Citation: | LIANG Y, ZHANG H H, WU J L. Evaluation of the accuracy of inferread software for measuring the volume of pure ground glass nodules in the lung[J]. CT Theory and Applications, 2022, 31(5): 669-678. DOI: 10.15953/j.ctta.2021.009. (in Chinese). |
[1] |
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA: A Cancer Journal for Clinicians, 2021, 71(3): 209−249. doi: 10.3322/caac.21660
|
[2] |
吴林玉, 叶剑锋, 郑思思, 等. 应用人工智能对肺结节直径测量: 观察者内、观察者间差异[J]. 医学影像学杂志, 2020,30(1): 47−51.
WU L Y, YE J F, ZHENG S S, et al. Differences in measurement of lung nodule diameter using artificial intelligence: Intraobserver and interobserver differences[J]. Journal of Medical Imaging, 2020, 30(1): 47−51. (in Chinese).
|
[3] |
MARTEN K, AUER F, SCHMIDT S, et al. Inadequacy of manual measurements compared to automated CT volumetry in assessment of treatment response of pulmonary metastases using RECIST criteria[J]. European Radiology, 2006, 16(4): 781−790. doi: 10.1007/s00330-005-0036-x
|
[4] |
PIANYKH O S, LANGS G, DEWEY M, et al. Continuous learning AI in radiology: Implementation principles and early applications[J]. Radiology, 2020, 297(1): 6−14. doi: 10.1148/radiol.2020200038
|
[5] |
REYES M, MEIER R, PEREIRA S, et al. On the Interpretability of artificial intelligence in radiology: Challenges and opposrtunities[J]. Radiology: Artificial Intelligence, 2020, 2(3): e190043−e190043. doi: 10.1148/ryai.2020190043
|
[6] |
HENSCHKE C I. Early lung cancer action project: Overall design and findings from baseline screening[J]. Cancer, 2000, 89(S11): 2474−2482. doi: 10.1002/1097-0142(20001201)89:11+<2474::AID-CNCR26>3.0.CO;2-2
|
[7] |
KANG S, KIM T H, SHIN J M, et al. Optimization of a chest computed tomography protocol for detecting pure ground glass opacity nodules: A feasibility study with a computer-assisted detection system and a lung cancer screening phantom[J]. PLoS One, 2020, 15(5): e0232688−e0232688. doi: 10.1371/journal.pone.0232688
|
[8] |
XU Y M, ZHANG T, XU H, et al. Deep learning in CT images: Automated pulmonary nodule detection for subsequent management using convolutional neural network[J]. Cancer Management and Research, 2020, 12: 2979−2992. doi: 10.2147/CMAR.S239927
|
[9] |
朱江涛. 三维CT测量肺小结节体积的可重复性评价[D]. 苏州: 苏州大学, 2007: 20-24.
|
[10] |
孙炎冰, 陶广昱, 陈群慧, 等. 人工智能CT定量分析肺磨玻璃密度结节初探[J]. 中国医学计算机成像杂志, 2018,24(5): 383−387. doi: 10.3969/j.issn.1006-5741.2018.05.004
SUN Y B, TAO G Y, CHEN Q H, et al. Quantitative CT image features of ground glass opacity nodules: Initiative analysis with artificial intelligence[J]. Chinese Computed Medical Imaging, 2018, 24(5): 383−387. (in Chinese). doi: 10.3969/j.issn.1006-5741.2018.05.004
|
[11] |
李梦琦, 韩融城, 宋文静,等. CT三维容积分析在实性肺结节恶性风险度评估中的价值[J]. 中国肺癌杂志, 2016,19(5): 279−285. doi: 10.3779/j.issn.1009-3419.2016.05.05
LI M Q, HAN R C, SONG W J, et al. Three dimensional volumetric analysis of solid pulmonary nodules on chest CT: Cancer risk assessment[J]. Chinese Journal of Lung Cancer, 2016, 19(5): 279−285. (in Chinese). doi: 10.3779/j.issn.1009-3419.2016.05.05
|
[12] |
吴光耀, 伍建林. 基于CT的计算机辅助检测与诊断肺结节技术研究进展[J]. 中国医学影像技术, 2018,34(7): 1114−1117.
WU G Y, WU J L. Research progresses of computer-aided detection and diagnosis based on CT in pulmonary nodules[J]. Chinese Journal of Medical Imaging Technology, 2018, 34(7): 1114−1117. (in Chinese).
|
[13] |
PETROU M, QUINT L E, NAN B, et al. Pulmonary nodule volumetric measurement variability as a function of CT slice thickness and nodule morphology[J]. American Journal of Roentgenology, 2007, 188(2): 306−312. doi: 10.2214/AJR.05.1063
|
[14] |
SON J Y, LEE H Y, KIM J H, et al. Quantitative CT analysis of pulmonary ground-glass opacity nodules for distinguishing invasive adenocarcinoma from non-invasive or minimally invasive adenocarcinoma: The added value of using iodine mapping[J]. European Radiology, 2016, 26(1): 43−54. doi: 10.1007/s00330-015-3816-y
|
[15] |
侯永泉, 徐毛冶, 柴军, 等. 人工智能在肺小结节HRCT检出与诊断的研究进展[J]. 内蒙古医学杂志, 2021,53(2): 187−190.
|
[16] |
张怀瑢, 孙潇, 田兴仓, 等. 基于深度学习的人工智能诊断系统在不同重建参数下对肺结节的识别研究[J]. 临床放射学杂志, 2020,39(11): 2203−2206.
ZHANG H R, SUN X, TIAN X C, et al. Deep Learning based artificial intelligence diagnosis system to identify pulmonary nodules under different reconstruction algorithms[J]. Journal of Clinical Radiology, 2020, 39(11): 2203−2206. (in Chinese).
|
[17] |
JAMES H T, XIANG L, QUANZHENG L, et al. Artificial intelligence and machine learning in radiology: Opportunities, challenges, pitfalls, and criteria for success[J]. Journal of the American College of Radiology, 2018, 15(3): 504−508. doi: 10.1016/j.jacr.2017.12.026
|
[18] |
ALI I, HART G R, GUNABUSHANAM G, et al. Lung nodule detection via deep reinforcement learning[J]. Frontiers in Oncology, 2018, 8(8): 108.
|
[19] |
HOSNY A, PARMAR C, QUACKENBUSH J, et al. Artificial intelligence in radiology[J]. Nature Reviews Cancer, 2018, 18(8): 500−510. doi: 10.1038/s41568-018-0016-5
|
[20] |
ARNAUD S A A, ALBERTO T, THOMAS D B, et al. Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: The LUNA16 challenge[J]. Medical Image Analysis, 2017, 42: 1−13. doi: 10.1016/j.media.2017.06.015
|
[21] |
GOO J M, KIM K G, GIERADA D S, et al. Volumetric measurements of lung nodules with multi-detector row CT: Effect of changes in lung volume[J]. Korean Journal of Radiology, 2006, 7(4): 243−248. doi: 10.3348/kjr.2006.7.4.243
|
[22] |
ODA S, AWAI K, MURAO K, et al. Computer-aided volumetry of pulmonary nodules exhibiting ground-glass opacity at MDCT[J]. American Journal of Roentgenology, 2010, 194(2): 398−406. doi: 10.2214/AJR.09.2583
|
[23] |
HONDA O, SUMIKAWA H, JOHKOH T, et al. Computer-assisted lung nodule volumetry from multi-detector row CT: Influence of image reconstruction parameters[J]. European Journal of Radiology, 2006, 62(1): 106−113.
|
[24] |
孙丹丹, 王亮, 许迪, 等. 不同重建算法对人工智能辅助肺结节检测效能的影响[J]. 生物医学工程与临床, 2021,25(2): 160−164.
SUN D D, WANG L, XU D, et al. Effects of different reconstruction kernels on efficiency of artificial intelligence-assisted lung nodule detection[J]. Biomedical Engineering and Clinical Medicine, 2021, 25(2): 160−164. (in Chinese).
|
1. |
杨庆东,彭泱泱,李绿洲. 腹壁侵袭性纤维瘤误诊为子宫肌瘤1例及文献复习. 中国当代医药. 2025(09): 138-142 .
![]() |