Citation: | DU C C, QIAO Z W. Sparse CT reconstruction based on adversarial residual dense deep neural network[J]. CT Theory and Applications, 2022, 31(2): 163-172. DOI: 10.15953/j.ctta.2021.032. (in Chinese). |
[1] |
PAN X, SIDKY E Y, VANNIER M. Why do commercial CT scanners still employ traditional, filtered back-projection for image reconstruction?[J]. Inverse Problems, 2008, 25(12): 1230009.
|
[2] |
DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289−1306. doi: 10.1109/TIT.2006.871582
|
[3] |
SIDKY E Y, KAO C M, PAN X. Accurate image reconstruction from few-view limited-angle data in divergent-beam CT[J]. Journal of X-ray Science and Technology, 2006, 14(2): 119-139.
|
[4] |
SIDKY E Y, PAN X. Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization[J]. Physics in Medicine & Biology, 2008, 53(17): 4777−4807. doi: 10.1088/0031-9155/53/17/021
|
[5] |
LIU Y, MA J, FAN Y, et al. Adaptive-weighted total variation minimization for sparse data toward low-dose X-ray computed tomography image reconstruction[J]. Physics in Medicine & Biology, , 2012, 57(23): 7923-7956.
|
[6] |
STRONG D, CHAN T. Edge-preserving and scale-dependent properties of total variation regularization[J]. Inverse Problems, 2003, 19(6): 165−187. doi: 10.1088/0266-5611/19/6/059
|
[7] |
XIN J, CHEN Z, XING Y. Anisotropic total variation minimization method for limited-angle CT reconstruction[C]//proceedings of the Spie Optical Engineering + Applications, F, 2012.
|
[8] |
ZHANG Y, ZHANG W H, CHEN H, et al. Few-view image reconstruction combining total variation and a high-order norm[J]. International Journal of Imaging Systems & Technology, 2013, 23(3): 249−255.
|
[9] |
ZHANG H, YAN B, WANG L, et al. Sparse-view image reconstruction with nonlocal total variation[C]//Proceedings of the 2014 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), F, 2014.
|
[10] |
SIDKY E Y, REISER I, NISHIKAWA R M, et al. Practical iterative image reconstruction in digital breast tomosynthesis by non-convex TpV optimization[J]. Proceedings of SPIE — The International Society for Optical Engineering, 2008: 6913(1): 691328-691324 .
|
[11] |
闫慧文, 乔志伟. 基于ASD-POCS框架的高阶TpV图像重建算法[J]. CT理论与应用研究, 2021, 30(3): 279-289. DOI: 10.15953/j.1004-4140.2021.30.03.01.
YAN H W, QIAO Z W. High order TpV image reconstruction algorithms based on ASD-POCS framework[J]. CT Theory and Applications, 2021, 30(3): 279-289. DOI:10.15953/j.1004-4140.2021.30.03.01. (in Chinese).
|
[12] |
LI S, CAO Q, CHEN Y, et al. Dictionary learning based sinogram inpainting for CT sparse reconstruction[J]. Optik - International Journal for Light and Electron Optics, 2014, 125(12): 2862−2867. doi: 10.1016/j.ijleo.2014.01.003
|
[13] |
ZHU J, CHEN C W. A compressive sensing image reconstruction algorithm based on low-rank and total variation regularization[J]. Journal of Jinling Institute of Technology, 2015, 31(4): 23-26.
|
[14] |
CHEN H, ZHANG Y, KALRA M K, et al. Low-dose CT with a residual encoder-decoder convolutional neural network (RED-CNN)[J]. IEEE Transactions on Medical Imaging, 2017, 36(12): 2524-2535.
|
[15] |
XU L, REN J, LIU C, et al. Deep convolutional neural network for image deconvolution[J]. Advances in neural information processing systems, 2014, 27(2): 1790−1798.
|
[16] |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]// Proceedings of the IEEE Conference on Computer Vision & Pattern Recognition, F, 2016.
|
[17] |
WOLTERINK J M, LEINER T, VIERGEVER M A, et al. Generative adversarial networks for noise reduction in low-dose CT[J]. IEEE Transactions on Medical Imaging, 2017, 36(12): 2536−2545. doi: 10.1109/TMI.2017.2708987
|
[18] |
GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Advances in Neural Information Processing Systems, 2014, 3(11): 2672−2680.
|
[19] |
HAN Y S, YOO J, YE J C. Deep residual learning for compressed sensing CT reconstruction via persistent homology analysis[J]. 2016.
|
[20] |
RONNEBERGER O, FISCHER P, BROX T. U-Net: Convolutional networks for biomedical image segmentation[J]. Springer International Publishing, 2015, 9351: 234-241.
|
[21] |
陈康, 狄贵东, 张佳佳, 等. 基于改进U-Net卷积神经网络的储层预测[J]. CT理论与应用研究, 2021, 30(4): 403-416. DOI:10.15953/j.1004-4140.2021.30.04.01.
CHEN K, DI G D, ZHANG J J, et al. Reservoir prediction based on improved U-net convolutional neural network[J]. CT Theory and Applications, 2021, 30(4): 403-416. DOI:10.15953/j.1004-4140.2021.30.04.01. (in Chinese).
|
[22] |
JIN K H, MCCANN M T, FROUSTEY E, et al. Deep convolutional neural network for inverse problems in imaging[J]. IEEE Transactions on Image Processing, 2016, 26(9): 4509−4522.
|
[23] |
ZHANG Z, LIANG X, XU D, et al. A sparse-view CT reconstruction method based on combination of densenet and deconvolution[J]. IEEE Transactions on Medical Imaging, 2018, 37(6): 1407-1417.
|
[24] |
GAO H, ZHUANG L, MAATEN L V D, et al. Densely connected convolutional networks[J]. IEEE Computer Society, 2017: 2261-2269.
|
[25] |
HAN Y, YE J C. Framing U-Net via deep convolutional framelets: Application to sparse-view CT[J]. IEEE Transactions on Medical Imaging, 2018, 37(6): 1418−1429.
|
[26] |
STEVEN, GUAN, AMIR, et al. Fully dense UNet for 2D sparse photoacoustic tomography artifact removal[J]. IEEE Journal of Biomedical & Health Informatics, 2019, 24(2): 568-576.
|
[27] |
JIE H, LI S, GANG S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 42(8): 2011−2023.
|