ISSN 1004-4140
CN 11-3017/P
LU H, SUN Y, ZHOU M X, et al. Experiment and forward modeling analysis of microgravity detection of urban underground space[J]. CT Theory and Applications, 2022, 31(5): 543-556. DOI: 10.15953/j.ctta.2021.069. (in Chinese).
Citation: LU H, SUN Y, ZHOU M X, et al. Experiment and forward modeling analysis of microgravity detection of urban underground space[J]. CT Theory and Applications, 2022, 31(5): 543-556. DOI: 10.15953/j.ctta.2021.069. (in Chinese).

Experiment and Forward Modeling Analysis of Microgravity Detection of Urban Underground Space

More Information
  • Received Date: December 19, 2021
  • Accepted Date: March 27, 2022
  • Available Online: April 10, 2022
  • Published Date: September 30, 2022
  • With the rapid development of national cities, the demand for urban underground space exploration development and utilization has increased. Due to the interference factors in human activities areas, traditional geophysical methods can't obtain true and accurate detection data. The microgravity method is relatively less affected by interference factors. The interference from urban buildings and human activities can be eliminated by the method of model forward correction, so as to obtain high-precision gravity collection data, and then the spatial location information of tunnel, goaf, cavity, collapse area and pipe gallery in urban underground space can be obtained through effective inversion method. In this paper, through experimental detection and analysis of the theoretically affected factors in the urban detection carried out by the ground mobile high-precision gravity measuring instrument, combined with the forward model correction research, the microgravity method shows good effect in the detection of urban underground space.
  • [1]
    路利春, 周明霞, 李小龙, 等. CG-5重力仪外业工作中常见问题及解决方法[J]. 地质装备, 2018,19(4): 28−31. doi: 10.3969/j.issn.1009-282X.2018.04.012

    LU L C, ZHOU M X, LI X L, et al. Common problems and solutions in field work of CG-5 gravimeter[J]. Geological Equipment, 2018, 19(4): 28−31. (in Chinese). doi: 10.3969/j.issn.1009-282X.2018.04.012
    [2]
    焦新华, 吴燕冈. 重力与磁法勘探[M]. 北京: 地质出版社, 2009.
    [3]
    孟玲顺, 杜晓娟. 勘探重力学与地磁学[M]. 北京: 地质出版社, 2008.
    [4]
    罗孝宽, 郭绍雍. 应用地球物理教程—重力磁法[M]. 北京: 地质出版社, 1991.
    [5]
    王谦身, 安玉林, 张赤军, 等. 重力学[M]. 北京: 地震出版社, 2003.
    [6]
    陈善. 重力勘探[M]. 北京: 地质出版社, 1986.
    [7]
    方俊. 重力测量与地球形状学[M]. 北京: 科学出版社, 1975.
    [8]
    何绍基. 重力测量学[M]. 北京: 测绘出版社, 1957.
    [9]
    许厚泽, 王谦身, 陈益惠. 中国重力测量与研究的进展[J]. 地球物理学报, 1994,(S1): 339−352.

    XU H Z, WANG Q S, CHEN Y H. Progress of gravity survey and research in China[J]. Chinese Journal of Geophysics, 1994, (S1): 339−352. (in Chinese).
    [10]
    王艺霖, 刘宽厚, 刘晓兰. 大型地面重力仪设备的现状比较及优化配置[J]. 地质装备, 2017,18(2): 22−24. doi: 10.3969/j.issn.1009-282X.2017.02.004

    WANG Y L, LIU K H, LIU X L. Status comparison and optimal configuration of large ground gravimeter equipment[J]. Geological Equipment, 2017, 18(2): 22−24. (in Chinese). doi: 10.3969/j.issn.1009-282X.2017.02.004
    [11]
    陈明. 微重力测量观测精度提高方法探讨[J]. 华南地震, 2020,40(3): 76−83. DOI: 10.13512/j.hndz.2020.03.011.

    CHEN M. Discussion on improving the observation accuracy of microgravity measurement[J]. South China Earthquake, 2020, 40(3): 76−83. DOI: 10.13512/j.hndz.2020.03.011. (in Chinese).
    [12]
    李玉君, 任芳祥, 杨立强, 等. 稠油注蒸汽开采蒸汽腔扩展形态4D微重力测量技术[J]. 石油勘探与开发, 2013,40(3): 381−384. doi: 10.11698/PED.2013.03.19

    LI Y J, REN F X, YANG L Q, et al. 4D microgravity measurement technology of steam cavity expansion in steam injection recovery of heavy oil[J]. Petroleum Exploration and Development, 2013, 40(3): 381−384. (in Chinese). doi: 10.11698/PED.2013.03.19
    [13]
    卢鹏羽. 二维微重力测量与目标发现率研究[J]. 吉林大学学报(地球科学版), 2010,40(S1): 1−5.

    LU P Y. Two-dimensional microgravity measurement and target detection rate research[J]. Journal of Jilin University (Earth Science Edition), 2010, 40(S1): 1−5. (in Chinese).
    [14]
    贾民育. 微重力测量技术的应用[J]. 地震研究, 2000,23(4): 452−456. doi: 10.3969/j.issn.1000-0666.2000.04.014

    JIA M Y. Application of microgravity measurement technology[J]. Seismological Research, 2000, 23(4): 452−456. (in Chinese). doi: 10.3969/j.issn.1000-0666.2000.04.014
    [15]
    岳建华, 刘树才, 于景村. 煤矿井下微重力测量方法与应用[J]. 中国煤田地质, 1995,(4): 93−96.

    YUE J H, LIU S C, YU J C. Measurement method and application of microgravity in coal mine[J]. China Coalfield Geology, 1995, (4): 93−96. (in Chinese).
    [16]
    王谦身, 周文虎, 武传真, 等. 微重力方法在考古工程中的应用──明茂陵地下陵殿探查[J]. 地球物理学进展, 1995,(2): 85−94.

    WANG Q S, ZHOU W H, WU C Z, et al. Application of microgravity method in archaeological engineering: Exploration of Ming Mausoleum[J]. Progress in Geophysics, 1995, (2): 85−94. (in Chinese).
    [17]
    张赤军. 微重力测量的应用及其改善[J]. 地球物理学进展, 1988,(4): 1−6.

    ZHANG C J. Application and improvement of microgravity measurement[J]. Advances in Geophysics, 1988, (4): 1−6. (in Chinese).
    [18]
    刘平利, 乔天荣, 张鸿祥. 老旧防空洞探测方法与分析[J]. 测绘与空间地理信息, 2021,44(4): 189−191. doi: 10.3969/j.issn.1672-5867.2021.04.051

    LIU P L, QIAO T R, ZHANG H X. Detection methods and analysis of old air-raid shelters[J]. Surveying and Mapping and Spatial Geographic Information, 2021, 44(4): 189−191. (in Chinese). doi: 10.3969/j.issn.1672-5867.2021.04.051
    [19]
    卢进延. 微重力测量及浅层地震在岩溶勘查中的应用[J]. 广东化工, 2020,47(20): 124−126. doi: 10.3969/j.issn.1007-1865.2020.20.056

    LU J Y. Application of microgravity measurement and shallow earthquake in Karst exploration[J]. Guangdong Chemical Engineering, 2020, 47(20): 124−126. (in Chinese). doi: 10.3969/j.issn.1007-1865.2020.20.056
    [20]
    胡强, 伍吉仓, 郑二龙, 等. 利用微重力测量探测城市地下孔洞[J]. 工程勘察, 2015,43(11): 74−78.

    HU Q, WU J C, ZHENG E L, et al. Detecting urban underground holes by microgravity measurement[J]. Engineering Investigation, 2015, 43(11): 74−78. (in Chinese).
    [21]
    曹金国, 王来鹏, 翟广卿, 等. CG-5重力仪及应用[M]. 北京: 解放军出版社, 2007.
    [22]
    吴天彪. 国外新型重磁仪器述评[J]. 地质装备, 2002,(3): 3−7. doi: 10.3969/j.issn.1009-282X.2002.03.001

    WU T B. Review of foreign new gravity and magnetic instruments[J]. Geological Equipment, 2002, (3): 3−7. (in Chinese). doi: 10.3969/j.issn.1009-282X.2002.03.001
    [23]
    耿启立. 重力仪器国外代表产品及国内研发最新进展[J]. 地质装备, 2016,17(1): 27−30. doi: 10.3969/j.issn.1009-282X.2016.01.006

    GENG Q L. Foreign representative products of gravity instruments and latest research and developmentprogress in China[J]. Geological Equipment, 2016, 17(1): 27−30. (in Chinese). doi: 10.3969/j.issn.1009-282X.2016.01.006
    [24]
    王延涛, 潘瑞林. 微重力法在采空区勘查中的应用[J]. 物探与化探, 2012,36(S1): 61−64.

    WANG Y T, PAN R L. Application of microgravity method in goaf exploration[J]. Geophysical and Geochemical Exploration, 2012, 36(S1): 61−64. (in Chinese).
    [25]
    陈贻祥. 地面微重力方法在地质灾害调查中的应用效果[J]. 中国岩溶, 1995,(2): 176−185.

    CHEN Y X. Application effect of ground microgravity method in geological disaster investigation[J]. Karst in China, 1995, (2): 176−185. (in Chinese).
    [26]
    陈贻祥. 地面微重力测量在工程地质勘察中的应用效果[J]. 水文地质工程地质, 1995,(4): 43−46.

    CHEN Y X. Application effect of ground microgravity survey in engineering geological survey[J]. Hydrogeology and Engineering Geology, 1995, (4): 43−46. (in Chinese).
    [27]
    高好林. 微重力测量在地裂缝探测中的应用[J]. 物探与化探, 2005,(5): 414−417.

    GAO H L. Application of microgravity measurement in ground fissure detection[J]. Geophysical and Geochemical Exploration, 2005, (5): 414−417. (in Chinese).
    [28]
    路利春, 胡登攀, 张冲, 等. 概率成像技术在重力位场中的应用研究[J]. 矿产与地质, 2018,32(5): 888−894. doi: 10.3969/j.issn.1001-5663.2018.05.015

    LU L C, HU D P, ZHANG C, et al. Application of probabilistic imaging technology in gravity potential field[J]. Minerals and Geology, 2018, 32(5): 888−894. (in Chinese). doi: 10.3969/j.issn.1001-5663.2018.05.015
    [29]
    路利春, 文博, 程斌, 等. 成像技术在矿区重力勘探中的应用研究[J]. 地质与资源, 2018,27(1): 99−102,88. doi: 10.3969/j.issn.1671-1947.2018.01.014

    LU L C, WEN B, CHENG B, et al. Study on the application of imaging technology in gravity exploration in mining areas[J]. Geology and Resources, 2018, 27(1): 99−102,88. (in Chinese). doi: 10.3969/j.issn.1671-1947.2018.01.014
    [30]
    路利春, 赵炳坤, 周明霞, 等. 高精度重磁测量在渭河盆地氦气调查中的应用研究[J]. 陕西地质, 2017,35(2): 52−59. doi: 10.3969/j.issn.1001-6996.2017.02.009

    LU L C, ZHAO B K, ZHOU M X, et al. Application of high-precision gravity and magnetic survey in helium survey in Weihe Basin[J]. Shaanxi Geology, 2017, 35(2): 52−59. (in Chinese). doi: 10.3969/j.issn.1001-6996.2017.02.009
    [31]
    王园, 陈丽森, 戴山岭, 等. 重力异常模型的建立和精度分析[J]. 大地测量与地球动力学, 2017,37(2): 160−162.

    WANG Y, CHEN L S, DAI S L, et al. Establishment of gravity anomaly model and accuracy analysis[J]. Geodesy and Geodynamics, 2017, 37(2): 160−162. (in Chinese).
    [32]
    冯兰天. 台阶(断层)模型重力异常正演计算的一种新算法[J]. 世界地质, 2014,33(2): 477−483. doi: 10.3969/j.issn.1004-5589.2014.02.026

    FENG L T. A new algorithm for forward calculation of gravity anomaly in step (fault) model[J]. World Geology, 2014, 33(2): 477−483. (in Chinese). doi: 10.3969/j.issn.1004-5589.2014.02.026
    [33]
    王芃, 张忠杰, 张晰, 等. 基于Matlab平台实现二维复杂地质模型多边形网格建模及重力异常正演计算[J]. 桂林理工大学学报, 2014,34(2): 254−259. doi: 10.3969/j.issn.1674-9057.2014.02.006

    WANG P, ZHANG Z J, ZHANG X, et al. Realization of polygon mesh modeling and gravity anomaly forward calculation of 2D complex geological model based on Matlab platform[J]. Journal of Guilin University of Technology, 2014, 34(2): 254−259. (in Chinese). doi: 10.3969/j.issn.1674-9057.2014.02.006
    [34]
    GIANI L, MIRANDA T, PIATTELLA O F. Cosmology and Newtonian limit in a model of gravity with nonlocally interacting metrics[J]. Physics of the Dark Universe, 2019, 26: 100357. doi: 10.1016/j.dark.2019.100357
    [35]
    GHOMSI F, SEVERIN N, MANDAL A, et al. Cameroon's crustal configuration from global gravity and topographic models and seismic data[J]. Journal of African Earth Sciences, 2020, 161(Jan.): 103657.1−103657.13.
    [36]
    张瑞芳, 贾全山, 路利春. 高精度质子磁力仪性能校验与干扰因素分析[J]. 地质装备, 2020,21(5): 23−28. doi: 10.3969/j.issn.1009-282X.2020.05.005

    ZHANG R F, JIA Q S, LU L C. Performance check of high-precision proton precession magnetometer and analysis of interference factors[J]. Geological Equipment, 2020, 21(5): 23−28. (in Chinese). doi: 10.3969/j.issn.1009-282X.2020.05.005
    [37]
    王立发, 雷晓东, 何祎. 平原区深层隐伏岩溶的重力正演模拟[J]. 城市地质, 2018,13(4): 19−23. doi: 10.3969/j.issn.1007-1903.2018.04.004

    WANG L F, LEI X D, HE Y. Gravity forward modeling of deep hidden Karst in plain area[J]. Urban Geology, 2018, 13(4): 19−23. (in Chinese). doi: 10.3969/j.issn.1007-1903.2018.04.004
    [38]
    贾敦新. 基于重力模型的重庆及周边城市群关系研究[J]. 地理空间信息, 2019,17(2): 48−50,10. doi: 10.3969/j.issn.1672-4623.2019.02.013

    JIA D X. Study on the relationship between Chongqing and its surrounding urban agglomerations based on gravity model[J]. Geospatial Information, 2019, 17(2): 48−50,10. (in Chinese). doi: 10.3969/j.issn.1672-4623.2019.02.013
    [39]
    张洪波, 赵珞成, 邓洪涛. 相对重力测量虚拟仿真系统的建立与模型研究[J]. 地理空间信息, 2018,16(10): 51−53,66. doi: 10.3969/j.issn.1672-4623.2018.10.015

    ZHANG H B, ZHAO L C, DENG H T. Establishment of virtual simulation system for relative gravity measurement and model research[J]. Geospatial Information, 2018, 16(10): 51−53,66. (in Chinese). doi: 10.3969/j.issn.1672-4623.2018.10.015
    [40]
    刘璇, 刘艳芳, 张梦珂, 等. 基于改进重力模型的镇域网络化规划研究[J]. 地理空间信息, 2017,15(3): 8−11,133.

    LIU X, LIU Y F, ZHANG M K, et al. Research on town network planning based on improved gravity model[J]. Geospatial Information, 2017, 15(3): 8−11,133. (in Chinese).

Catalog

    Article views (665) PDF downloads (87) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return