Citation: | TANG B H, WANG Y F, M L, et al. False positive reduction of pulmonary nodules based on mixed attentional mechanism[J]. CT Theory and Applications, 2022, 31(1): 63-72. DOI: 10.15953/j.ctta.2021.002. (in Chinese). |
In order to solve the problem of high false positives in the candidate detection stage of pulmonary nodules CAD system, this paper proposes a method to reduce false positives of pulmonary nodules based on mixed attention mechanism. The method can be used as an alternative to the most commonly used 3D CNN classification model at the stage of false positive reduction. It can effectively avoid the problems of large number of parameters and computation in 3D CNN model. In this method, the 3D candidate nodule data is viewed as a slice sequence, and the temporal segment networks model is used in combination with the improved 2D ResNet-18 backbone network which contains mixed attention modules. On the basis of using 2D CNN, the spatial and temporal characteristics of the 3D slice data are effectively studied. Compared with the 3D CNN structure model for pulmonary nodules classification, the method proposed in this paper not only improves the accuracy of nodules classification but also reduces the number of model parameters and the inference time.
[1] |
HAN F, WANG H, ZHANG G, et al. Texture feature analysis for computer-aided diagnosis on pulmonary nodules[J]. Journal of Digital Imaging, 2015, 28(1): 99−115. doi: 10.1007/s10278-014-9718-8
|
[2] |
张婧, 李彬, 田联房, 等. 结合规则和SVM方法的肺结节识别[J]. 华南理工大学学报(自然科学版), 2011,39(2): 125−129, 147.
ZHANG J, LI B, TIAN L F, et al. Lung nodule recognition combining rule-based method and SVM[J]. Journal of South China University of Technology (Natural Science Edition), 2011, 39(2): 125−129, 147. (in Chinese).
|
[3] |
SETIO A, CIOMPI F, LITJENS G, et al. Pulmonary nodule detection in CT images: False positive reduction using multi-view convolutional networks[J]. IEEE Transactions on Medical Imaging, 2016, 35(5): 1160−1169. doi: 10.1109/TMI.2016.2536809
|
[4] |
ARMATO S G, ROBERTS R Y, MCNITT-GRAY M F, et al. The lung image database consortium (LIDC) and image database resource initiative (IDRI): A completed reference database of lung nodules on CT scans[J]. Academic Radiology, 2007, 14(12): 1455−1463. doi: 10.1016/j.acra.2007.08.006
|
[5] |
高慧明, 赵涓涓, 刘继华, 等. 多尺度卷积神经网络用于肺结节假阳性降低[J]. 计算机工程与设计, 2019,40(9): 2718−2724.
GAO H M, ZHAO J J, LIU J H, et al. Multi-scale convolutional neural network for pulmonary nodule false positive reduction[J]. Computer Engineering and Design, 2019, 40(9): 2718−2724. (in Chinese).
|
[6] |
SETIO A A A, TRAVERSO A, de BEL T, et al. Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: The LUNA16 challenge[J]. Medical Image Analysis, 2017, 42: 1−13. doi: 10.1016/j.media.2017.06.015
|
[7] |
王尚丽, 金戈辉, 徐亮, 等. 基于三维密集网络的肺结节检测方法[J]. 中国生物医学工程学报, 2020,39(1): 8−18. doi: 10.3969/j.issn.0258-8021.2020.01.02
WANG S L, JING G H, XU L, et al. Method for detecting pulmonary nodules based on three-dimensional dense network[J]. Chinese Journal of Biomedical Engineering, 2020, 39(1): 8−18. (in Chinese). doi: 10.3969/j.issn.0258-8021.2020.01.02
|
[8] |
HUANG G, LIU Z, LAURENS V, et al. Densely connected convolutional networks[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017: 2261-2269.
|
[9] |
WANG L, XIONG Y, ZHE W, et al. Temporal segment networks for action recognition in videos[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(11): 2740−2755. doi: 10.1109/TPAMI.2018.2868668
|
[10] |
LIN J, GAN C, HAN S. TSM: Temporal shift module for efficient video understanding[C]// IEEE/CVF International Conference on Computer Vision (ICCV), 2019: 7082-7092.
|
[11] |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016: 770-778.
|
[12] |
HU J, SHEN L, ALBANIE S, et al. Squeeze and excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011−2023. doi: 10.1109/TPAMI.2019.2913372
|
[13] |
LI Y, JI B, SHI X, et al. TEA: Temporal excitation and aggregation for action recognition[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020: 906-915.
|
[14] |
WANG Z, SHE Q, SMOLIC A. ACTION-Net: Multipath excitation for action recognition[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021: 13214-13223.
|
[15] |
HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design[C]// Computer Vision and Pattern Recognition (CVPR), 2021: 13713-13722.
|