ISSN 1004-4140
CN 11-3017/P
WEI Hong, SONG Junting, TIAN Tao, ZHANG Pengzhi. Application of Amplitude Compensation Method Based on Phase Control in Reservoir Prediction of Bohai B Oilfield[J]. CT Theory and Applications, 2021, 30(6): 681-690. DOI: 10.15953/j.1004-4140.2021.30.06.03
Citation: WEI Hong, SONG Junting, TIAN Tao, ZHANG Pengzhi. Application of Amplitude Compensation Method Based on Phase Control in Reservoir Prediction of Bohai B Oilfield[J]. CT Theory and Applications, 2021, 30(6): 681-690. DOI: 10.15953/j.1004-4140.2021.30.06.03

Application of Amplitude Compensation Method Based on Phase Control in Reservoir Prediction of Bohai B Oilfield

More Information
  • Received Date: June 20, 2021
  • Available Online: November 03, 2021
  • The main target layer of Bohai B Oilfield is the Dongying Formation, which is 50-80 meters away from the bottom of the overlying Guantao Formation. There are one or more sets of high-speed, high-density and limited-distributed conglomerates developing at the bottom of the Guantao Formation, they cause energy loss, weaken the seismic response of the underlying reservoir and seriously affect the identification of the true range of the reservoir. For this reason, in this paper, starting with the theory of seismic wave propagation, firstly, we analyze the reflection and transmission loss effects of conglomerate-induced energy. Secondly, based on the forward simulation, the degree of energy loss caused by the conglomerate is analyzed, which is the same cumulative thickness. With more layers of conglomerate come greater losses. Based on the forward simulation results and the well-earthquake combination, we describe the plane distribution range of the three seismic phases, which are single set of conglomerates, multiple sets of conglomerate and non-conglomerate rock. Furthermore, combined with seismic attributes, we perform quantitative analysis on the plane distribution range of the energy loss of the reservoir. Then we extract the energy compensation factors of different seismic phases, and propose the phase-controlled energy compensation method for corresponding amplitude compensation. That is, the energy loss caused by single set of conglomerate is mainly compensated by reflection coefficients while the energy loss caused by multiple sets of conglomerate is mainly compensated by transmission coefficients repeatedly. Finally, we quantitatively eliminate the energy shielding influence of the overlying Guantao formation conglomerate on the underlying Dongying formation reservoir, portray the true plane range of the reservoir, and obtain drilling success, which fully proves the validity of this research and realizes accurate prediction of potential area.
  • [1]
    杨庆道, 王伟锋, 尹以东, 等. 能量屏蔽作用的类型、形成机制及应对方法[J]. 中国石油大学学报(自然科学版), 2011, 35(5):44-50. YANG Q D, WANG W F, YIN Y D, et al. Types of energy shielding effect, formation mechanism and countermeasures[J]. Journal of China University of Petroleum, 2011, 35(5):45-50. DOI:10.3969/j.issn.1673-5005.2011.05.008. (in Chinese).
    [2]
    卢宝坤, 张江杰. 角度域叠前时间偏移能量补偿方法[J]. 地球物理学进展, 2013, 28(2):869-873.

    LU B K, ZHANG J J. Amplitude compensation in angle-domain pre-stack time migration[J]. Progress in Geophysics, 2013, 28(2):0869-0873. DOI:10.6038/pg20130238. (in Chinese).
    [3]
    王童奎, 李莹, 郭爱华, 等. 逆时偏移技术在南堡1号构造中的应用研究[J]. 地球物理学进展, 2012, 27(6):2541-2547.

    WANG T K, LI Y, GUO A H, et al.The study of reverse-time migration technology in Nanpu 1st structure[J]. Progress in Geophys, 2012, 27(6):2541-2547. DOI:10.6038/j.issn.1004-2903.2012.06.030. (in Chinese).
    [4]
    ZHOU H L, WANG J, WANG M C, et al. Amplitude spectrum compensation and phase spectrum correction methods research of seismic data based on the generalized S transform[J]. Applied Geophysics, 2014, (4):468-478.
    [5]
    吕功训, 何新贞, 吴蕾, 等. 炮-检点双向照明补偿逆时移偏移[J]. 石油地球物理勘探, 2014, 49(2):266-270.

    LV G X, HE X Z, WU L, et al. Dual illumination compensation from source-receiver for seismic single-shot imaging[J]. Oil Geophysical Prospecting, 2014, 49(2):266-270. (in Chinese).
    [6]
    方修政, 钮凤林, 吴迪. 基于逆散射成像条件的最小二乘逆时偏移[J]. 地球物理学报, 2018, 61(9):3770-3782.

    FANG X Z, NIU F L, WU D. Least-squares reverse-time migration enhanced with the inverse scattering imagingcondition[J]. Chinese Journal of Geophysics, 2018, 61(9):3770-3782. DOI:10.6038/cjg2018L0721. (in Chinese).
    [7]
    林洪义, 石慧中, 石飞飞, 等. 与反射系数相关的能量补偿[C]//中国地球物理年会, 2005. LIN H Y, SHI H Z, SHI F F, et al. Amplitude compensation related to reflection coefficient[C]//Chinese Geophysical Society, 2005.
    [8]
    张志军, 周东红. 数据驱动的"气云"区能量补偿方法[J]. 石油地球物理勘探, 2016, 51(3):474-479.

    ZHANG Z J, ZHOU D H. Amplitude compensation in gas cloud area based on a data-driven algorithm[J]. Oil Geophysical Prospecting, 2016, 51(3):474-479. DOI:10.13810/j.cnki.issn. 1000-7210.2016.03.008. (in Chinese).
    [9]
    周星, 徐德奎, 何玉. 强反射能量屏蔽补偿在渤海C构造中的应用[J]. 物探化探计算技术, 2019, (1):41-46. ZHOU X, XU D K, HE Y. The application of shielding compensation by strong reflect in Bohai C oilfield[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2019

    , (1):41-46. DOI:10.3969/j.issn.1001-1749.2019.01.07. (in Chinese).
    [10]
    梁锴, 印兴耀, 吴国忱. TTI介质qP波入射精确和近似反射透射系数[J]. 地球物理学报, 2011, 54(1):208-217.

    LIANG K, YIN X Y, WU G C. Exact and approximate reflection and transmission coefficient for incident qP wave in TTI media[J]. Chinese Jounal of Geophysics, 2011, 54(1):208-217. DOI:10. 3969/1.issn.0001-5733.2011.01.022. (in Chinese).
    [11]
    杨春, 陈本池, 翟冠宇, 等. 薄层反透射系数关于射线参数的低阶近似[J]. 石油物探, 2019, 58(5):654-660.

    YANG C, CHEN B C, ZHAI G Y, et al. Low-order approximation of thin-layer reflection and transmission coefficients with respect to ray parameters[J]. Geophysical Prospecting for Petroleum, 2019, 58(5):654-660. DOI:10.3969/j.issn.1000-1441.2019.05.003. (in Chinese).
    [12]
    马昭军, 唐建明. P-SV波反射系数计算方法综述[J]. 勘探地球物理进展, 2007, 30(6):433-439.

    MA Z J, TANG J M. Review of calculation methods for P-SV wave reflection coefficient[J]. Progress in Exploration Geophysics, 2007, 30(6):433-439. (in Chinese).
    [13]
    尹军杰, 刘学伟, 李文慧. 地震波散射理论及应用研究综述[J]. 地球物理学进展, 2005, 20(1):123-134.

    YIN J J, LIU X W, LI W H. The view of seismic wave scattering theory and its application[J]. Progress in Geophysics, 2005, 20(1):123-134. (in Chinese).
    [14]
    周宗良, 张会卿, 曹国明, 等. 用最大熵谱分解定量预测曲流河薄砂体[J]. 断块油气田, 2019, 26(6):719-722.

    ZHOU Z L, ZHANG H Q, CAO G M, et al. Application of maximum entropy spectrum decomposition in quantitative prediction of thin sand body in meandering river[J]. Fault-Block Oil & Gas Field, 2019, 26(6):719-722. (in Chinese).
    [15]
    彭作磊, 陈铭. 多元地震属性分析提高薄储层预测精度[J]. 断块油气田, 2020, 27(3):318-322.

    PENG Z L, CHEN M. Multivariate seismic attribute analysis improve prediction accuracy of thin reservoirs[J]. Fault-Block Oil & Gas Field, 2020, 27(3):318-322. (in Chinese).
  • Cited by

    Periodical cited type(13)

    1. 张丽微. CT增强扫描对结肠癌周围淋巴结转移的评估价值. 中国肛肠病杂志. 2025(03): 6-8 .
    2. 颜孙,朱献韶,余立新,陈富强. MSCT多模态成像在老年结肠癌术前分期中的应用价值. 基层医学论坛. 2024(19): 76-79 .
    3. 李运奇,刘金岭,王力. 多层螺旋CT、肠腔充盈超声造影单独及联合检查对结肠癌的诊断价值. 癌症进展. 2024(12): 1367-1370 .
    4. 孙逸飞,王晴,韩蕊娜,邱爽. MSCT仿真肠镜检查中盲肠插管成功率的影响因素. 影像科学与光化学. 2023(01): 48-52 .
    5. 张雪. 多层螺旋CT在结肠癌术前诊断和分期中的价值分析. 中国实用医药. 2023(02): 81-83 .
    6. 王进. 多期MSCT增强扫描联合三维重建技术用于结肠癌术前评估的临床价值分析. 影像研究与医学应用. 2023(17): 33-35 .
    7. 陈伟彬,石倩倩,李忠垚,刘国荣,李盖,刘岩,李倩,张惠英,冯莉. 结直肠癌术前能谱CT标准化碘基值对淋巴结转移的鉴别诊断价值. 中国煤炭工业医学杂志. 2022(01): 16-21 .
    8. 施明. CT在结肠癌术前以及术后复发诊断中的效果探讨. 影像研究与医学应用. 2022(05): 158-160 .
    9. 赵莹. 多层螺旋CT在结肠癌分期中的诊断价值分析. 中国肛肠病杂志. 2022(04): 9-11 .
    10. 王德生,阚方功,马周鹏. CT联合血清CA125及HE4对卵巢上皮恶性肿瘤的诊断研究. CT理论与应用研究. 2022(05): 655-661 . 本站查看
    11. 王丽英,张亚林,阎茜,周昶岑,匡泳波,姚景江. 基于MSCT增强扫描的结肠癌肿瘤体积与淋巴结转移的相关性分析. 中国中西医结合影像学杂志. 2022(05): 470-473 .
    12. 张雪群,许金坨,林登坛,张子怡. 64排螺旋CT增强扫描对结肠癌临床分期的诊断价值. 医疗装备. 2022(24): 36-38 .
    13. 左开荣,陈力,张义,代红,刘元兵. 64排螺旋CT在结肠癌术前诊断中的应用价值. 中国当代医药. 2021(25): 151-154 .

    Other cited types(2)

Catalog

    Article views (311) PDF downloads (47) Cited by(15)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return