ISSN 1004-4140
CN 11-3017/P
DU C C, QIAO Z W. Sparse CT reconstruction based on adversarial residual dense deep neural network[J]. CT Theory and Applications, 2022, 31(2): 163-172. DOI: 10.15953/j.ctta.2021.032. (in Chinese).
Citation: DU C C, QIAO Z W. Sparse CT reconstruction based on adversarial residual dense deep neural network[J]. CT Theory and Applications, 2022, 31(2): 163-172. DOI: 10.15953/j.ctta.2021.032. (in Chinese).

Sparse CT Reconstruction Based on Adversarial Residual Dense Deep Neural Network

More Information
  • Received Date: November 07, 2021
  • Accepted Date: November 17, 2021
  • Available Online: November 24, 2021
  • Published Date: March 31, 2022
  • To solve the problem of severe streak artifacts in sparse-view computed tomography (CT) reconstruction, in this paper we propose a method which is based on the adversarial residual dense deep neural network to acquire high-quality sparse-view CT reconstruction. The UNet that combines residual connectioin, dense connection, adversarial mechanism and attention mechanism is designed, which is trained through large-scale training data composed of streak artifact images and high-quality images to suppress streak artifacts. First, the filtered back projection (FBP) algorithm is used to reconstruct CT images with streak artifacts from sparse projections, then these images are inputed into the deep network, which can suppress streak artifacts to output high-quality images. The experimental results show that, compared with the existing deep learning algorithms, the image reconstructed by the proposed new network possesses higher accuracy and can suppress streak artifacts better.
  • [1]
    PAN X, SIDKY E Y, VANNIER M. Why do commercial CT scanners still employ traditional, filtered back-projection for image reconstruction?[J]. Inverse Problems, 2008, 25(12): 1230009.
    [2]
    DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289−1306. doi: 10.1109/TIT.2006.871582
    [3]
    SIDKY E Y, KAO C M, PAN X. Accurate image reconstruction from few-view limited-angle data in divergent-beam CT[J]. Journal of X-ray Science and Technology, 2006, 14(2): 119-139.
    [4]
    SIDKY E Y, PAN X. Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization[J]. Physics in Medicine & Biology, 2008, 53(17): 4777−4807. doi: 10.1088/0031-9155/53/17/021
    [5]
    LIU Y, MA J, FAN Y, et al. Adaptive-weighted total variation minimization for sparse data toward low-dose X-ray computed tomography image reconstruction[J]. Physics in Medicine & Biology, , 2012, 57(23): 7923-7956.
    [6]
    STRONG D, CHAN T. Edge-preserving and scale-dependent properties of total variation regularization[J]. Inverse Problems, 2003, 19(6): 165−187. doi: 10.1088/0266-5611/19/6/059
    [7]
    XIN J, CHEN Z, XING Y. Anisotropic total variation minimization method for limited-angle CT reconstruction[C]//proceedings of the Spie Optical Engineering + Applications, F, 2012.
    [8]
    ZHANG Y, ZHANG W H, CHEN H, et al. Few-view image reconstruction combining total variation and a high-order norm[J]. International Journal of Imaging Systems & Technology, 2013, 23(3): 249−255.
    [9]
    ZHANG H, YAN B, WANG L, et al. Sparse-view image reconstruction with nonlocal total variation[C]//Proceedings of the 2014 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), F, 2014.
    [10]
    SIDKY E Y, REISER I, NISHIKAWA R M, et al. Practical iterative image reconstruction in digital breast tomosynthesis by non-convex TpV optimization[J]. Proceedings of SPIE — The International Society for Optical Engineering, 2008: 6913(1): 691328-691324 .
    [11]
    闫慧文, 乔志伟. 基于ASD-POCS框架的高阶TpV图像重建算法[J]. CT理论与应用研究, 2021, 30(3): 279-289. DOI: 10.15953/j.1004-4140.2021.30.03.01.

    YAN H W, QIAO Z W. High order TpV image reconstruction algorithms based on ASD-POCS framework[J]. CT Theory and Applications, 2021, 30(3): 279-289. DOI:10.15953/j.1004-4140.2021.30.03.01. (in Chinese).
    [12]
    LI S, CAO Q, CHEN Y, et al. Dictionary learning based sinogram inpainting for CT sparse reconstruction[J]. Optik - International Journal for Light and Electron Optics, 2014, 125(12): 2862−2867. doi: 10.1016/j.ijleo.2014.01.003
    [13]
    ZHU J, CHEN C W. A compressive sensing image reconstruction algorithm based on low-rank and total variation regularization[J]. Journal of Jinling Institute of Technology, 2015, 31(4): 23-26.
    [14]
    CHEN H, ZHANG Y, KALRA M K, et al. Low-dose CT with a residual encoder-decoder convolutional neural network (RED-CNN)[J]. IEEE Transactions on Medical Imaging, 2017, 36(12): 2524-2535.
    [15]
    XU L, REN J, LIU C, et al. Deep convolutional neural network for image deconvolution[J]. Advances in neural information processing systems, 2014, 27(2): 1790−1798.
    [16]
    HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]// Proceedings of the IEEE Conference on Computer Vision & Pattern Recognition, F, 2016.
    [17]
    WOLTERINK J M, LEINER T, VIERGEVER M A, et al. Generative adversarial networks for noise reduction in low-dose CT[J]. IEEE Transactions on Medical Imaging, 2017, 36(12): 2536−2545. doi: 10.1109/TMI.2017.2708987
    [18]
    GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Advances in Neural Information Processing Systems, 2014, 3(11): 2672−2680.
    [19]
    HAN Y S, YOO J, YE J C. Deep residual learning for compressed sensing CT reconstruction via persistent homology analysis[J]. 2016.
    [20]
    RONNEBERGER O, FISCHER P, BROX T. U-Net: Convolutional networks for biomedical image segmentation[J]. Springer International Publishing, 2015, 9351: 234-241.
    [21]
    陈康, 狄贵东, 张佳佳, 等. 基于改进U-Net卷积神经网络的储层预测[J]. CT理论与应用研究, 2021, 30(4): 403-416. DOI:10.15953/j.1004-4140.2021.30.04.01.

    CHEN K, DI G D, ZHANG J J, et al. Reservoir prediction based on improved U-net convolutional neural network[J]. CT Theory and Applications, 2021, 30(4): 403-416. DOI:10.15953/j.1004-4140.2021.30.04.01. (in Chinese).
    [22]
    JIN K H, MCCANN M T, FROUSTEY E, et al. Deep convolutional neural network for inverse problems in imaging[J]. IEEE Transactions on Image Processing, 2016, 26(9): 4509−4522.
    [23]
    ZHANG Z, LIANG X, XU D, et al. A sparse-view CT reconstruction method based on combination of densenet and deconvolution[J]. IEEE Transactions on Medical Imaging, 2018, 37(6): 1407-1417.
    [24]
    GAO H, ZHUANG L, MAATEN L V D, et al. Densely connected convolutional networks[J]. IEEE Computer Society, 2017: 2261-2269.
    [25]
    HAN Y, YE J C. Framing U-Net via deep convolutional framelets: Application to sparse-view CT[J]. IEEE Transactions on Medical Imaging, 2018, 37(6): 1418−1429.
    [26]
    STEVEN, GUAN, AMIR, et al. Fully dense UNet for 2D sparse photoacoustic tomography artifact removal[J]. IEEE Journal of Biomedical & Health Informatics, 2019, 24(2): 568-576.
    [27]
    JIE H, LI S, GANG S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 42(8): 2011−2023.

Catalog

    Article views (753) PDF downloads (92) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return