ISSN 1004-4140
CN 11-3017/P
TANG B H, WANG Y F, M L, et al. False positive reduction of pulmonary nodules based on mixed attentional mechanism[J]. CT Theory and Applications, 2022, 31(1): 63-72. DOI: 10.15953/j.ctta.2021.002. (in Chinese).
Citation: TANG B H, WANG Y F, M L, et al. False positive reduction of pulmonary nodules based on mixed attentional mechanism[J]. CT Theory and Applications, 2022, 31(1): 63-72. DOI: 10.15953/j.ctta.2021.002. (in Chinese).

False Positive Reduction of Pulmonary Nodules Based on Mixed Attentional Mechanism

More Information
  • Received Date: September 23, 2021
  • Accepted Date: November 23, 2021
  • Available Online: December 01, 2021
  • In order to solve the problem of high false positives in the candidate detection stage of pulmonary nodules CAD system, this paper proposes a method to reduce false positives of pulmonary nodules based on mixed attention mechanism. The method can be used as an alternative to the most commonly used 3D CNN classification model at the stage of false positive reduction. It can effectively avoid the problems of large number of parameters and computation in 3D CNN model. In this method, the 3D candidate nodule data is viewed as a slice sequence, and the temporal segment networks model is used in combination with the improved 2D ResNet-18 backbone network which contains mixed attention modules. On the basis of using 2D CNN, the spatial and temporal characteristics of the 3D slice data are effectively studied. Compared with the 3D CNN structure model for pulmonary nodules classification, the method proposed in this paper not only improves the accuracy of nodules classification but also reduces the number of model parameters and the inference time.

  • [1]
    HAN F, WANG H, ZHANG G, et al. Texture feature analysis for computer-aided diagnosis on pulmonary nodules[J]. Journal of Digital Imaging, 2015, 28(1): 99−115. doi: 10.1007/s10278-014-9718-8
    [2]
    张婧, 李彬, 田联房, 等. 结合规则和SVM方法的肺结节识别[J]. 华南理工大学学报(自然科学版), 2011,39(2): 125−129, 147.

    ZHANG J, LI B, TIAN L F, et al. Lung nodule recognition combining rule-based method and SVM[J]. Journal of South China University of Technology (Natural Science Edition), 2011, 39(2): 125−129, 147. (in Chinese).
    [3]
    SETIO A, CIOMPI F, LITJENS G, et al. Pulmonary nodule detection in CT images: False positive reduction using multi-view convolutional networks[J]. IEEE Transactions on Medical Imaging, 2016, 35(5): 1160−1169. doi: 10.1109/TMI.2016.2536809
    [4]
    ARMATO S G, ROBERTS R Y, MCNITT-GRAY M F, et al. The lung image database consortium (LIDC) and image database resource initiative (IDRI): A completed reference database of lung nodules on CT scans[J]. Academic Radiology, 2007, 14(12): 1455−1463. doi: 10.1016/j.acra.2007.08.006
    [5]
    高慧明, 赵涓涓, 刘继华, 等. 多尺度卷积神经网络用于肺结节假阳性降低[J]. 计算机工程与设计, 2019,40(9): 2718−2724.

    GAO H M, ZHAO J J, LIU J H, et al. Multi-scale convolutional neural network for pulmonary nodule false positive reduction[J]. Computer Engineering and Design, 2019, 40(9): 2718−2724. (in Chinese).
    [6]
    SETIO A A A, TRAVERSO A, de BEL T, et al. Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: The LUNA16 challenge[J]. Medical Image Analysis, 2017, 42: 1−13. doi: 10.1016/j.media.2017.06.015
    [7]
    王尚丽, 金戈辉, 徐亮, 等. 基于三维密集网络的肺结节检测方法[J]. 中国生物医学工程学报, 2020,39(1): 8−18. doi: 10.3969/j.issn.0258-8021.2020.01.02

    WANG S L, JING G H, XU L, et al. Method for detecting pulmonary nodules based on three-dimensional dense network[J]. Chinese Journal of Biomedical Engineering, 2020, 39(1): 8−18. (in Chinese). doi: 10.3969/j.issn.0258-8021.2020.01.02
    [8]
    HUANG G, LIU Z, LAURENS V, et al. Densely connected convolutional networks[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017: 2261-2269.
    [9]
    WANG L, XIONG Y, ZHE W, et al. Temporal segment networks for action recognition in videos[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(11): 2740−2755. doi: 10.1109/TPAMI.2018.2868668
    [10]
    LIN J, GAN C, HAN S. TSM: Temporal shift module for efficient video understanding[C]// IEEE/CVF International Conference on Computer Vision (ICCV), 2019: 7082-7092.
    [11]
    HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016: 770-778.
    [12]
    HU J, SHEN L, ALBANIE S, et al. Squeeze and excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011−2023. doi: 10.1109/TPAMI.2019.2913372
    [13]
    LI Y, JI B, SHI X, et al. TEA: Temporal excitation and aggregation for action recognition[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020: 906-915.
    [14]
    WANG Z, SHE Q, SMOLIC A. ACTION-Net: Multipath excitation for action recognition[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021: 13214-13223.
    [15]
    HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design[C]// Computer Vision and Pattern Recognition (CVPR), 2021: 13713-13722.
  • Related Articles

    [1]JIANG Nan, YANG Yang, LI Gangfeng, QU Xiaoyan, ZHANG Yabin, CHEN Han, CUI Guangbin. Advances in Dual-energy CT for the Diagnosis of Solitary Pulmonary Nodules[J]. CT Theory and Applications, 2024, 33(6): 733-739. DOI: 10.15953/j.ctta.2024.066
    [2]LIU Qiang, ZENG Yongming, SUN Jingkun, LOU Hao, XIA Xianmei, GE Bing, ZHOU Yu, ZHENG Yue. Analysis of Influencing Factors on Pulmonary Nodule Detection by Computed Tomography with Artificial Intelligence: A Phantom Study[J]. CT Theory and Applications, 2024, 33(4): 471-477. DOI: 10.15953/j.ctta.2023.190
    [3]SU Yinchen, ZHANG Xiaoqin. Artificial Intelligence-assisted Diagnosis in Detecting Lung Nodules and Differentiating Benign from Malignant Nodules[J]. CT Theory and Applications, 2024, 33(3): 325-331. DOI: 10.15953/j.ctta.2023.128
    [4]LIU Yuting, LIU Aishi. Research Progress of Radiomics in the Diagnosis of Pulmonary Nodules[J]. CT Theory and Applications, 2023, 32(4): 573-578. DOI: 10.15953/j.ctta.2022.056
    [5]CHEN Xinhua, HUANG Xiaoqi, LI Jianlong, GUO Youmin. Evaluation of the Diagnostic Value of Pulmonary Nodules Based on Two AI Software[J]. CT Theory and Applications, 2023, 32(4): 493-499. DOI: 10.15953/j.ctta.2022.087
    [6]LIU Na, ZHAO Zhengkai, ZOU Jiayu, LI Yi, LIU Jian. Evaluation of Detection and Diagnostic Efficiency of Pulmonary Nodules by Chest CT Based on Artificial Intelligence[J]. CT Theory and Applications, 2021, 30(6): 709-715. DOI: 10.15953/j.1004-4140.2021.30.06.06
    [7]ZHU Lijuan, ZHU Xiaoming, SONG Dongdong, ZHANG Qing, WU Fei. AI Detection Efficiency of Pulmonary Nodules Under Dual-source CT with Different Tube Voltages[J]. CT Theory and Applications, 2021, 30(4): 495-502. DOI: 10.15953/j.1004-4140.2021.30.04.10
    [8]CHEN Mailin, LIU Yuliang, QI Liping, SUN Yingshi. Imaging Characteristics of Pulmonary Nodules on Public Network Image Consultation During the Outbreak of New Coronavirus Pneumonia[J]. CT Theory and Applications, 2020, 29(6): 643-650. DOI: 10.15953/j.1004-4140.2020.29.06.02
    [9]CHEN Mai-Lin, SUN Ying-Shi. Clinical Value of Spectral CT Imaging with Rapid Voltage Switching for Pulmonary Nodules[J]. CT Theory and Applications, 2019, 28(6): 701-708. DOI: 10.15953/j.1004-4140.2019.28.06.08
    [10]XIANG Zi-yun, SHI Chang-zheng, ZHOU Jie, ZHAN Yong, LUO Liang-ping. Application of Gray-scale Texture Feature in the Diagnosis of Pulmonary Nodules on CT Imaging[J]. CT Theory and Applications, 2013, 22(1): 155-160.
  • Cited by

    Periodical cited type(6)

    1. 李新经,袁珊. CA199和HE4及VEGF在卵巢交界性和恶性上皮性肿瘤中的表达及诊断价值. 医药论坛杂志. 2025(02): 211-215 .
    2. 王丽雯,李静芳,李晓红,余鑫. 血清miR-200c表达水平与复发性卵巢癌的相关性及临床意义. 中国性科学. 2024(03): 58-61 .
    3. 岳红 ,汤进 ,陈钢 . 血清ALP、HE4联合SII指数与卵巢癌肿瘤良恶性程度相关性及预后影响因素分析. 临床和实验医学杂志. 2024(22): 2412-2416 .
    4. 张建泉,符纪宁,蔡淑华,沈智勇. 卵巢癌MRI表现与Ki-67表达及预后的关系. 中国CT和MRI杂志. 2023(06): 130-132 .
    5. 王丽雯,李静芳,李晓红,余鑫,杨伟,高艳章. 上皮性卵巢癌患者血清miR-200a、miR-200b水平变化及意义. 山东医药. 2023(26): 58-61 .
    6. 谢敏霞,林琳. HE4与CA125联合检测在妇科肿瘤诊断中的作用评价. 深圳中西医结合杂志. 2023(15): 64-67 .

    Other cited types(0)

Catalog

    Article views (314) PDF downloads (41) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return