ISSN 1004-4140
CN 11-3017/P

More Information
  • Received Date: November 30, 2021
  • Accepted Date: November 30, 2021
  • Available Online: December 02, 2021
  • [1]
    KERMELIOTIS T. X-ray voted top modern discovery[EB/OL]. Cable News Network, (2009-01-01). https://www.cnn.com/2009/WORLD/europe/11/04/xray.machine.science.museum/index.html.
    [2]
    WANG G, YE J C, DE MAN B. Deep learning for tomographic image reconstruction[J]. Nature Machine Intelligence, 2020, 2(12): 737-748.
    [3]
    LELL M M, KACHELEß M. Recent and upcoming technological developments in computed tomography: High speed, low dose, deep learning, multienergy[J]. Investigative Radiology, 2020, 55(1): 8−19. doi: 10.1097/RLI.0000000000000601
    [4]
    MAIER A, SYBEN C, LASSER T, et al. A gentle introduction to deep learning in medical image processing[J]. Journal of Medical Physics, 2018, 29(2): 86−101.
    [5]
    SAHINER B, PEZESHK A, HADJIISKI L M, et al. Deep learning in medical imaging and radiation therapy[J]. Medical Physics, 2019, 46(1): e1−e36. DOI: 10.1002/mp.13264.
    [6]
    WANG G. A perspective on deep imaging[J]. IEEE Access 4, 2016: 8914−8924.
    [7]
    WANG G, CONG W X, YANG Q S. Tomographic image reconstruction via machine learning: US 10, 970, 887 B2[P]. (2016-06-24)[2021-04-06]. https://patents.google.com/patent/US10970887B2/en?oq=10970887.
    [8]
    WANG G, ZHANG Y, YE X J, et al. Machine learning for tomographic imaging[J]. IOP Publishing Ltd, 2019.
    [9]
    SHAN H, PADOLE A, HOMAYOUNIEH F, et al. Competitive performance of a modularized deep neural network compared to commercial algorithms for low-dose CT image reconstruction[J]. Nature Machine Intelligence, 2019, 1(6): 269−276. doi: 10.1038/s42256-019-0057-9
    [10]
    WU W W, NIU C, EBRAHIMIAN S, et al. AI-enabled ultra-low-dose CT reconstruction[J/OL].(2021-01-01). https://arxiv.org/abs/2106.09834.
    [11]
    CHAO H, SHAN H, HOMAYOUNIEH F, et al. Deep learning predicts cardiovascular disease risks from lung cancer screening low dose computed tomography[J]. Nature Communications, 2021, 12(1): 2963. doi: 10.1038/s41467-021-23235-4
    [12]
    RAINES K S, SALHA S, SANDBERG R L, et al. Three-dimensional structure determination from a single view[J]. Nature, 2010, 463(7278): 214-217.
    [13]
    WEI H. Fundamental limits of ‘ankylography’ due to dimensional deficiency[J]. Nature, 2011, 480(7375): E1.
    [14]
    WANG G, YU H, CONG W X, et al. Non-uniqueness and instability of ‘ankylography’[J]. Nature, 2011, 480(7375): E2-3.
    [15]
    SENIOR A W, EVANS R, JUMPER J, et al. Improved protein structure prediction using potentials from deep learning[J]. Nature, 2020, 577(7792): 706-710.
    [16]
    AKHTAR N, MIAN A. Threat of adversarial attacks on deep learning in computer vision: A survey[J]. IEEE Access 6, 2018, 14410-14430.
    [17]
    ANTUN V, RENNA F, POON C, et al. On instabilities of deep learning in image reconstruction and the potential costs of AI[J]. Proceedings of the National Academy of Sciences, 2020, 117(48): 201907377.
    [18]
    WU W W, HU D L, CONG W X, et al. Stabilizing deep tomographic reconstruction networks[J/OL]. https://arxiv.org/abs/2008.01846 (v1, v2, and v3, 2020, v4, 2021).
    [19]
    WU E, WU K, DANESHJOU R, et al. How medical AI devices are evaluated: Limitations and recommendations from an analysis of FDA approvals[J]. Nature Medicine, 2021, 27(4): 582-584.
    [20]
    CHAN K H R, YU Y D, YOU C, et al. ReduNet: A white-box deep network from the principle of maximizing rate reduction[J]. 2021.
    [21]
    FAN F L, XIONG J J, LI M Z, et al. ReduNet: A white-box deep network from the principle of maximizing rate reduction[J]. IEEE Trans Radiat Plasma Med Sci, 10.1109/TRPMS.2021.3066428 (2021).
    [22]
    SHAMSHIRBAND S, FATHI M, DEHZANGI A, et al. A review on deep learning approaches in healthcare systems: Taxonomies, challenges, and open issues[J]. Journal of Biomedical Informatics, 2021, 113: 103627.
    [23]
    MONTAVON G, SAMEK W, MÜLLER K R. Methods for interpreting and understanding deep neural networks[J]. Digital Signal Processing, 2018, 73: 1-15.
    [24]
    FAN F L, WANG G. Fuzzy logic interpretation of quadratic networks[J]. Neurocomputing, 2020, 374: 10-21.
    [25]
    FAN F F, XIONG J J, WANG G. Universal approximation with quadratic deep networks[J]. Neural Networks, 2020, 124, 383-392.
    [26]
    SABOUR S, FROSST N, HINTON G E. Dynamic routing between capsules[J]. Adv Neural Inf Process Syst, 2017-Decem, 3857-3867.
    [27]
    FAN F L, LAI R J, WANG G. Quasi-equivalence of width and depth of neural networks[EB/OL]. (2020-01-01). https://arxiv.org/abs/2002.02515.
    [28]
    NICKEL M, MURPHY K, TRESP V, et al. A review of relational machine learning for knowledge graphs[J]. Proceeding of the IEEE, 2015, 104(1): 11-33.
    [29]
    WANG Q, MAO Z, WANG B, et al. Knowledge graph embedding: A survey of approaches and applications[J]. IEEE Trans Knowl Data Eng, 2017, 29(12): 2724-2743.
    [30]
    LIU J, ZHU X X, LIU F, et al. OPT: Omni-perception pre-trainer for cross-modal understanding and generation[EB/OL]. (2021-01-01). https://arxiv.org/abs/2107.00249.
    [31]
    WANG G, ZHANG J, GAO H, et al. Towards omni-tomography: Grand fusion of multiple modalities for simultaneous interior tomography[J]. PLoS One, 2012, 7(6).
    [32]
    WANG G, KALRA M, MURUGAN V, et al. Vision 20/20: Simultaneous CT-MRI-Next chapter of multimodality imaging[J]. Medical Physics, 2015, 42(10): 5879-5889.
    [33]
    DINELEY J. Tackling the silent crisis in cancer care[EB/OL]. (2018-01-01). https://www.lindau-nobel.org/blog-tackling-the-silent-crisis-in-cancer-care-with-innovation/.

Catalog

    Article views (2205) PDF downloads (430) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return