ISSN 1004-4140
CN 11-3017/P
XIONG S, CHEN B, MAO J, et al. Application of computer-aided diagnosis system based on deep learning in rib fracture diagnosis[J]. CT Theory and Applications, 2022, 31(5): 617-622. DOI: 10.15953/j.1004-4140.2022.31.05.08. (in Chinese).
Citation: XIONG S, CHEN B, MAO J, et al. Application of computer-aided diagnosis system based on deep learning in rib fracture diagnosis[J]. CT Theory and Applications, 2022, 31(5): 617-622. DOI: 10.15953/j.1004-4140.2022.31.05.08. (in Chinese).

Application of Computer-aided Diagnosis System Based on Deep Learning in Rib Fracture Diagnosis

More Information
  • Received Date: October 09, 2021
  • Available Online: June 29, 2022
  • Published Date: September 30, 2022
  • Objective: To investigate the application value of computer-aided diagnosis (CAD) system based on deep learning (DL) in rib fracture diagnosis. Methods: The CT images of 232 patients with chest trauma were analyzed retrospectively and the films were read in three ways. CAD system reading: using CAD system to detect and record the results of rib fracture; radiologists reading: two radiologists with 6 years of CT diagnosis experience read the film independently and the diagnostic results were based on the consensus of them; radiologists reading with the assistance of CAD system: one month later, the same two radiologists reassessed the images with the aid of the CAD system using a joint reading mode. Gold standard: two senior radiologists with more than 15 years of experience in the CT diagnosis of rib fractures read the radiographs independently and the consensus of them was used as the diagnostic standard. The sensitivity, false-positive rate and the reading time of the three methods were calculated and compared. Results: A total of 712 rib fractures were found in 232 patients. The reading sensitivity of the CAD system was 81.2%, which was lower than that of the radiologists, and the reading sensitivity of the radiologists was lower than that of CAD system-assisted radiologists. The false positive rate of CAD system was 0.48±0.13 and was the highest . There was no statistical difference in the false-positive rate between radiologists and CAD system-assisted radiologists. The reading time of the CAD system was (2.45±0.92)s and was the shortest. The reading time of CAD system-assisted radiologists was less than that of radiologists and the reading time was reduced by 34.2%. Conclusion: To further improve the sensitivity and reduce the false positive rate is an important part of CAD improvement; the use of CAD system based on deep learning to assist radiologists in reading images can improve the sensitivity of rib fracture diagnosis and reduce the time of reading images without increasing the false positive rate.
  • [1]
    PETERS S, NICOLAS V, HEYER C M. Multidetector computed tomography-spectrum of blunt chest wall and lung injuries in polytraumatized patients[J]. Clinical Radiology, 2010, 65: 333−338. doi: 10.1016/j.crad.2009.12.008
    [2]
    MURPHY C E, RAJA A S, BAUMANN B M, et al. Rib fracture diagnosis in the panscan era[J]. Annals of Emergency Medicine, 2017, 70: 904−909. doi: 10.1016/j.annemergmed.2017.04.011
    [3]
    CHERNEY A R, RICHARDSON D M, GREENBERG M R, et al. Prevalence and clinical import of thoracic injury identified by chest computed tomography but not chest radiography in blunt trauma: Multicenter prospective cohort study[J]. Annals of Emergency Medicine, 2016, 68: 133−134. doi: 10.1016/j.annemergmed.2016.03.033
    [4]
    Van LAARHOVEN J J E M, HIETBRINK F, FERREE S, et al. Associated thoracic injury in patients with a clavicle fracture: A retrospective analysis of 1461 polytrauma patients[J]. European Journal of Trauma and Emergency Surgery, 2019, 45: 59−63. doi: 10.1007/s00068-016-0673-6
    [5]
    TAN M, WU F, YANG B, et al. Pulmonary nodule detection using hybrid two-stage 3D CNNs[J]. Medical Physics, 2020, 47: 3376−3388. doi: 10.1002/mp.14161
    [6]
    TOPOL E J. High-performance medicine: the convergence of human and artificial intelligence[J]. Nature Medicine, 2019, 25(1): 44−56.
    [7]
    ZHANG B, JIA C X, WU R Z, et al. Improving rib fracture detection accuracy and reading efficiency with deep learning-based detection software: A clinical evaluation[J]. British Journal of Radiology, 2021, 94: 20200870. doi: 10.1259/bjr.20200870
    [8]
    GUO J X, WANG C D, XU X Y, et al. Deep LN: An artificial intelligence-based automated system for lung cancer screening[J]. Annals of Translational Medicine, 2020, 8: 1126. doi: 10.21037/atm-20-4461
    [9]
    LI K W, LIU K F, ZHONG Y H, et al. Assessing the predictive accuracy of lung cancer, metastases, and benign lesions using an artificial intelligence-driven computer aided diagnosis system[J]. Quantitative Imaging in Medicine and Surgery, 2021, 11: 3629−3642. doi: 10.21037/qims-20-1314
    [10]
    CASTRO-ZUNTI R, CHAE K J, CHOI Y, et al. Assessing the speed-accuracy trade-offs of popular convolutional neural networks for single-crop rib fracture classification[J]. Computerized Medical Imaging and Graphics, 2021, 91: 101937. doi: 10.1016/j.compmedimag.2021.101937
    [11]
    谭辉, 田占雨, 潘宁, 等. 基于深度学习的计算机辅助诊断系统在提高急性肋骨骨折诊断效能上的价值[J]. 临床放射学杂志, 2020,39(12): 2493−2497. doi: 10.13437/j.cnki.jcr.2020.12.030

    TAN X, TIAN Z Y, PAN N, et al. The value of deep learning-based computer aided diagnostic system in improving diagnostic performance of acute rib fractures[J]. Journal of Clinical Radiology, 2020, 39(12): 2493−2497. (in Chinese). doi: 10.13437/j.cnki.jcr.2020.12.030
    [12]
    KAIUME M, SUZUKI S, YASAKA K, et al. Rib fracture detection in computed tomography images using deep convolutional neural networks[J]. Medicine (Baltimore), 2021, 100: e26024. doi: 10.1097/MD.0000000000026024
    [13]
    贾春雪, 张彬, 吴润泽, 等. 基于深度学习的人工智能在肋骨骨折检测中的应用价值[J]. 实用放射学杂志, 2020,36(11): 1861−1864. doi: 10.3969/j.issn.1002-1671.2020.11.039

    JIA C X, ZHANG B, WU R Z, et al. The value of artificial intelligence based on deep learning in rib fracture detection[J]. Journal of Practical Radiology, 2020, 36(11): 1861−1864. (in Chinese). doi: 10.3969/j.issn.1002-1671.2020.11.039
    [14]
    JIN L, YANG J C, KUANG K, et al. Deep-learning-assisted detection and segmentation of rib fractures from CT scans: Development and validation of FracNet[J]. EBioMedicine, 2020, 62: 103106. doi: 10.1016/j.ebiom.2020.103106
  • Cited by

    Periodical cited type(19)

    1. 邵建文,李晓华. 128层螺旋CT诊断急性胸腹部创伤的临床观察. 中国继续医学教育. 2020(03): 54-56 .
    2. 席浩,王保富. 外伤性脾破裂非手术治疗临床体会. 中国医学工程. 2020(03): 94-95 .
    3. 杨明,刘宁,王星. CT增强扫描对胆囊息肉样病变的综合诊断价值分析. 肝胆外科杂志. 2020(03): 204-207 .
    4. 黄悦,赵庆,范廷艳. 多层螺旋CT诊断急性胸腹部创伤的临床价值评价. 黑龙江中医药. 2020(03): 35-36 .
    5. 李松. 腹部创伤的CT诊断价值与CT表现. 中国误诊学杂志. 2020(06): 262-264 .
    6. 许顺,吴文滔,黄镭. 增强CT在腹部创伤临床诊断中的应用分析. 中国现代药物应用. 2019(03): 34-35 .
    7. 李晓星. 预见性干预措施应用于肝外伤肝叶切除术患者术后疼痛的影响. 首都食品与医药. 2019(12): 182 .
    8. 赵维方. 急诊胸腹部创伤诊断中DR与螺旋CT的应用价值. 系统医学. 2019(12): 4-6 .
    9. 刘涛,鄢龙,吴光耀,明建中,相呈县,尚许彬. 增强CT在检测急诊腹盆部创伤患者出血中的应用. CT理论与应用研究. 2019(04): 493-498 . 本站查看
    10. 崔小木,曾焕华,黄灿斌,高银好. 空气灌肠、经腹壁彩超与CT平扫对小儿肠套叠的诊断及临床应用价值分析. 中国CT和MRI杂志. 2019(10): 124-126 .
    11. 张泽键,王细生,陈栋,彭乃雄,邓灵,刘云飞,杨江根. 多层螺旋CT增强扫描对肾损伤的诊断价值. 中华腔镜泌尿外科杂志(电子版). 2019(05): 321-324 .
    12. 伊华军,洪志平,姚建军. CT在急诊胸腹部创伤患者中的应用观察. 浙江创伤外科. 2019(06): 1289-1291 .
    13. 陈进文. 多层螺旋CT对外伤性肝脾破裂的诊断价值. 中国当代医药. 2019(34): 118-120+124 .
    14. 杨爱莲. 螺旋CT用于急诊胸腹部创伤中的临床诊断价值. 临床医学研究与实践. 2018(04): 141-142 .
    15. 姜薇. 外伤性脾破裂的CT表现及临床应用价值. 中国医药指南. 2018(13): 114-115 .
    16. 董智慧,缪颜嵘,温学慧,乔婷. DR与螺旋CT诊断急诊胸腹部创伤的临床应用研究. 中国现代医生. 2018(14): 115-117+169 .
    17. 蓝东红. 螺旋CT检查在腹部创伤诊断中的应用价值. 中国医疗器械信息. 2018(22): 104-105 .
    18. 蓝丽红,李惠香,朱晓正. 腹部损伤导致肝破裂患者中优质护理的效果分析. 中国医药科学. 2018(24): 125-127 .
    19. 辛克武. 多层螺旋CT对外伤性肝脾破裂的诊断价值. 中国医药科学. 2017(23): 147-149 .

    Other cited types(2)

Catalog

    Article views (367) PDF downloads (38) Cited by(21)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return