 48(1):264-272.
|
[21] |
Alirr O I. Deep learning and level set approach for liver and tumor segmentation from CT scans[J]. Journal of Applied Clinical Medical Physics, 2020, 21(10):200-209. DOI: 10.1002/acm2.13003.
|