Citation: | LIU S Y, QU F L, ZHOU F, et al. Deep learning reservoir parameter prediction based on seismic attribute reduction: take ledong area of yinggehai basin as an example[J]. CT Theory and Applications, 2022, 31(5): 577-586. DOI: 10.15953/j.ctta.2021.048. (in Chinese). |
[1] |
杨文采. 神经网络算法在地球物理反演中的应用[J]. 石油物探, 1995,34(2): 116−120.
YANG W C. Application of neural network alogorithms to geophysical inversion[J]. Geophysical Prospecting for Petroleum, 1995, 34(2): 116−120. (in Chinese).
|
[2] |
印兴耀, 吴国忱, 张洪宙. 神经网络在储层横向预测中的应用[J]. 石油大学学报(自然科学版), 1994,18(5): 20−26.
YIN X Y, WU G C, ZHANG H Z. The application of neural networks in the reservior prediction[J]. Journal of China University of Petroleum (Edition of Natural Science), 1994, 18(5): 20−26. (in Chinese).
|
[3] |
印兴耀, 杨风丽, 吴国忱. 神经网络在CB油田储层预测和储层厚度计算中的应用[J]. 石油大学学报(自然科学版), 1998,22(2): 3−5.
YIN X Y, YANG F L, WU G C. Application of neural network to predicting reservoir and calculating thickness in CB oilfield[J]. Journal of China University of Petroleum (Edition of Natural Science), 1998, 22(2): 3−5. (in Chinese).
|
[4] |
XU Y, YIN C, PAN Y, et al. First-break automatic picking technology based on semantic segmentation[J]. Geophysical Prospecting, 2021, 69(6): 1181-1207.
|
[5] |
孙小东, 王伟奇, 任丽娟, 等. 地震数据智能去噪与传统去噪方法的对比及展望[J]. 地球物理学进展, 2022, 35(6): 2211-2219.
SUN X D, WANG W Q, REN L J, et al. Comparison and prospect on AI denoising of seismic data along with traditional denoising methods[J]. Progress in Geophysics, 2020, 35(6): 2211-2219. (in Chinese).
|
[6] |
桑凯恒, 张繁昌. 基于模糊粗糙集的机器学习储层参数预测[J]. CT理论与应用研究, 2018,27(4): 455−464. DOI: 10.15953/j.1004-4140.2018.27.04.05.
SANG K H, ZHANG F C. Prediction of reservoir parameters of machine learning based on fuzzy rough set[J]. CT Theory and Applications, 2018, 27(4): 455−464. DOI: 10.15953/j.1004-4140.2018.27.04.05. (in Chinese).
|
[7] |
WU X, LIANG L, SHI Y, et al. FaultSeg3D: Using synthetic data sets to train an end-to-end convolutional neural network for 3D seismic fault segmentation[J]. Geophysics, 2019, 84(3): IM35−IM45. doi: 10.1190/geo2018-0646.1
|
[8] |
WU X, YAN S, QI J, et al. Deep learning for characterizing paleokarst collapse features in 3D seismic images[J]. Journal of Geophysical Research: Solid Earth, 2020.
|
[9] |
安鹏, 曹丹平, 赵宝银, 等. 基于LSTM循环神经网络的储层物性参数预测方法研究[J]. 地球物理学进展, 2019, 34(5): 1849-1858.
AN P, CAO D P, ZHAO B Y, et al. Reservoir physical parameters prediction based on LSTM recurrent neural network[J]. Progress in Geophysics, 2019, 34(5): 1849-1858. (in Chinese).
|
[10] |
安鹏, 曹丹平. 基于深度学习的测井岩性识别方法研究与应用[J]. 地球物理学进展, 2018,33(3): 1029−1034. doi: 10.6038/pg2018BB0319
AN P, CAO D P. Research and application of logging lithology identification based on deep learning[J]. Progress in Geophysics, 2018, 33(3): 1029−1034. (in Chinese). doi: 10.6038/pg2018BB0319
|
[11] |
闫星宇, 顾汉明, 罗红梅, 等. 基于改进深度学习方法的地震相智能识别[J]. 石油地球物理勘探, 2020,55(6): 1169−1177.
YAN X Y, GU H M, LUO H M, et al. Intelligent seismic facies classification based on an improved deep learning method[J]. Oil Geophysical Prospecting, 2020, 55(6): 1169−1177. (in Chinese).
|
[12] |
陈康, 狄贵东, 张佳佳, 等. 基于改进U-Net卷积神经网络的储层预测[J]. CT理论与应用研究, 2021,30(4): 403−416. DOI: 10.15953/j.1004-4140.2021.30.04.01.
CHEN K, DI G D, ZHANG J J, et al. Reservoir prediction based on improved U-Net convolutional neural network[J]. CT Theory and Applications, 2021, 30(4): 403−416. DOI: 10.15953/j.1004-4140.2021.30.04.01. (in Chinese).
|
[13] |
PURVES S, ALAEI B, BONAS J B, et al. Machine learning from core to seismic; Porosity prediction in the Norwegian North Sea[C]//81st EAGE Conference and Exhibition 2019. European Association of Geoscientists & Engineers, 2019, 2019(1): 1-5.
|
[14] |
印兴耀, 周静毅. 地震属性优化方法综述[J]. 石油地球物理勘探, 2005,40(4): 482−489. doi: 10.3321/j.issn:1000-7210.2005.04.027
YIN X Y, ZHOU J Y. Summary of optimum methods of seismic attributes[J]. Oil Geophysical Prospecting, 2005, 40(4): 482−489. (in Chinese). doi: 10.3321/j.issn:1000-7210.2005.04.027
|
[15] |
郭淑文, 程然, 祝文亮, 等. 数据挖掘技术在地震属性降维中的应用[J]. 天然气地球科学, 2010,21(4): 670−677.
GUO S W, CHENG R, ZHU W L, et al. Application of data mining technique in reduction of dimensions of seismic attribute parameters[J]. Natural Gas Geoscience, 2010, 21(4): 670−677. (in Chinese).
|
[16] |
ROWEIS S, SAUL L. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000, 290(5500): 2323−2326. doi: 10.1126/science.290.5500.2323
|
[17] |
CHEN Q, SIDNEY S. Advances in seismic attribute technology[J]. Seg Technical Program Expanded Abstracts, 1949, 16(1): 2067.
|
[18] |
王全才. 随机森林特征选择[D]. 大连: 大连理工大学, 2011.
WANG Q C. Random forest feature selection[D]. Dalian: Dalian University of Technology, 2011. (in Chinese).
|
[19] |
姚登举, 杨静, 詹晓娟. 基于随机森林的特征选择算法[J]. 吉林大学学报(工学版), 2014(1): 142-146.
YAO D J, YANG J, ZHAN X J. Feature selection algorithm based on random forest[J]. Journal of Jilin University (Engineering and Technology Edition), 2014(1): 142-146. (in Chinese).
|
[20] |
宁永鹏. 高维小样本数据的特征选择研究及其稳定性分析[D]. 厦门: 厦门大学, 2014.
NING Y P. Study on feature selection and stability analysis of high dimensional small sample data[D]. Xiamen: Xiamen University, 2014.
|
[21] |
XIE S, GIRSHICK R, DOLLÁR P, et al. Aggregated residual transformations for deep neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017: 1492-1500.
|
[22] |
SHIRO T, YUKI Y, MASATO O. Impact of layer normalization on single-layer perceptron: Statistical mechanical analysis[J]. Journal of the Physical Society of Japan, 2019, 88(7).
|
[23] |
SHOUJI S, SHIGEKO S I, YOUICHI K. Normalization processes an topographic mapping model between cell layers represented by undirected graphs[J]. Journal of Japan Society for Fuzzy Theory and Systems, 2017, 14(1): 43-54.
|
[24] |
董师师, 黄哲学. 随机森林理论浅析[J]. 集成技术, 2013,2(1): 1−7. doi: 10.5121/ijite.2013.2101
HUANG S S, HUANG Z X. A brief theoretical overview of random forests[J]. Journal of Integration Technology, 2013, 2(1): 1−7. (in Chinese). doi: 10.5121/ijite.2013.2101
|
[25] |
周雪晴, 张占松, 张超谟, 等. 基于粗糙集-随机森林算法的复杂岩性识别[J]. 大庆石油地质与开发, 2017,(6): 131−137.
ZHOU X Q, ZHANG Z S, ZHANG C M. et al. Complex lithologic iidentification based on rough set-random forest algorism[J]. Petroleum Geology & Oilfield Development in Daqing, 2017, (6): 131−137. (in Chinese).
|
[26] |
胥雪炎, 李补喜. 不同被解释变量选择对决定系数R2的影响研究[J]. 太原科技大学学报, 2007,28(5): 363−365.
XU X Y, LI B X. Research on the effect of selection of dependent variables on R2 statistic[J]. Journal of Taiyuan University of Science and Technology, 2007, 28(5): 363−365. (in Chinese).
|