Citation: | LIU F T, LIU H S, CHEN Y, et al. Image quality assessment for deep learning image reconstruction algorithm: A phantom study[J]. CT Theory and Applications, 2022, 31(3): 351-356. DOI: 10.15953/j.ctta.2021.061. (in Chinese). |
[1] |
BEREGI J P, GREFFIER J. Low and ultra-low dose radiation in CT: Opportunities and limitations[J]. Diagnostic and Interventional Imaging, 2019, 100(2): 63−64. DOI: 10.1016/j.diii.2019.01.007.
|
[2] |
MACRI F, GREFFIER J, KHASANOVA E, et al. Minor blunt thoracic trauma in the emergency department: Sensitivity and specificity of chest ultralow-dose computed tomography compared with conventional radiography[J]. Annals of Emergency Medicine, 2019, 73(6): 665−670. DOI: 10.1016/j.annemergmed.2018.11.012.
|
[3] |
KIM H G, LEE H J, LEE S K, et al. Head CT: Image quality improvement with ASIR-V using a reduced radiation dose protocol for children[J]. European Radiology, 2017, 27(9): 3609−3617. DOI: 10.1007/s00330-017-4733-z.
|
[4] |
LARBI A, ORLIAC C, FRANDON J, et al. Detection and characterization of focal liver lesions with ultra-low dose computed tomography in neoplastic patients[J]. Diagnostic and Interventional Imaging, 2018, 99(5): 311−320. DOI: 10.1016/j.diii.2017.11.003.
|
[5] |
TANG H, LIU Z, HU Z, et al. Clinical value of a new generation adaptive statistical iterative reconstruction (ASIR-V) in the diagnosis of pulmonary nodule in low-dose chest CT[J]. British Journal of Radiology, 2019, 92(1103): 20180909. DOI: 10.1259/bjr.20180909.
|
[6] |
仵腾辉, 查云飞, 杨峰. 不同螺距联合ASIR重建技术在COVID-19胸部低剂量CT扫描中的应用研究[J]. CT理论与应用研究, 2022,31(2): 194−201. DOI: 10.15953/j.1004-4140.2022.31.02.05.
WU T H, ZHA Y F, YANG F. The application and study of different pitch combined with ASIR in low-dose chest CT screening on COVID-19[J]. CT Theory and Applications, 2022, 31(2): 194−201. DOI: 10.15953/j.1004-4140.2022.31.02.05. (in Chinese).
|
[7] |
VERDUN F R, RACINE D, OTT J G, et al. Image quality in CT: From physical measurements to model observers[J]. Physica Medica, 2015, 31(8): 823−843. DOI: 10.1016/j.ejmp.2015.08.007.
|
[8] |
OTT J G, BECCE F, MONNIN P, et al. Update on the non-prewhitening model observer in computed tomography for the assessment of the adaptive statistical and model-based iterative reconstruction algorithms[J]. Physics in Medicine and Biology, 2014, 59(15): 4047−4064. DOI: 10.1088/0031-9155/59/4/4047.
|
[9] |
SAMEI E, BAKALYAR D, BOEDEKER K L, et al. Performance evaluation of computed tomography systems: Summary of AAPM task group 233[J]. Medical Physics, 2019, 46(11): e735−e756. DOI: 10.1002/mp.13763.
|
[10] |
GEYER L L, SCHOEPF U J, MEINEL F G, et al. State of the art: Iterative CT reconstruction techniques[J]. Radiology, 2015, 276(2): 339−357. DOI: 10.1148/radiol.2015132766.
|
[11] |
GREFFIER J, HAMARD A, PEREIRA F, et al. Image quality and dose reduction opportunity of deep learning image reconstruction algorithm for CT: A phantom study[J]. European Radiology, 2020, 30(7): 3951−3959. DOI: 10.1007/s00330-020-06724-w.
|
[12] |
LYU P, NEELY B, SOLOMON J, et al. Effect of deep learning image reconstruction in the prediction of resectability of pancreatic cancer: Diagnostic performance and reader confidence[J]. European Journal of Radiology, 2021, 141: 109825. DOI: 10.1016/j.ejrad.2021.109825.
|
[13] |
FRANCK C, ZHANG G, DEAK P, et al. Preserving image texture while reducing radiation dose with a deep learning image reconstruction algorithm in chest CT: A phantom study[J]. Physica Medica, 2021, 81: 86−93. DOI: 10.1016/j.ejmp.2020.12.005.
|
[14] |
GREFFIER J, FRANDON J, Si-MOHAMED S, et al. Comparison of two deep learning image reconstruction algorithms in chest CT images: A task-based image quality assessment on phantom data[J]. Diagnostic and Interventional Imaging, 2021, S2211-5684(21): 00174−1. DOI: 10.1016/j.diii.2021.08.001.
|
[15] |
温德英, 杨杰尹, 汪琴, 等. 深度学习重建算法在上腹部CT成像中的应用[J]. CT理论与应用研究, 2021,31(3): 329−336. DOI: 10.15953/j.ctta.2021-005.
WEN D Y, YANG J Y, WANG Q, et al. Application of deep learning reconstruction algorithm in upper abdomen CT[J]. CT Theory and Applications, 2021, 31(3): 329−336. DOI: 10.15953/j.ctta.2021-005. (in Chinese).
|
[16] |
ICHIKAWA Y, KANII Y, YAMAZAKI A, et al. Deep learning image reconstruction for improvement of image quality of abdominal computed tomography: Comparison with hybrid iterative reconstruction[J]. Japanese Journal of Radiology, 2021, 39(6): 598−604. DOI: 10.1007/s11604-021-01089-6.
|
[17] |
PARK C, CHOO K S, JUNG Y, et al. CT iterative vs deep learning reconstruction: Comparison of noise and sharpness[J]. European Radiology, 2021, 31(5): 3156−3164. DOI: 10.1007/s00330-020-07358-8.
|